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Outline
• More on “null” models

• The random graph model (AKA 
Erdős–Rényi model)

• Configuration model
• Preferential attachment (AKA 

Barabási–Albert model)
• Network structure

• Scale-free networks
• Small-world networks
• Degree distributions, path lengths, 

clustering, size of largest con. comp.
• Percolation and resilience (if time)
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• Corresponding parts of 
Newman: 10.1-10.6, 11, 
13.1-13.2, 15

• Book is much more 
detailed than what we 
cover in our class

• Can be treated as an 
additional resource

• Assignment 2 due 
Friday

• Exam 2 in two week



Random graph model – why?

• Point of comparison – we have already seen a few examples 
of comparing a real network to a “random” reference

• Definition and computation of modularity
• Motif significance (assignment 4)

• Help us answer the question: to what extent is a particular 
property of a network the result of some random process?

• “All models are wrong but some are useful”
- George E.P. Box
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G(n,p) AKA Erdős–Rényi model

• Undirected graph
• Fix two things:

• Number of nodes (n)
• Probability that an edge exists between nodes (p)

• More precisely: each possible edge appears with probability p.
• What type of network does this produce?
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G(n,p)

• n and p do not uniquely determine a graph
• Since the graph is a result of a random process, we can have 

many different realizations given the same parameters
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Properties of G(n,p)

• We can calculate many different properties to summarize the 
network

• Degree distribution
• Clustering coefficient
• Size of the connected component
• Average shortest path length
• … 
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Degree distribution of G(n,p)

• Each node in the network is connected to the others (n – 1) with 
probability p

• What is the probability of a node being connected to a particular 
k other nodes?
𝑃 𝑘 =

𝑛 − 1
𝑘

𝑝! 1 − 𝑝 "#$#!

• Binomial distribution
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select k nodes 
out of n–1 probability of the 

node having k edges

probability of the 
node not 
connecting to the 
remaining nodes



Clustering coefficient of G(n,p)

• Definition:
• 𝑐! =

#	$%	&'()*	$%	+,(-./$)*	!	0.'0	'),	1$++,10,2
#	$%	&'()*	$%	+,(-./$)*	!

• 𝑐! =
34!

5!(5!78)
 where 𝑒! is the number of edges         

between the neighbors of 𝑖
• In G(n,p), the probability that any two nodes are connected is p

𝑐%&' = 𝑝 =
)𝑘

𝑛 − 1
• If we hold k constant, as the graph grows large p must remain 

small and we see a small clustering coefficient
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Size of the largest connected component 
of G(n,p)
• Let’s simulate it!
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Size of the largest connected component 
of G(n,p)
• Much larger simulation (n=100,000)
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Side note: Configuration model
(Alternative random graph model)
• Generate a random graph with a fixed degree sequence 

(k1, k2, …, kN)
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How does Erdős–Rényi compare to a 
real network?
• Let’s look at two mobility 

infrastructure networks together
• Network 1: Small segment of the 

Switzerland road network
• Nodes: intersections
• Edges: roads

• Network 2: Global network of air 
transportation

• Nodes: airports
• Edges: if there exists a flight between 

them
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“Scale free” networks

• Degree distribution follows a power law
𝑃 𝑘 ~𝑘#(

Typically, α is between 2 and 3
• Common in certain types of networks:

• Social networks
• Internet
• Airline networks
• Anywhere we might find “hubs”
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Urban systems 
example

• Example: Urban transit 
network in Beijing

• Nodes: transit sites
• Edges: connections 

between sites
• Found that node 

degree followed a 
scale-free pattern
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https://doi.org/10.1142/S021798490400758X



We have seen this power law property before
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Luís M. A. Bettencourt. The Origins of Scaling in Cities. Science 340,1438-1441(2013). DOI:10.1126/science.1235823

Urban infrastructure Economic growth

https://doi.org/10.1126/science.1235823


Preferential attachment 
(Barabási–Albert)

• A simple model for how we get scale-
free properties in networks

• Algorithm:
• Start with n0 nodes
• Add a node
• Connect new node to n ≤ n0 nodes 

according to the following probability:
𝑝! =

𝑘!
∑: 𝑘:

30/04/25 Lecture 9 | Network Analysis 4 16



Average shortest path length

• Distance between any two nodes is the number of edges along 
the shortest path between them

• Average shortest path length (average path length) is the 
average distance between pairs of nodes normalized by the 
maximum number of edges we could see in a graph - n*(n-1)

• If graph is not connected, we usually measure the average path 
length of the largest connected component
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Degree distribution comparison
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Road subgraph Air travel subgraph Random (ER) subgraph

Non-random degree distribution Power-law degree distribution Binomial degree distribution



Average path length comparison
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Road subgraph Air travel subgraph Random (ER) subgraph

Large average path length Small average path length Small average path length
Non-random degree distribution Power-law degree distribution Binomial degree distribution



Clustering coefficient comparison
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Road subgraph Air travel subgraph Random (ER) subgraph

Large average path length Small average path length Small average path length
Large clustering coefficient Large clustering coefficient Small clustering coefficient

Non-random degree distribution Power-law degree distribution Binomial degree distribution

???



How can we have high clustering and 
small average path distance?
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Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). https://doi.org/10.1038/30918

Clustering implies “local structure” Randomness enables “shortcuts”



Small world networks (Watts-Strogatz)
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Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). https://doi.org/10.1038/30918

Start with regular local structure 
and randomly rewire



Small world networks (Watts-Strogatz)
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Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). https://doi.org/10.1038/30918

High clustering  High clustering  Low clustering
High path lengths Low path lengths Low path lengths



Small world effects

• Milgram’s famous 1967 experiment:
• Picked 300 people in Nebraska and Kansas (middle of nowhere)
• Asked them to get a letter to a stock-broker in Boston by passing the 

letter through friends
• This was successful 64 times
• On average, it took 6.2 steps à “six degrees of separation”
• Surprisingly small path length given that social networks are known to 

have high clustering
• Another example:

• My Erdős number is 4
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Scale free vs. Small world
• Important to remember that these are not the same thing
• The primary properties of scale-free networks are:

• Power-law distribution of node degrees
• Often, we see a power-law distribution of clustering coefficients
• Often, we see a small average path length

• The primary properties of small world networks are:
• High clustering coefficient
• Small average path length
• No specific expectation on degree distributions

• Networks can be both at the same time!
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Percolation

• The process of removing nodes from the network and the 
associated edges

• Helps us understand “what-if” scenarios
• Examples:
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Internet “Herd immunity” Lots of urban systems!



Simulating percolation

• Key parameter: ɸ (occupational probability)
• ɸ = 1 à all nodes are present
• ɸ = 0 à all nodes have been removed

• Process of removing nodes
• Uniform: all nodes have same probability of removal
• Non-uniform: based on node properties (e.g., different forms of 

centrality)
• The choice is normally driven by the domain
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Percolation theory

• Newman goes into detail in Chapter 15
• (And there can be a lot of mathematical detail)

• Percolation is an entire subfield of network science
• Offers an understanding of network resilience and robustness
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Qualitative percolation analysis example
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Uniform removal 
of edges

What does this signify?



Qualitative percolation analysis example
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Targeted edge 
removal (target 
largest degree 
first)


