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Outline

« More on “null” models . Correspondin%; parts of
 The random graph model (AKA Newman: 10.1-10.6, 11,
Erd6s—Rényi model) 13.1-13.2. 15
 Configuration model e Book is ’much more
* Preferential attachment (AKA detailed than what we
Barabasi—Albert model) cover in our class
* Network structure « Can be treated as an
. Scale-free networks additional resource
« Small-world networks . Assignment 2 due
» Degree distributions, path lengths, Friday

clustering, size of largest con. comp.

» Percolation and resilience (if time) * Exam 2 in two week
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Random graph model — why?

* Point of comparison — we have already seen a few examples
of comparing a real network to a “random” reference
 Definition and computation of modularity
« Motif significance (assignment 4)

* Help us answer the question: to what extent is a particular
property of a network the result of some random process?

* “All models are wrong but some are useful”
- George E.P. Box
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G(n,p) AKA Erd6s—Réenyi model

» Undirected graph

* Fix two things:
* Number of nodes (n)
* Probability that an edge exists between nodes (p)

* More precisely: each possible edge appears with probability p.
« What type of network does this produce?
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G(n,p)

* n and p do not uniquely determine a graph

* Since the graph is a result of a random process, we can have
many different realizations given the same parameters
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Properties of G(n,p)

* We can calculate many different properties to summarize the
network
» Degree distribution
 Clustering coefficient
» Size of the connected component
» Average shortest path length
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Degree distribution of G(n,p)

« Each node in the network is connected to the others (n — 1) with
probability p

* What is the probability of a node being connected to a particular
k other nodes?

P(k)-("; ) ‘(1 —pynih

select k nodes probability of the
out of N—1 probablllty of the node not

node having k edges connecting to the
remaining nOdeS 4 eeeedocsioeee®  *e.ls 0 ®eeeeccccccce

 Binomial distribution ; . . . .

¢ p=0.5 and n=20
p=0.7 and n=20
® p=0.5 and n=40

0.05 0.10 0.15 0.20 0.25
1 1 1 1 1

0.00
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Clustering coefficient of G(n,p)

e Definition:

- # of pairs of neighbors i that are connected
i —

# of pairs of neighbors i

2e; .
° ¢; = — where e; is the number of edges
ki(ki—1)

between the neighbors of i

* In G(n,p), the probability that any two nodes are connected is p

k
Cavg:p:n_l

* [f we hold k constant, as the graph grows large p must remain
small and we see a small clustering coefficient
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Size of the largest connected component
of G(n,p)

e Let’'s simulate it!

30/04/25 Lecture 9 | Network Analysis 4



Size of the largest connected component
of G(n,p)

* Much larger simulation (n=100,000)
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Side note: Configuration model
(Alternative random graph model)

(K, K2, ..., Ky)

Nodes with spokes

—

.///. /.
—l | o—1 |
\-\
e
__®
[
\\.
A B C

Randomly pair up
“*mini”-nodes
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* Generate a random graph with a fixed degree sequence

~1

Resulting graph




How does Erdos—Renyi compare to a
real network??

* Let's look at two mobility
infrastructure networks together

* Network 1: Small segment of the
Switzerland road network
* Nodes: intersections
« Edges: roads
* Network 2: Global network of air
transportation
* Nodes: airports

« Edges: if there exists a flight between
them
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“Scale free” networks

102 7

» Degree distribution follows a power law
P(k)~k™ ¢ |
Typically, a is between 2 and 3

« Common in certain types of networks:
« Social networks
* Internet
 Airline networks
« Anywhere we might find “hubs”

10° 1

(a) Random network (b) Scale-free network
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Urban systems Bl s LD
example ST T

 Example: Urban transit T R T T
network in Beijing S EAr Sl

 Nodes: transit sites

» Edges: connections 4
between sites

 Found that node

degree followed a : 0
scale-free pattern T ——
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https://doi.org/10.1142/S021798490400758X
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We have seen this power law property before

Urban infrastructure Economic growth
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Luis M. A. Bettencourt. The Origins of Scaling in Cities. Science 340,1438-1441(2013). DOI:10.1126/science.1235823
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https://doi.org/10.1126/science.1235823

Preferential attachment
(Barabasi—Albert)

* A simple model for how we get scale-
free properties in networks

* Algorithm:
 Start with ny nodes
« Add a node

« Connect new node to n < ny nodes

according to the fcl)cllowing probability:
i

PSSk
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Average shortest path length

* Distance between any two nodes is the number of edges along
the shortest path between them

* Average shortest path length (average path length) is the
average distance between pairs of hodes normalized by the
maximum number of edges we could see in a graph - n*(n-1)

* |If graph is not connected, we usually measure the average path
length of the largest connected component
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Degree distribution comparison

Non-random degree distribution Power-law degree distribution Binomial degree distribution

/,

Road subgraph Air travel subgraph Random (ER) subgraph
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Average path length comparison

Non-random degree distribution
Large average path length

Road subgraph

Power-law degree distribution
Small average path length

Air travel subgraph
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Binomial degree distribution
Small average path length

Random (ER) subgraph



Clustering coefficient comparison

Non-random degree distribution Power-law degree distribution Binomial degree distribution
Large average path length Small average path length

Small average path length
Large clustering coefficient Large clustering coefficient Small clustering coefficient

77?77

Road subgraph Air travel subgraph Random (ER) subgraph
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How can we have high clustering and
small average path distance?

Regular Random

Clustering implies “local structure” Randomness enables “shortcuts”

Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440—442 (1998). https://doi.org/10.1038/30918
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Small world networks (Watts-Strogatz)

Start with regular local structure
and randomly rewire

Regular Small-world Random

Increasing randomness

Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440—442 (1998). https://doi.org/10.1038/30918
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Small world networks (Watts-Strogatz)

Regular Small-world Random

High clustering High clustering Low clustering
High path lengths Low path lengths Low path lengths

Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440—442 (1998). https://doi.org/10.1038/30918
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Small world effects

* Milgram’s famous 1967 experiment:
* Picked 300 people in Nebraska and Kansas (middle of nowhere)

« Asked them to get a letter to a stock-broker in Boston by passing the
letter through friends

* This was successful 64 times
« On average, it took 6.2 steps - “six degrees of separation”

 Surprisingly small path length given that social networks are known to
have high clustering

* Another example:
* My ErdGés number is 4
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Scale free vs. Small world

* Important to remember that these are not the same thing

* The primary properties of scale-free networks are:
 Power-law distribution of node degrees
« Often, we see a power-law distribution of clustering coefficients
« Often, we see a small average path length

* The primary properties of small world networks are:
* High clustering coefficient
« Small average path length
* No specific expectation on degree distributions

 Networks can be both at the same time!
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Percolation

* The process of removing nodes from the network and the
associated edges

» Helps us understand “what-if’ scenarios
« Examples:
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“Herd immunity” Lots of urban systems!
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Simulating percolation

« Key parameter: ¢ (occupational probability)
* ¢ =1 > all nodes are present
* ¢ =0 - all nodes have been removed

* Process of removing nodes
« Uniform: all nodes have same probability of removal

* Non-uniform: based on node properties (e.g., different forms of
centrality)

* The choice is normally driven by the domain
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Percolation theory

 Newman goes into detail in Chapter 15
* (And there can be a lot of mathematical detail)

 Percolation is an entire subfield of network science
 Offers an understanding of network resilience and robustness
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Qualitative percolation analysis example

U n |f0 rm re moval : Power grid ] I Road network ]
of edges ‘ 1 | I

0.5 -+ -]

() Il L A L L L L " - 1 | ' 1

&

| Internet A

Size of largest cluster S

0.5 = -

What does this signify? ! |

() L 1 L I 1 1 1 1

Fraction of nodes present ¢
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Qualitative percolation analysis example

Targeted edge
removal (target
largest degree

first)
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