
Lecture 07
Network Analysis 2

Andrew Sonta
CIVIL 534: Computational systems thinking for sustainable engineering

09 April 2025

109/04/25 Lecture 7 | Network Analysis 2



Outline

• Components
• Graph Laplacian and spectral 

partitioning
• Centrality

• Degree
• Spectral

• Eigenvector, Katz, PageRank
• Path-based

• Closeness
• Betweenness
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• Corresponding parts of 
Newman: 6.12; 6.14; 
7.1



But first…

• Any questions on cut sets, independent paths/connectivity, and 
min-cut/max-flow theorem?
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Components

• Components are parts of the 
network that are not connected 
to one another

• No path from A to B or B to A
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Components can indicate 
intervention points to 
increase connectivity



Components on directed graphs

• Extension is not straightforward
• Strongly connected components: 

there is a path from each node to 
each other node and vice versa 
(e.g., A-B and B-A)

• Weakly connected components: 
connected if we disregard edge 
directions 

• “In-component”
• “Out-component”
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Graph Laplacian

• The Adjacency matrix is not the only matrix representation of a 
network

• Graph Laplacian is useful for many different network properties
• Derived from the notion of “diffusion” (something moving along 

the edges of the network)
• Defined for undirected networks, no direct extension to directed 

networks
• Can translate directed network to undirected network if needed
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Graph Laplacian - definition
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degree of node i

Equivalently:

1 iff i=j (Kronecker delta)

Equivalently: L = D – A



Graph Laplacian - eigenvalues

• Eigenvalues greater than or equal to 0
• Diffusion intuition: over time we reach equilibrium in the network

• For network with 1 component, there is 1 eigenvalue equal to 0
• For a network with n components, there are n eigenvalues equal to 0

• The second-smallest eigenvalue/eigenvector pair is a critical 
value

• The second-smallest eigenvalue is called the algebraic connectivity
• Measure of how well connected the network is

• The pair can be used in spectral partitioning/clustering
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Spectral partitioning

• Given a graph with adjacency matrix A, we want to partition the 
graph into two subgraphs such that:

min
#	𝑒𝑑𝑔𝑒𝑠	𝑎𝑐𝑟𝑜𝑠𝑠	𝑐𝑢𝑡

#	𝑛𝑜𝑑𝑒	𝑝𝑎𝑖𝑟𝑠	𝑎𝑐𝑟𝑜𝑠𝑠	𝑐𝑢𝑡	𝑡ℎ𝑎𝑡	𝑐𝑜𝑢𝑙𝑑	𝑠𝑢𝑝𝑝𝑜𝑟𝑡	𝑒𝑑𝑔𝑒𝑠
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Spectral partitioning – Fiedler method

• Second-smallest eigenvalue of L 
is the algebraic connectivity (less 
than or equal to vertex 
connectivity)

• Corresponding eigenvector can 
be used to separate the graph 
into 2 communities based on the 
sign of the vector entry

• Let’s try it!
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Network metrics
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Network metrics – why?

• Network structure in theory tells us everything 
we need to know about the network

• But in practice, networks are often large and 
difficult to comprehend

• Metrics and measures are used to distill 
network information into interpretable values

• How we interpret each value depends on the way 
in which the metric/measure was constructed 
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Centrality

• Which are the most important or central nodes in a network?
• Many centrality metrics (many ways to define “importance”)
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Centrality

• Which are the most important or central nodes in a network?
• Many centrality metrics (many ways to define “importance”)
• Which is the most important node in the following network?
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Centrality measures

• Degree centrality
• Spectral centrality measures:

• Eigenvector centrality
• Katz
• PageRank

• Path-based centrality measures:
• Closeness centrality
• Betweenness centrality
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Degree centrality

• Simplest
• Just the degree of the node
• Undirected: degree
• Directed:

• In-degree centrality
• Out-degree centrality

• Choose based on application!
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Eigenvector centrality

• Key limitation of degree centrality: it assigns no value to which 
nodes a given node is connected to

• Eigenvector centrality: For a given node’s neighbors, add a 
score proportional to the centrality of each neighbor
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We choose the leading eigenvalue 
(largest) and associated eigenvector 

(only eigenvector with all elements non-
negative for A)



Eigenvector centrality – intuition 

• Each node starts with the same score, and then each node 
gives away its score to its neighbors (repeat this process)

• Intuitively: degree counts walks of length 1, eigenvector centrality 
counts walks of length infinity

• Procedure
• 𝐜(") = 𝐀𝐜("$%)

• 𝐜 " = $𝐜(")
𝐜(") $

• 𝑘 = 𝑘 + 1
• Repeat until convergence
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Eigenvector centrality – directed networks

• Non-symmetric adjacency matrix
• Left and right eigenvectors à which to use?

• Generally, we use the right-eigenvector
• The rationale is that importance is based more on incoming edges

• The question of extension to directed networks led the 
development of variants of eigenvector centrality (Katz, 
PageRank)
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Katz centrality

• What happens when a node pointing 
to another node has zero centrality?

• Katz centrality adds a free term to 
eigenvector centrality

• All nodes get some centrality for free
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Katz centrality – issues 

• If edges are cheap to form (think webpages) then an important 
node can easily share its centrality with those it points to

• Internet example: Amazon links to millions of pages (e.g., 
manufacturers)

• If an important website is very generous with its links, should that count 
the same as an important link that is sparing with its links?

• Enter PageRank (the first version of Google)
• Insight: Normalize the score of an incoming edge by the out-degree 

centrality of the originating node
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PageRank centrality

• Extension of Katz centrality in which out-degrees are normalized:
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where

It is believed that early on, Google used α=0.85



Centrality comparisons

09/04/25 Lecture 7 | Network Analysis 2 23



Closeness centrality

• Mean distance from a node to the other nodes in the network 
(using the shortest path between any two nodes)

• Shortest path from i to every other node:

•  Closeness centrality is the inverse: 
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Closeness centrality

• Advantages:
• Intuitive
• Interpretable

• Disadvantages:
• Can exhibit a small range
• Requires that the network be strongly 

connected (d à infinity if not)
• See “harmonic mean” discussion in 

Newman pg. 172
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Betweenness centrality

• Extent to which a vertex lies on paths between other vertices
• Helps to identify important nodes that control some sort of flow 

(e.g. messages, people, energy, goods, water)
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number of shortest paths from t à s 
that pass through i

number of shortest paths from t à s

Notes:
• Newman breaks his own 

convention and defines as s à t
• Newman counts paths from 

node to itself
• As is often the case in 

networks, there are variations 
and the most important thing is 
to be explicit and consistent



Betweenness centrality – further thoughts

• What happens when you remove a 
node with high betweenness 
centrality?

• Would you expect betweenness to 
be correlated with the other 
centrality measures?
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Food for thought…

• Can you think of urban systems examples in which degree, 
eigvenvector, Katz, PageRank, closeness, and betweenness 
centralities have useful applications?

• Which node has the highest centrality?
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