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Outline

« Components » Corresponding parts of
» Graph Laplacian and spectral Newman: 6.12; 6.14;
partitioning 7.1
« Centrality
* Degree
» Spectral

« Eigenvector, Katz, PageRank

e Path-based

* Closeness
 Betweenness
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But first...

* Any questions on cut sets, independent paths/connectivity, and
min-cut/max-flow theorem?
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Components

 Components are parts of the ®B
network that are not connected A

to one another
* No path fromAtoBorBto A

( 0o ...

Components can indicate
0 intervention points to
L SN iIncrease connectivity
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Components on directed graphs

« Extension is not straightforward

« Strongly connected components:
there is a path from each node to

each other node and vice versa
(e.g., A-B and B-A)

* Weakly connected components:
connected if we disregard edge
directions

* “In-component”
* “Out-component”
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Graph Laplacian

* The Adjacency matrix is not the only matrix representation of a
network

* Graph Laplacian is useful for many different network properties

 Derived from the notion of “diffusion” (something moving along
the edges of the network)

e Defined for undirected networks, no direct extension to directed
networks
 Can translate directed network to undirected network if needed
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Graph Laplacian - definition

/ degree of node i

( ef .
k; ifi =7,
Lij=1-1 if i # j and there is an edge between nodes i and j,
|0 otherwise,
Equivalently: L;; = k;6;; — Aj; Equivalently: L=D - A
kk 0 O ---
(n ky O \
D=0 0 ks ---
1 iff i=j (Kronecker delta) \ S )
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Graph Laplacian - eigenvalues

» Eigenvalues greater than or equal to O
« Diffusion intuition: over time we reach equilibrium in the network

* For network with 1 component, there is 1 eigenvalue equal to O
* For a network with n components, there are n eigenvalues equal to O

* The second-smallest eigenvalue/eigenvector pair is a critical
value

* The second-smallest eigenvalue is called the algebraic connectivity
» Measure of how well connected the network is

* The pair can be used in spectral partitioning/clustering
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Spectral partitioning

* Given a graph with adjacency matrix A, we want to partition the
graph into two subgraphs such that:

_ ( # edges across cut )
min

# node pairs across cut that could support edges
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Spectral partitioning — Fiedler method

» Second-smallest eigenvalue of L
IS the algebraic connectivity (less
than or equal to vertex
connectivity)

» Corresponding eigenvector can
be used to separate the graph
into 2 communities based on the
sign of the vector entry

* Let's try it!
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Network metrics




Network metrics — why?

* Network structure in theory tells us everything E
we need to know about the network =

 But in practice, networks are often large and
difficult to comprehend

 Metrics and measures are used to distill
network information into interpretable values

 How we interpret each value depends on the way
in which the metric/measure was constructed

P(K= K;)
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Centrality

* Which are the most important or central nodes in a network?
* Many centrality metrics (many ways to define “importance”)
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Centrality

* Which are the most important or central nodes in a network?
* Many centrality metrics (many ways to define “importance”)
* Which is the most important node in the following network?
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Centrality measures

* Degree centrality

« Spectral centrality measures:

* Eigenvector centrality
« Katz
« PageRank

» Path-based centrality measures:
» Closeness centrality
» Betweenness centrality
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Degree centrality

« Simplest
 Just the degree of the node
« Undirected: degree

* Directed:
* In-degree centrality
« Out-degree centrality

 Choose based on application!
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Eigenvector centrality

« Key limitation of degree centrality: it assigns no value to which
nodes a given node is connected to

* Eigenvector centrality: For a given node’s neighbors, add a
score proportional to the centrality of each neighbor

Xi =%} Z X

nodes j that are
neighbors of i

We choose the leading eigenvalue
(largest) and associated eigenvector
(only eigenvector with all elements non-
negative for A)
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Eigenvector centrality — intuition

 Each node starts with the same score, and then each node
gives away its score to its neighbors (repeat this process)
* Intuitively: degree counts walks of length 1, eigenvector centrality
counts walks of length infinity

 Procedure
° C(k) — Ac(k_l)
e ) = c®

/e,
ck=k+1
» Repeat until convergence
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Eigenvector centrality — directed networks

* Non-symmetric adjacency matrix
 Left and right eigenvectors - which to use?

» Generally, we use the right-eigenvector
* The rationale is that importance is based more on incoming edges

* The question of extension to directed networks led the
development of variants of eigenvector centrality (Katz,

PageRank)
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Katz centrality

* What happens when a node pointing
to another node has zero centrality?

« Katz centrality adds a free term to
eigenvector centrality A
 All nodes get some centrality for free

X; = CYZAZ']'X]' +ﬁ.
j

x = B(I— aA)™ 1
x = aAx + ﬁlf

x=(I1-aA)1
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Katz centrality — issues

* If edges are cheap to form (think webpages) then an important
node can easily share its centrality with those it points to

* Internet example: Amazon links to millions of pages (e.g.,

manufacturers)
* [f an important website is very generous with its links, should that count

the same as an important link that is sparing with its links?

* Enter PageRank (the first version of Google)

* Insight: Normalize the score of an incoming edge by the out-degree
centrality of the originating node
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PageRank centrality

» Extension of Katz centrality in which out-degrees are normalized:

Xj
Xi = aZAijkout +ﬂ
] ]
x = aAD 'x + p1 where D;; = max(k?“t, 1)

x = (I - aAD )11

x = (I- aAD_l)_ll It is believed that early on, Google used a=0.85
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Centrality comparisons

Divide by out-degree

No division

With constant term

1

x=(I-aAD1!) 1

PageRank
x=I-aA 1)1

Katz centrality
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x = AD x

degree centrality

x =k TAx

eigenvector centrality
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Closeness centrality

 Mean distance from a node to the other nodes in the network
(using the shortest path between any two nodes)

» Shortest path from / to every other node: ¢; = %Z dij.
j

L . 1
* Closeness centrality is the inverse: C; = 7= an..
1 j Y]
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Closeness centrality

Ciza » Advantages:

b 2jdij * Intuitive

* Interpretable
 Disadvantages:

« Can exhibit a small range

* Requires that the network be strongly
connected (d =2 infinity if not)

 See “harmonic mean” discussion in
Newman pg. 172
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Betweenness centrality

« Extent to which a vertex lies on paths between other vertices

* Helps to identify important nodes that control some sort of flow
(e.g. messages, people, energy, goods, water)

Notes:
« Newman breaks his own

i number of shortest paths fromt > s : :
nt — . convention and defines as s > t
st  that pass through i
X = 2 « Newman counts paths from
Jst node to itself
St “ * As is often the case in
number of shortest paths from t = s networks, there are variations

and the most important thing is
to be explicit and consistent
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Betweenness centrality — further thoughts

T = Mgy * What happens when you remove a
— Jst node with high betweenness
centrality?

* Would you expect betweenness to
be correlated with the other
centrality measures?
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Food for thought...

« Can you think of urban systems examples in which degree,
eigvenvector, Katz, PageRank, closeness, and betweenness
centralities have useful applications?

* Which node has the highest centrality?
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