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Outline

 Percolation * Reading: Honti et al.
» Network applications 2019 (on Moodle)
- Naturally-defined networks * Networks Midterm next
« Model-defined networks week
« Data-defined networks » Project milestone 2 due
* Networks and systems thinking Friday

* Project final
presentation on May 28
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Final project deliverable

* Presentation on May 28
* 15 minutes followed by Q+A

 \What to cover:

« What is your group’s definition of sustainable development in the context of
the world dynamics models?

» Be explicit in how you construct your metric(s)
« How did you design your automated exploration of different policies?
« What did you find in analyzing the system dynamics model as a network?
 Did your network analysis affect your policy development?

« What parameters did you adjust in your final policy, and which had the biggest
impact in moving your model toward your sustainable development target?

* How does the model perform in the end?

« What are the biggest strengths and weaknesses of both the model and your
approach?
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Final project presentation

* Introduction to the project context (10 pts)

* Definition of sustainable development in the world dynamics
models (20 pts)

* Network analysis of systems model (20 pts)

« Automated process for policy development (20 pts)
* Discussion of results and implications (20 pts)

* Conclusion, limitations, and outlook (10 pts)
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Final project deliverable

* You also need to submit a final version of your code for analysis

» Grading criteria:

* Does it contain all the code you reference in your final presentation?
(75%)
* |s it well-documented (i.e. commented)? (25%)
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Percolation

* The process of removing nodes from the network and the
associated edges

» Helps us understand “what-if’ scenarios
« Examples:
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“Herd immunity” Lots of urban systems!
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Simulating percolation

« Key parameter: ¢ (occupational probability)
* ¢ =1 > all nodes are present
* ¢ =0 - all nodes have been removed

* Process of removing nodes
« Uniform: all nodes have same probability of removal

* Non-uniform: based on node properties (e.g., different forms of
centrality)

* The choice is normally driven by the domain
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Percolation theory

 Newman goes into detail in Chapter 15
* (And there can be a lot of mathematical detail)

 Percolation is an entire subfield of network science
 Offers an understanding of network resilience and robustness
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Qualitative percolation analysis example
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Qualitative percolation analysis example
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General network analysis procedure

Define network structure
Analyze structure & extract insights
Perturb structure to understand how changes impact performance

Make design changes / recommendations for the system
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Networks in urban systems

/ Naturally-defined \

network structure

Network is defined by the physical
or natural structure of the data /
system:

« Social network (people,
relationships)

* Transportation network (roads,
intersections) (destinations,
paths)

» Water network (valves, pipes)

(homes/transformers/etc.,

 Power grid
kpower lines) /

07/05/25

/ Model-defined \ /

network structure

Network is defined by a model
(models are imperfect):
* Theoretical between two
entities in a city
* How similar are two
buildings?
 How much do two
buildings impact one
another?
« Dynamic networks (processes

or changes across
\edges/nodes) /
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Data-defined
network structure

Network structure is learned from

a
Open problem in many
domains

Can help to understand
interdependencies between
infrastructure / systems /
people

Example: data on human
behavior — learn social
network structure?

/




Naturally-defined networks

Define network structure naturally defined

Analvze structure & extract Structure: metrics from class
insig)rllts Insights: e.g. node importance, edge importance

What can we say about the system as currently designed?

Perturb structure to understand How does changing the capacity of edge x or node
how changes impact performance y affect performance?

Make design changes /

recommendations for the system Make decisions based on alternative analysis
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Example: Beijing transit network

Model transit sites as nodes and transit routes as edges

-~

~. Transit site

_______ * Transit route

Wu, J., Gao, Z., Sun, H., & Huang, H. (2004). Urban transit system as a scale-free network. Modern Physics Letters B, 18(19n20), 1043-1049.
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Example: Beijing transit network

Empirical PN AR
analysis of " s i ek
Beijing urban =R st @ oS
transit network - oAy T weEs
(441 nodes, il STt e R B ¢ .
/76 edges)

...7 N

Wu, J., Gao, Z., Sun, H., & Huang, H. (2004). Urban transit system as a scale-free network. Modern Physics Letters B, 18(19n20), 1043-1049.
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Example: Beijing transit network

Demonstrates properties of a scale-free network
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Example: Beijing transit network

Implications for urban transit:

 Effective in propagation — people can move
around across the entire network efficiently
(hubs facilitate this)

» Resistant to accidental (random) failures — this
is because of its nonhomogeneous topology
(a few very important hubs); non-hub
breakdowns/accidents won’t destroy
connectivity

* Vulnerable to targeted attacks — breakdown at
a hub can be devastating to the network (ex:
July 11 rainstorm); where should you put
resources for resiliency planning?
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Example: Traffic on a road network

* Nodes: Intersections ~ T e
« Edges: Roads v i s ¥
. . . O6F o POM
« Weight: capacity or traffic % - SPOM

order parameter /H

(depending on analysis) i

0.2
* Process: ol ;
2040 60 80

» Analyze structure
« Extract insights
* Perturb network

* Make design
recommendations

loading rate R

| =6 hours
| 6 hours

4 hours

2 hours

Serdar Colak et al 2013 New J. Phys. 15 113037
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Example: Traffic on a road network

* Nodes: Intersections

» Edges: Roads

« Weight: capacity or traffic
(depending on analysis)

* Process:

» Analyze structure

« Extract insights

 What if networks is
dynamic with time-series
data? How do things
change?

Serdar Colak et al 2013 New J. Phys. 15 113037
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Honti et al. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240(118015)
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Honti et al. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240(118015)
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Example: <
System dynamics

Persistant Pollution Service,Capital
m O d e I Populatign 0 to 14
° Exa m p I e Wh e re a Uth O rS s U Resource Conseryation Technology
created a subgraph with PopuHionds
O N |y th e StOC kS Potentially Arable Land

Nonrenewable Resources

* The size of the text
corresponds to the
eigenvector centrality

° HOW COUld this impaCt Our Urban and Industrial Land
understanding of the PoRO o5 Pius
system?

i See reading On MOOdIe Land Yield #echnology

Land Bertility Arable Land

Population 45 to 64

Honti et al. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240(118015)

07/05/25 Lecture 10 | Networks 5



https://doi.org/10.1016/j.jclepro.2019.118015

Model-defined networks

Derive relationships / network based on known model
Define network structure Remember: all models are wrong (imperfect), but some

are useful
« Useful to compare to ground truth network if known

Analyze structure & extract

insights Do patterns emerge that match the model?

Perturb structure to understand
how changes impact performance

Make design changes /
recommendations for the system
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Example: Building pollution

» Boilers produce more PM, ;5 than cars and
trucks (City of NY, 2012)

* Local pollution: +2,300 deaths; +4,800 ER

asthma visits
(City of NY, 2013)

« Goal: identify clusters of buildings for
infrastructure re-design

Photo taken on Jan 8, 2014 in downtown Brooklyn, NY
by Rishee Jain, Stanford University
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Example: Building pollution

Model to define network:
Gaussian Plume Model

- Plume
4 centerline
Pollutant !
concentration— \.
prolﬁles .§
Wind G,
X
7 { |\ H_at x
H.at x

+y H 3 |H_at x,
y H = Actual stack height
H. = Effective stack height

o= E‘ollutant release heigl
) =H_+ Ah
y Ah = plume rise
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Example: Building pollution

Nodes = buildings; Edges = pollution dispersion relationship

EC,

Q W- X1 = .
> FLRS,
ad 40

X, is the signal vector of

building (node) 1 with
EC = energy consumption,
FLRS = number of floors

R. K. Jain, J. M. F. Moura and C. E. Kontokosta, "Big Data + Big Cities: Graph Signals of Urban Air Pollution [Exploratory SP]," in IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 130-136, Sept. 2014,
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Example: Building pollution

[TABLE 2] THE COMMON GRAPH METRICS APPLIED TO URBAN AIR POLLUTION.

GRAPH METRIC FORMAL DEFINITION MATHEMATICAL
(DEFINITIONS ADAPTED FROM [11]) FORMULATION
SELF-LOOP OF A VERTEX THE VALUE OF AN EDGE Wi WHERE / =
CONNECTING A VERTEX TO ITSELF,
IN-DEGREE OF A VERTEX THE VALUE OF ALL IN-GOING o
EDGES CONNECTED TO A kiv= > Wij
VERTEX ON A DIRECTED GRAPH. =T
OUT-DEGREE OF A VERTEX THE VALUE OF ALL OUT-GOING o
EDGES CONNECTED TO A VERTEX ki =2 Wi
i=1

ON A DIRECTED GRAPH.

APPLICATION TO URBAN
AIR POLLUTION

A MEASURE OF THE EMISSIONS
OF BUILDING 1.

A MEASURE OF HOW MUCH NEIGHBORING
BUILDINGS ARE CONTRIBUTING TO
BUILDING /’s AIR QUALITY.

A MEASURE OF HOW MUCH BUILDING
J IS CONTRIBUTING TO THE AIR QUALITY
OF ITS NEIGHBORS.

R. K. Jain, J. M. F. Moura and C. E. Kontokosta, "Big Data + Big Cities: Graph Signals of Urban Air Pollution [Exploratory SP]," in IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 130-136, Sept. 2014,
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Example: Building pollution

Community detection
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Bergenfield
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rnsack
Ridgefield
Park
FortLee
Ridgefield
Cliffside
Park
North
Bergen

Union City

Hoboken .

New York

Mount
Vernon
©
N

New
Rochelle

Base
ao@@@

NOX
‘ .'...

PM2.5

R. K. Jain, J. M. F. Moura and C. E. Kontokosta, "Big Data + Big Cities: Graph Signals of Urban Air Pollution [Exploratory SP]," in IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 130-136, Sept. 2014,
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Network thresholding

« Some models / data give you a
fully connected network

« Example: network defined as the
similarity in building energy use
profiles

* We often threshold such graphs to
identify edges deemed “significant”

o — eij, eijZa
o 0, el-j <0
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Data-defined network

1. Feature extraction from data
2. Need to find graph structure that is the “best” fit
 Difficult problem and domain specific

Define network structure

Analyze structure & extract
insights

Perturb structure to understand
how changes impact performance

Make design changes /
recommendations for the system
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Example: Occupant network inference

« Example from our lab’s research
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Building
systems

Data-driven
design &
management

r VN - - Occupants
Co-optimization of organizations

ii\ and building systems
1
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Research gap: understanding networks

The formal chart shows who's on top The advice network reveals the experts
Leers (CEO) \//Bair

poleaors Do | Som Challenge: ﬁ%

s carmn 1wl HOW to infer the network | e /()

o g automatically? o 517

- Ruiz — Fleming
— Church _B
— Martin - Th

Ruiz [
- Lee — Zanado . /arlson
— Wilson Wilson _ Stem ('SV<

— Swinney Huttle

— Carlson / Kibl
er

- H.oberman Hoberman BT \ :

- Fiola T ey Atkins

Krackhardt and Hanson 1993
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How to infer network automatically?

Learn graph ¢ = (V,A) £
from time series o

(]

V: set of nodes (occupants) %
A: weighted adjacency matrix o

Lecture 10 | Networks 5

Develop or adapt method
to infer network

Compare against ground
truth

Hypothesis: novel method
infers network structure
similar to ground truth
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Sensor deployment details

0

Plug load sensor

= = v

« Stored on device
« Z-wave, ZigBee, or WiFi

wireless transmission

RE_N
, y
/’ [ >
R 1 bt
| ()
Mesh 1} T
1
1
o
S
~
Ni
==
D p

9am 12pm Spm

Lecture 10 | Networks 5




Method inspiration: Gaussian Mixture Model

w | 4 ® @
Variational |I : : ;
Heart rate Bayesian Physiological state’

Gaussian Mixture o e \_-3
Nt 17k

Model clustering
Power consumption Working state

CO —

"Costa et al. 2012
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Variational Bayesian Gaussian Mixture Model

|

High energy

Frequency

0 5 10 15 8 |

12

Energy (Wh) Energy (Wh)

Distribution of 15-min energy consumption
(1 occupant over 1 day)
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Activity States

Visualized

(Real office in San
Francisco)

Sonta, A. J., Simmons, P. E., & Jain,
R. K. (2018). Understanding building
occupant activities at scale: An
integrated knowledge-based and
data-driven approach. Advanced
Engineering Informatics, 37, 1-13.
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B Low energy
Medium energy
B High energy
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3:45pm

12 pm 4 pm

&= SESEREREY o [ o [FREREY o [ [ RN

e

| | .

Opportunities for social interaction

e

| Fill adjacency matrix with
Jaccard similarity:

. S
Sm mimim
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The
Interaction
Model

Example data
from one day

Office building
iIn Berkeley

07/05/25

Occupant

Occupant

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour

gl

) | II+IIII

"

|
(@)
Opportunity for interaction

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour
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Survey to measure ground truth network

Social Organizational
“Inclusion of the other in Survey questions measure 3
the self’ scale’ key attributes?

@ 1. Communication (information sharing)
1 2 3

2. Advice (problem solving)

@ 3. Trust work-related support)

' Gachter et al. 2012 | 2 Krackhardt & Hanson 1993
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Inferred from model

Graphical Lasso
Influence Model
Interaction Model

Network comparison

Ground truth from survey

Organizational
(communication, advice, trust)
Social
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Graph correlation

cor (G, H) = cov (G, H)
Veov (G, G) - cov (H, H)
1
GH=—— AG — AH _
COV( ) |V|2 _ |V| ; ( 1j MG) ( 1J ,LLH)
Correlation distribution
Quadratic
ASSignment True correlation
Procedure
(QAP)
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Network
visualization

Graph
correlation &
estimated
density from

QAP test

Graphical Lasso

-0.06, p = 0.66

Influence Model

T T

-04 -0.2
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0.46, p = 0.002
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0.5 .
0.4 i
0.3 i

Graph (5 - | ~10 weeks of data
correlation :
with ground 0.1 - i are needed to
truth | learn the network

0.0 - |
0.1 - i

0.2 7 | ; | | | I

0 10 20 30 40 50

Weeks of data
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How does social network compare with spatial
network?

Angular depth = 2 T Q ? ? G
! | : 0.8
| topological 0.98 -0.04 -0.07
\ 4
DOWN Q angular -0.05 0.05

interaction
model

g = +-0.2
i : o 0.4
hd ) | ) = v
- - 1 0.6
$ $ $ $ 4 ' overall

survey 08

& network '

O )
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Exam 2 detalls

* Next class time — Wednesday 8" (9:15 to 11:00 am)

* Closed book and notes
* You may (and should) bring 1 sheet of paper with notes

 Content: based on materials in Lectures 6-10

* Format:
* Multiple choice questions

« Open-ended questions — application-oriented

* If network calculations require matrix manipulation (e.g., eigendecomposition),
this will be provided

* No coding
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Lecture 06

* Network notation

« Adjacency matrix

 Types of networks

* Degree

» Paths

* Independent paths / connectivity
« Cut sets

* Min-cut/max-flow
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Lecture 07

« Components
» Graph Laplacian matrix
« Spectral partitioning; Fiedler method

« Centrality
* Degree
» Eigenvalue
« Katz
« PageRank
* Closeness
» Betweenness
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Lecture 08

* Roles
 Structural equivalence
« Regular equivalence (intuition)

* Groups of nodes
* Cliques
 (k-)Cores
 (k-)Components
* Clustering coefficient
« Homophily / assortative mixing

* Modularity and community detection
* Motifs

07/05/25 Lecture 10 | Networks 5




Lecture 09

 Random graph models
« Erd6s—Rényi
« Configuration model (intuition)
 Preferential attachment (Barabasi—Albert)

 Network structure metrics
« Degree distribution

 Clustering coefficient
 Size of largest connected component
« Average shortest path length

* Network archetypes
e Scale free
 Small world
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Lecture 10

* Percolation
 Natural, model, and data defined networks
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