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Outline

• Percolation
• Network applications

• Naturally-defined networks
• Model-defined networks
• Data-defined networks

• Networks and systems thinking
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• Reading: Honti et al. 
2019 (on Moodle)

• Networks Midterm next 
week

• Project milestone 2 due 
Friday

• Project final 
presentation on May 28



Final project deliverable
• Presentation on May 28

• 15 minutes followed by Q+A
• What to cover:

• What is your group’s definition of sustainable development in the context of 
the world dynamics models?

• Be explicit in how you construct your metric(s) 
• How did you design your automated exploration of different policies?
• What did you find in analyzing the system dynamics model as a network?
• Did your network analysis affect your policy development?
• What parameters did you adjust in your final policy, and which had the biggest 

impact in moving your model toward your sustainable development target?
• How does the model perform in the end?
• What are the biggest strengths and weaknesses of both the model and your 

approach?
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Final project presentation

• Introduction to the project context (10 pts)
• Definition of sustainable development in the world dynamics 

models (20 pts)
• Network analysis of systems model (20 pts)
• Automated process for policy development (20 pts)
• Discussion of results and implications (20 pts)
• Conclusion, limitations, and outlook (10 pts)
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Final project deliverable

• You also need to submit a final version of your code for analysis
• Grading criteria:

• Does it contain all the code you reference in your final presentation? 
(75%)

• Is it well-documented (i.e. commented)? (25%)
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Percolation

• The process of removing nodes from the network and the 
associated edges

• Helps us understand “what-if” scenarios
• Examples:
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Internet “Herd immunity” Lots of urban systems!



Simulating percolation

• Key parameter: ɸ (occupational probability)
• ɸ = 1 à all nodes are present
• ɸ = 0 à all nodes have been removed

• Process of removing nodes
• Uniform: all nodes have same probability of removal
• Non-uniform: based on node properties (e.g., different forms of 

centrality)
• The choice is normally driven by the domain
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Percolation theory

• Newman goes into detail in Chapter 15
• (And there can be a lot of mathematical detail)

• Percolation is an entire subfield of network science
• Offers an understanding of network resilience and robustness
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Qualitative percolation analysis example
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Uniform removal 
of edges

What does this signify?



Qualitative percolation analysis example
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Targeted edge 
removal (target 
largest degree 
first)



General network analysis procedure
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Define network structure

Analyze structure & extract insights

Perturb structure to understand how changes impact performance

Make design changes / recommendations for the system



Networks in urban systems
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Naturally-defined 
network structure

Network is defined by the physical 
or natural structure of the data / 
system:
• Social network (people, 

relationships)
• Transportation network (roads, 

intersections) (destinations, 
paths)

• Water network (valves, pipes)
• Power grid 

(homes/transformers/etc., 
power lines)

Model-defined 
network structure

Network is defined by a model 
(models are imperfect):
• Theoretical between two 

entities in a city
• How similar are two 

buildings?
• How much do two 

buildings impact one 
another?

• Dynamic networks (processes 
or changes across 
edges/nodes)

Data-defined 
network structure

Network structure is learned from 
data
• Open problem in many 

domains
• Can help to understand 

interdependencies between 
infrastructure / systems / 
people

• Example: data on human 
behavior – learn social 
network structure?



Naturally-defined networks
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Define network structure

Analyze structure & extract 
insights

Perturb structure to understand 
how changes impact performance

Make design changes / 
recommendations for the system

✅ naturally defined

Structure: metrics from class
Insights: e.g. node importance, edge importance
What can we say about the system as currently designed?

How does changing the capacity of edge x or node 
y affect performance?

Make decisions based on alternative analysis



Example: Beijing transit network

Model transit sites as nodes and transit routes as edges 
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October 6, 2004 14:55 WSPC/147-MPLB 00758

Urban Transit System as a Scale-Free Network 1045

 2

new method to study the real networks. Here, we report that networks composed of sites connected by 

transit routes show the characteristics of scale-free networks. Urban transit system’s scale-free features 

help find and control transit hubs. It also indicates that urban transit system is difficult to be destroyed 

for the non-hubs’ congestions or accidents, even breakdown. This paper is organized as follows. Firstly, 

We propose the scale-free characteristics of the urban transit network based on Barabasi’s theory. 

Secondly, data analysis and results with real city data are contained in section 2. Finally, the conclusion 

is given. 

1 Urban transit network’s scale-free property 

1.1 Describe of the transit network  

Urban transit network is a complex network, in which nodes can be seen as transit sites and edges 
correspond to routes linked between O-D. In addition, if a route is designed from node i  to node j , 

there must exist a route from node j  to node i  as shown in Fig.1 (a) (Because the full data is 

difficult to be obtained and the urban transit network is quite complex, we don’t consider effects of 

middle stops between the origin node and the destination node in this paper.). In some case, some 

transit routes passing through node i  and going to node i  construct the loops in urban transit 

network such as Fig.1 (b). Fig. 2 is a small example of the urban transit network with eight transit sites, 

ten routes and one loop. A transit route represents the interaction of two transit sites.  

 

 

 

                       (a)                                (b) 

Fig.1 Examples of transit site connections (Because the full data is difficult to be obtained and the urban transit network is quite 

complex, we don’t consider effects of middle stops between the origin node and the destination node in this paper.) (The circle 

represents the transit site and the line represents the transit route) (a) The connection of two nodes. (b) Single node connection 

with itself structuring a loop. 

 

 

 

 

 

 

Fig.2  A small example of urban transit network with eight transit sites, ten routes and one loop. 

1.2 Properties of the transit network 

Barabasi and Bonabeau (2003) had used computer simulations and calculations to show that a 

growing network with preferential attachment will indeed become scale-free, with its distribution of 

nodes following a power law. Although this theoretical model is simplistic and needs to be adapted to 

specific situations, it does appear to confirm our explanation forwhy scale-free networks are so 

ubiquitous in the real world. The key elements in previous scale-free network growth models, such as 

models of the growth of the World-Wide Web, are (1) continual addition of both vertices and edges to 

the network as time passes, and (2) preferential attachment, meaning that edges are more likely to 

connect to vertices of high degree than to ones of low degree. Other characteristics, such as removal of 

vertices or edges, or movement of edges to new positions in the network, can also be incorporated, but 

the crucial features of power-law degree distributions and correlations between vertex degrees are 

reproduced with only the elements 1 and 2 above. 

Transit route 

Transit site 

j i i 

Fig. 2. A small example of an urban transit network with eight transit sites, ten routes and one
loop.

stops between the origin node and the destination node in this paper.) In some
cases, some transit routes passing through node i and going to node i construct
the loops in urban transit networks such as Fig. 1(b). Figure 2 is a small example
of the urban transit network with eight transit sites, ten routes and one loop. A
transit route represents the interaction of two transit sites.

2.2. Properties of the transit network

Barabási and Bonabeau10 used computer simulations and calculations to show that
a growing network with preferential attachment will indeed become scale-free, with
its distribution of nodes following a power-law. Although this theoretical model is
simplistic and needs to be adapted to specific situations, it does appear to confirm
our explanation for why scale-free networks are so ubiquitous in the real world. The
key elements in previous scale-free network growth models, such as models of the
growth of the World Wide Web, are:

1. The continual addition of both vertices and edges to the network as time passes,
and

2. Preferential attachment, meaning that edges are more likely to connect to ver-
tices of high degrees than to ones of low degrees.

Other characteristics, such as the removal of vertices or edges, or the movement
of edges to new positions in the network can also be incorporated. However, the
crucial features of power-law degree distributions and correlations between vertex
degrees are reproduced with only elements 1 and 2 above.

Through observation and experimental data analysis, urban transit networks
are found to possess three characteristics. They are as follows:

1. Growth. The growth characteristics of the urban transit network are similar to
what has been mentioned above. New transit routes are added to urban transit
networks at various times. For example, new habitation areas are developed in
order to meet the demands of increasing traffic flows. City economy and tourist
development create the possibility of transit network growth; old transit routes
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Wu, J., Gao, Z., Sun, H., & Huang, H. (2004). Urban transit system as a scale-free network. Modern Physics Letters B, 18(19n20), 1043-1049.



Example: Beijing transit network

Empirical 
analysis of 
Beijing urban 
transit network
(441 nodes, 
776 edges)
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Wu, J., Gao, Z., Sun, H., & Huang, H. (2004). Urban transit system as a scale-free network. Modern Physics Letters B, 18(19n20), 1043-1049.



Example: Beijing transit network

Demonstrates properties of a scale-free network
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??

Degree Log (Degree)

p(k) ~ k–λ
λ = 2.24



Example: Beijing transit network
Implications for urban transit:

• Effective in propagation – people can move 
around across the entire network efficiently 
(hubs facilitate this)

• Resistant to accidental (random) failures – this 
is because of its nonhomogeneous topology 
(a few very important hubs); non-hub 
breakdowns/accidents won’t destroy 
connectivity

• Vulnerable to targeted attacks – breakdown at 
a hub can be devastating to the network (ex: 
July 11 rainstorm); where  should you put 
resources for resiliency planning?
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For scale-free networks:

Random edge 
removal

Targeted edge 
removal
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Example: Traffic on a road network

• Nodes: Intersections
• Edges: Roads

• Weight: capacity or traffic
(depending on analysis)

• Process:
• Analyze structure
• Extract insights
• Perturb network
• Make design 

recommendations
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Serdar Çolak et al 2013 New J. Phys. 15 113037



Example: Traffic on a road network

• Nodes: Intersections
• Edges: Roads

• Weight: capacity or traffic
(depending on analysis)

• Process:
• Analyze structure
• Extract insights

• What if networks is 
dynamic with time-series 
data? How do things 
change?
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Day 1

Day 2

Day 3

Day 4

Day 5

Serdar Çolak et al 2013 New J. Phys. 15 113037



Example: 
System dynamics 
model
• All types of variables 

become nodes
• Stocks
• Flows
• Parameters/Variables

• All influence arrows 
become edges

• All flow-stock pairs 
become edges
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Honti et al. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240(118015)

https://doi.org/10.1016/j.jclepro.2019.118015
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• Network diagram of 
world3 model

Example: 
System dynamics 
model

Honti et al. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240(118015)

https://doi.org/10.1016/j.jclepro.2019.118015
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• Example where authors 
created a subgraph with 
only the stocks

• The size of the text 
corresponds to the 
eigenvector centrality

• How could this impact our 
understanding of the 
system?

• See reading on Moodle

Example: 
System dynamics 
model

Honti et al. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240(118015)

https://doi.org/10.1016/j.jclepro.2019.118015


Model-defined networks
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Define network structure

Analyze structure & extract 
insights

Perturb structure to understand 
how changes impact performance

Make design changes / 
recommendations for the system

Derive relationships / network based on known model
Remember: all models are wrong (imperfect), but some 
are useful
• Useful to compare to ground truth network if known

Do patterns emerge that match the model?



Example: Building pollution
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• Boilers produce more PM2.5 than cars and 
trucks (City of NY, 2012)

• Local pollution: +2,300 deaths; +4,800 ER 
asthma visits  
(City of NY, 2013)

• Goal: identify clusters of buildings for 
infrastructure re-design 

Photo taken on Jan 8, 2014 in downtown Brooklyn, NY 
by Rishee Jain, Stanford University



Example: Building pollution
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Model to define network: 
Gaussian Plume Model



Example: Building pollution
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3

1

2

!",$
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!$,$

%& =
()$
⋮

+,-.$
%& is	the	signal	vector	of	
building	(node)	1	with	
EC=	energy	consumption,	
FLRS =	number	of	floors

Nodes = buildings; Edges = pollution dispersion relationship

R. K. Jain, J. M. F. Moura and C. E. Kontokosta, "Big Data + Big Cities: Graph Signals of Urban Air Pollution [Exploratory SP]," in IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 130-136, Sept. 2014,



Example: Building pollution
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 IEEE SIGNAL PROCESSING MAGAZINE [133] SEPTEMBER 2014

where h ,  h ,  h  i1 i2 i3  correspond to build-
ing i’s consumption of heating oil #2, heat-
ing oil #4, and heating oil #6 and 
h ,  h ,  hj1 j2 j3  correspond to building j s\  
consumption of heating oil #2, heating oil 
#4, and heating oil #6, respectively.

Additionally, to translate matrix A  into 
an n n#  symmetric matrix, we superim-
pose two symmetrical wind directions 
(i.e., west to east, east to west).

DESCRIPTION OF NEW YORK  
CITY DATA SET
The NYC LL84 and PLUTO data sets were 
merged on Borough Block Lot (BBL) 
numbers, unique identifiers used by the 
City of New York to track tax lot parcels, 
to form a composite data set of heating 
oil consumption and associated geo-
graphic location of buildings covered by 
the energy disclosure mandate. A 

conversion process was undertaken using 
CORPSCON [13], an open-source coordi-
nate conversion program from the U.S. 
Army Corps of Engineers that can batch 
convert coordinates between map projec-
tions, to convert data in the New York–
Long Island State Plane Coordinate 
System to corresponding latitude and lon-
gitude values. An initial preprocessing step 
was conducted on the composite data set 

(a) (b)

Highest Aggregate Consumption
(PM2.5 Self-Loop+In-Degree Consumption)

Highest Emitters (PM2.5 Self-Loop Consumption)

Highest Aggregate Consumption
(NOX Self-Loop+In-Degree Consumption)

Highest Emitters (NOX Self-Loop Consumption)

[FIG2] Visualization of the buildings estimated to be exposed to high levels of (a) PM2.5 and (b) NOx. The top 50 emitting 
buildings are indicated by red markers and the top 50 buildings exposed to the highest aggregate consumption by blue 
markers. Red markers are determined by taking the nodes with highest weighted heating oil consumption. Blue markers are 
determined by taking the nodes with the highest combined self-loop and in-degree consumption. Dark red markers indicate 
where a red and blue markers overlap.

[TABLE 2] THE COMMON GRAPH METRICS APPLIED TO URBAN AIR POLLUTION.

GRAPH METRIC FORMAL DEFINITION 
(DEFINITIONS ADAPTED FROM [11])

MATHEMATICAL  
FORMULATION

APPLICATION TO URBAN  
AIR POLLUTION

SELF-LOOP OF A VERTEX THE VALUE OF AN EDGE  
CONNECTING A VERTEX TO ITSELF.

W ,i j  WHERE i j= A MEASURE OF THE EMISSIONS  
OF BUILDING .i

IN-DEGREE OF A VERTEX THE VALUE OF ALL IN-GOING  
EDGES CONNECTED TO A  
VERTEX ON A DIRECTED GRAPH.

k W ,i
j

N
i j

1

in =
=

/
A MEASURE OF HOW MUCH NEIGHBORING 
BUILDINGS ARE CONTRIBUTING TO 
BUILDING i s\  AIR QUALITY. 

OUT-DEGREE OF A VERTEX THE VALUE OF ALL OUT-GOING  
EDGES CONNECTED TO A VERTEX  
ON A DIRECTED GRAPH.

k W ,j
i

N
i j

1

out =
=

/
A MEASURE OF HOW MUCH BUILDING  
j  IS CONTRIBUTING TO THE AIR QUALITY 
OF ITS NEIGHBORS.

Note: For the specific application of air pollution, we deviate from the standard definition of in-degree and out-degree by excluding the contribution of a self-loop ( )W ,i j , where i j=  
since we are trying to ascertain the impact neighboring buildings have on building i’s air quality or building j  has on the air quality of neighboring buildings.

R. K. Jain, J. M. F. Moura and C. E. Kontokosta, "Big Data + Big Cities: Graph Signals of Urban Air Pollution [Exploratory SP]," in IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 130-136, Sept. 2014,



Example: Building pollution
Community detection
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 IEEE SIGNAL PROCESSING MAGAZINE [134] SEPTEMBER 2014 

[exploratory SP] continued

to remove duplicate data points and data 
points that were incomplete or contained 
missing information (i.e., energy usage, 
square footage, geographic information). A 
secondary preprocessing step was con-
ducted to identify and remove erroneous 
(i.e., energy usage exorbitantly too high or 
too low) and outlier data points (i.e., top/
bottom 1% of energy usage). Both pre-
processing steps are consistent with the 
data cleaning methodology established by 
the City of New York in their annual report 
regarding the LL84 energy disclosure data 
[14]. The postprocessed data set consisted 
of 11,196 valid data points and represented 
nearly 2 billion gross ft2 with an average 

building size of 173,707 ft2. Seventy-six 
percent of the data points correspond to 
multifamily residential buildings, and 11% 
correspond to commercial office buildings. 
The remaining percent of buildings have a 
multitude of uses (e.g., retail, hotel edu-
cation). The geographic distribution of 
the data points across the five New York 
City boroughs are as follows: 44% in 
Manhattan, 17% in the Bronx, 18% in 
Brooklyn, 19% in Queens, and 2% in 
Staten Island. The geographic bias toward 
Manhattan is expected as Manhattan con-
tains the bulk of large buildings subject to 
the reporting requirements of the disclo-
sure mandate. We acknowledge this 

geographic bias as a limitation of our 
analysis and aim to mitigate this issue in 
future work by incorporating other dispa-
rate data sets on smaller buildings in New 
York City. A subset of the overall data set 
(4,702 data points, 42% of the total) 
accounted for over 27.5 billion kBTU of 
heating oil consumption in the 2012 cal-
endar year with an average consumption 
of 5.8 million kBTU per building. 

ANALYSIS, RESULTS,  
AND IMPLICATIONS 
All analysis was conducted using Net-
workX [15], an open-source Python lan-
guage software package for the creation, 
manipulation, and analysis of complex 
graphs. Results were visualized using Car-
toDB [16], an online visualization tool for 
geotagged data.

IDENTIFYING BUILDINGS  
MOST EXPOSED TO POLLUTION
We aim to illustrate the benefits of our 
graph-based approach by identifying spe-
cific buildings in New York City that are 
susceptible to high levels of PM2.5 and NOx 
pollution. For comparison, we employed 
both a conventional analysis method and a 
method derived from representing the 
data as a graph signal. The conventional 
method consisted of ranking the buildings 
by their weighted heating oil consumption 
( )qi  to determine the top emitters for each 
pollutant. The second method utilizes the 
graph structure of our model to quantify 
and rank the combined impact a building’s 
own heating oil consumption and the con-
sumption of its neighbors has on sur-
rounding air quality. In graph terms, this 
quantity is calculated by summing the in-
degree and the self-loop for each vertex (as 
defined in Table 2). A visualization of the 
results for both methods is presented in 
Figure 2 for PM2.5 and NOx. 

Significant overlap exists between the 
two analysis methods as indicated by the 
dark red markers in Figure 2. As expected, 
several buildings that are the highest 
emitters for both PM2.5 and NOx also have 
the highest aggregated consumption, 
indicative of buildings most exposed to air 
pollutants. However, a discrepancy is also 
apparent between the two methods. Sev-
eral buildings are identified to be high 

[FIG3] Visualization of building clusters that form “hot spots” of pollution. The base 
case does not weigh consumption by pollutant and is in orange. PM2.5 and NOx are 
represented by blue and green markers, respectively. The size of each circle marker 
is indicative of the number of buildings in each community with the center located 
at the geographic coordinates of the “Ego In” node (i.e., the building with the 
highest in-degree plus self-loop value). Each cluster’s information box provides: the 
“Ego In” node’s address, the “Ego Out” (i.e., the building with the highest out-
degree value indicating that it significantly contributes to the poor air quality of its 
neighboring buildings) node’s address and the total number of nodes in the cluster 
that burn heating oil.

Base

NOX

PM2.5

R. K. Jain, J. M. F. Moura and C. E. Kontokosta, "Big Data + Big Cities: Graph Signals of Urban Air Pollution [Exploratory SP]," in IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 130-136, Sept. 2014,



Network thresholding

• Some models / data give you a 
fully connected network

• Example: network defined as the 
similarity in building energy use 
profiles

• We often threshold such graphs to 
identify edges deemed “significant”

𝑒!" = #
𝑒!" , 𝑒!" ≥ 𝛼
0, 	 𝑒!" < 0
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Data-defined network
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Define network structure

Analyze structure & extract 
insights

Perturb structure to understand 
how changes impact performance

Make design changes / 
recommendations for the system

1. Feature extraction from data
2. Need to find graph structure that is the “best” fit

• Difficult problem and domain specific



Example: Occupant network inference

• Example from our lab’s research
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Co-optimization of organizations 
and building systems

Occupants

Building 
systems

Data-driven 
design & 

management
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Research gap: understanding networks

The formal chart shows who’s on top The advice network reveals the experts

Krackhardt and Hanson 1993

Challenge:
How to infer the network 

automatically?
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How to infer network automatically?

Learn graph 𝐺 = 𝒱,𝐀  
from time series

𝒱: set of nodes (occupants)
𝐀: weighted adjacency matrix

Develop or adapt method 
to infer network

Compare against ground 
truth

Hypothesis: novel method 
infers network structure 
similar to ground truth
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Sensor deployment details
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Hub

• Stored on device
• Z-wave, ZigBee, or WiFi 

wireless transmission

Internet

Mesh

Scraped into database

Plug load sensor

En
er
gy

9am 12pm 5pm



Gaussian 
Mixture 
Model 

clustering

Method inspiration: Gaussian Mixture Model
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Heart rate Physiological state1

1 Costa et al. 2012

Working statePower consumption

Variational 
Bayesian 

Gaussian Mixture 
Model clustering



Variational Bayesian Gaussian Mixture Model
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Frequency

Energy (Wh) Energy (Wh)

Low energy Medium energy High energy

Distribution of 15-min energy consumption
(1 occupant over 1 day)



Activity States
Visualized

(Real office in San 
Francisco)

38

Low energy
Medium energy
High energy

Sonta, A. J., Simmons, P. E., & Jain, 
R. K. (2018). Understanding building 
occupant activities at scale: An 
integrated knowledge-based and 
data-driven approach. Advanced 
Engineering Informatics, 37, 1–13. 
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Low energy
Medium energy
High energy

12 pm 4 pm

1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1

Opportunities for social interaction

𝐀!,# =
𝑽! ∩ 𝑽#
𝑽! ∪ 𝑽#

=
𝑽! ∩ 𝑽#

𝑽! + 𝑽# − 𝑽! ∩ 𝑽#

𝑽 =(
$
𝑉$

𝑽! ∩ 𝑉# =(
$
𝑽!$ ⋅ 𝑽#$

Fill adjacency matrix with 
Jaccard similarity:
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The 
Interaction 

Model

Example data 
from one day

Office building 
in Berkeley

07/05/25 Lecture 10 | Networks 5



Survey to measure ground truth network
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Social
“Inclusion of the other in 

the self” scale1

Organizational
Survey questions measure 3 

key attributes2

1. Communication (information sharing)

2. Advice (problem solving)

3. Trust (work-related support)

1 Gachter et al. 2012 | 2 Krackhardt & Hanson 1993



Network comparison

42

Inferred from model
• Graphical Lasso
• Influence Model
• Interaction Model

Ground truth from survey
• Organizational 

(communication, advice, trust)
• Social

G H

Graph correlation

Quadratic 
Assignment 
Procedure 
(QAP)

cor (G,H) =
cov (G,H)p

cov (G,G) · cov (H,H)

cov (G,H) =
1

|V |2 � |V |

X

i=j

�
A

G

ij � µG

� �
A

H

ij � µH

�

<latexit sha1_base64="StE4X1xp7509pvLs6COt965lv38="></latexit>

Correlation distribution

True correlation
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0 0.2 0.4-0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4-0.4 -0.2 0.6

Graph 
correlation & 
estimated 
density from 
QAP test

Network 
visualization

Graphical Lasso Influence Model Interaction Model

-0.06, p = 0.66 0.15, p = 0.25 0.46, p = 0.002
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Weeks of data

Graph 
correlation 

with ground 
truth

~10 weeks of data 
are needed to 

learn the network
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How does social network compare with spatial 
network?
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Exam 2 details

• Next class time – Wednesday 8th (9:15 to 11:00 am)
• Closed book and notes
• You may (and should) bring 1 sheet of paper with notes
• Content: based on materials in Lectures 6-10
• Format:

• Multiple choice questions
• Open-ended questions – application-oriented

• If network calculations require matrix manipulation (e.g., eigendecomposition), 
this will be provided

• No coding
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Lecture 06

• Network notation
• Adjacency matrix
• Types of networks
• Degree
• Paths
• Independent paths / connectivity
• Cut sets
• Min-cut/max-flow
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Lecture 07

• Components
• Graph Laplacian matrix
• Spectral partitioning; Fiedler method
• Centrality

• Degree
• Eigenvalue
• Katz
• PageRank
• Closeness
• Betweenness

07/05/25 Lecture 10 | Networks 5 48



Lecture 08
• Roles

• Structural equivalence
• Regular equivalence (intuition)

• Groups of nodes
• Cliques
• (k-)Cores
• (k-)Components

• Clustering coefficient
• Homophily / assortative mixing
• Modularity and community detection
• Motifs

07/05/25 Lecture 10 | Networks 5 49



Lecture 09
• Random graph models

• Erdős–Rényi
• Configuration model (intuition)
• Preferential attachment (Barabási–Albert)

• Network structure metrics
• Degree distribution
• Clustering coefficient
• Size of largest connected component
• Average shortest path length

• Network archetypes
• Scale free
• Small world
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Lecture 10

• Percolation
• Natural, model, and data defined networks
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