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Exercise #9: Seismic design of bracing connections and other members 
 
The steel frame building shown in Figure 1-2 has been designed with concentrically braced 
frames (CBFs) in the North-South (y-y) loading direction and steel moment resisting frames 
(MRFs) in the East-West (x-x) loading direction. Both frames have been designed for gravity 
and earthquake loading. The CBF design comprises an X-bracing configuration with welded 
bracing connections. The cross sections shown in the figure represent the final design of the 
steel CBF. The steel components (beams, columns, and braces) have been designed with 
S355J2 profile (i.e., 𝐸 = 210𝐺𝑃𝑎, 𝑓! = 355𝑀𝑃𝑎). The stability coefficient 𝜃 is less than 0.10 
in all stories. The weight of each floor due to gravity (for all three floors) equals to 𝐺	 =
	7𝑘𝑁/𝑚". 
 
The following questions should be answered: 
1. Check if the maximum overstrength 𝛺 from all the brace members does not differ from the 

minimum one by more than 25%. 
2. Check if the diagonal bracing of the first story meets the requirements of normalized 

slenderness. For simplicity, assume that 𝑙# is half the centerline length of the brace (i.e., 
𝑙# 	= 	 (3.0" 	+ 	2.0")$.& 	= 	3.61𝑚). 

3. Check the stability of the first story column for interaction of axial load and biaxial bending. 
The steel column has pin ends in the y-y loading direction. The column is fixed at the base 
in the x-x loading direction. Assume that 𝑀',)* 	= 	61𝑘𝑁𝑚 (bottom fixed end) and that 
𝑀',)*= −78𝑘𝑁𝑚 (top end). You may assume that the buckling length of the column in the 
(sway permitted) MRF direction is 1.5𝐿 (i.e., 𝐿 is the column length). Moreover, assume 
that the axial force due to earthquake loading in the x-x direction equals to zero (i.e., 
𝑁)*,)' 	= 	0). 

4. Calculate the action forces on the first-floor steel beam due to gravity and earthquake 
loading. Compute the bending, shear and axial force diagrams of the steel beam. Assume 
𝑘+ 	= 	 𝑘, 	= 	1.0 for your calculations. 

5. Check the stability of the first-floor steel beam due to axial force and bending interaction. 
The steel beam is braced laterally every 𝑙-/4 (1500mm) and it does not experience weak 
axis bending. Assume 𝑘+ = 𝑘, = 1.0. 

6. Design and verify the welded bracing connections of the CBF including their gusset plate. 
The following considerations should be included: 

a. Calculate the force demand of each connection based on the axial resistance of 
each bracing member. 

b. Determine the weld length including the weld resistance. 
c. Design the gusset plate for both tensile and compressive loading. 
d. Develop a preliminary drawing for a typical bracing connection. 

The axial force diagrams for the seismic loading of the steel CBF are shown in Figure 2-2. 
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Figure 1-2.  Final design of steel CBF – Plan view and elevation 
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Figure 2-2. Axial force diagram due to seismic loading 
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Suggested Solution 
 
Question 1 
The overstrength in CBFs is calculated from the brace tensile capacity-to-demand ratios 
because the braces act as seismic fuses. Since they carry just axial load, the overstrength factor 
is calculated as follows: 
 
Ω. = 𝑁/0,1*,2/𝑁)*,2 
 
Where:  𝑁)*,2 = 𝑁)*,3,2 + 𝑁)*,),2 
  𝑁/0,1*,2 =

4!∙6"
7#$

 

However, for the given x-diagonal steel braces we do not consider the influence of axial load 
due to gravity because this load is picked by the frame (Beams and columns without braces). 
Only the seismic load is considered for the brace design, according to Figure 2; Therefore, 
𝑁)*,2 = 𝑁)*,),2 in this case. 
 
The computation of the overstrength is resumed in the table below: 
 

Story Section A [mm2] Npl,Rd [kN] NEd [kN] 𝛺 [-] (𝛺-𝛺!"#)/𝛺!"# 
3 RRW60x4 879 312.05 192 1.63 13% 
2 RRW100x60x5 1473 522.92 292 1.79 24% 
1 RRW100x60x5 1473 522.92 363 1.44 0% 

 
The overstrength difference does not exceed 25% for the 2nd and 3rd floor. This means that 
plasticity in the braces is expected to happen in a uniform manner. 
 
For the calculations in the remaining questions the minimum overstrength factor should be 
used, 𝛺 = 𝛺829 = 	1.44 (similar concept with steel MRFs) 
 
Question 2 
Requirements for maximum slenderness: 
 
The braces in compression have been conservatively neglected from the analysis by assuming 
a tension-only system. For the x-bracing system to behave in a desirable way, 1.3 ≤ 𝜆̅ ≤ 2.0 
should be met. 
The braces are connected in their mid-length. Their buckling length can be approximated as 
50% of their total length, resulting in 𝑙# = √3.0" + 2.0" = 3.61𝑚 for both in and out of plane 
buckling. 
 
The steel brace is an RRW100x60x5 (first story) therefore, 
 

𝑁:; = 𝜋" ∙ 𝐸 ∙
𝐼<
𝑙#"
= 3.14" ∙ 210 ∙

0.836 ∙ 10=

3610" = 132.96𝑘𝑁 

Weak axis is critical, therefore: the check should be performed only in this axis for both upper 
and lower normalized slenderness limit.  
Moreover, 𝐴 ∙ 𝑓! = 1473 ∙ 0.355	 = 522.92𝑘𝑁 
Therefore, 
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𝜆̅ = I
6∙4!
>%&

= I&"".?"
@A".?=

= 1.98  

Consequently, 1.3 ≤ 𝜆̅ ≤ 2.0 and the steel brace meets the requirements for normalized 
slenderness. 
 
Question 3 
 
We need to compute the column axial load demand (consider using absolute values of loads 
since the seismic action is a cyclic load): 
 
𝑁)*,3 = 3 ∙ (6 ∙ 4) ∙ 7 = 504𝑘𝑁 
 
𝑁)* = 𝑁)*,3 + 1.1 ∙ 𝛾B+ ∙ Ω ∙ 𝑁)*,) = 504 + 1.1 ∙ 1.25 ∙ 1.44 ∙ 450 = 1395𝑘𝑁 
 
Note here that, since we have the axial force acting in the columns, we can use this formula, 
according to the code. For the next question that the axial forces in the beams are not given, 
we will proceed to an assumption. 
 
Buckling resistance of the steel column: 
 
Strong axis (MRF direction) 
 
𝑙# = 1.5𝐿 = 1.5 ∙ 4000 = 6000𝑚𝑚 
 
C
-
= 	1.0 < 1.2 and 𝑡𝑓	 < 	100𝑚𝑚 therefore the buckling coefficient is 𝛼 = 	0.34 (y-y axis)  

𝑁:;,! =
𝜋" ∙ 𝐸 ∙ 𝐼!

𝑙#"
= 3.14" ∙ 210 ∙

192.7 ∙ 10=

6000" = 11083𝑘𝑁 

 
Weak axis (CBF direction) 
𝑙# = 𝐿 = 4000𝑚𝑚 (column is pinned at the bottom and the beams intersecting at the top are 
pinned to the column in the weak-axis) 
 
C
-
= 	1.0 < 1.2 and 𝑡𝑓	 < 	100𝑚𝑚 therefore the buckling coefficient is 𝛼 = 	0.49 (z-z axis)  

𝑁:;,< =
𝜋" ∙ 𝐸 ∙ 𝐼<

𝑙#"
= 3.14" ∙ 210 ∙

65.9 ∙ 10=

4000" = 8528𝑘𝑁 

 

λOD = P
𝐴 ∙ 𝑓!
𝑁:;,!

= P13100 ∙ 0.355
11083 = 0.65 

 

λOE = P
𝐴 ∙ 𝑓!
𝑁:;,<

= P13100 ∙ 0.355
8528 = 0.74 

 
Φ! = 0.5 ∙ R1 + 𝛼 ∙ SλOD − 0.2T + λO!

"U = 0.5 ∙ (1 + 0.34 ∙ (0.65 − 0.2) + 0.65") = 0.79 
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Φ< = 0.5 ∙ R1 + 𝛼 ∙ SλOE − 0.2T + λO<
"U = 0.5 ∙ (1 + 0.49 ∙ (0.74 − 0.2) + 0.74") = 0.90 

 

𝜒! =
1

ΦD + IΦD
" − λO!

"
=

1
0.79 + √0.79" − 0.65"

= 0.81 

𝜒< =
1

ΦE +IΦE
" − λO<

"
=

1
0.90 + √0.90" − 0.74"

= 0.70 

 
Therefore,  
 
Nb,y,Rd = 𝜒! ∙ 𝐴 ∙

4!
7#'

= 0.81 ∙ 13100 ∙ $.A&&
@.$&

= 3588𝑘𝑁 > 1395𝑘𝑁 (check is ok) 

Nb,z,Rd = 𝜒< ∙ 𝐴 ∙
4!
7#'

= 0.70 ∙ 13100 ∙ $.A&&
@.$&

= 3100𝑘𝑁 > 1395𝑘𝑁 (check is ok) 
 
Axial load –flexure interaction: 
 
h/b = 280/280 = 1.0 < 2; therefore, the buckling curve to be used is “a” (i.e., aLT = 0.21), 
according to ΕΝ 1993-1-1. 
 
Plastic bending resistance with respect to y-y axis 

𝑀/0,!,1* = 𝑊/0,! ∙
𝑓!
𝛾F$

= 1530 ∙ 10A ∙ 0.355/1.00 ≅ 543.2𝑘𝑁𝑚 

 
Plastic bending resistance with respect to z-z axis 

𝑀/0,<,1* = 𝑊/0,< ∙
𝑓!
𝛾F$

= 718 ∙ 10A ∙ 0.355/1.00 ≅ 254.9𝑘𝑁𝑚 

 
Computation of critical moment: 
 
𝑧G = 0 (cross section is symmetric and loads are passing through the cross-section shear 
center). 
 
𝑀!,)*,HB/ = −78𝑘𝑁 −𝑚 
𝑀!,)*,-BHHB8 = 61𝑘𝑁 −𝑚 
 
therefore, 𝑘 = =@

IJ
= 0.78 

 
The steel column is fixed at the base in the y-y direction; however, conservatively, we assume 
that the warping constant is 𝑘+ = 1.0 
 
From, 𝑘+ = 1.0, 𝑘, = 1.0 (conservative assumption), k = 0.5, 𝐶@ = 2.75 > 2.3, 𝐶@ = 2.3 
 
L = 4000mm  
 
Shear modulus: 𝐺 = )

"⋅(@M+)
= 80.8kN/mm2 

Computation of torsional and warping constants: 
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𝐾 =
2 ∙ 𝑏 ∙ 𝑡4A + Sℎ − 𝑡4T ∙ 𝑡OA

3 =
2 ∙ 280 ∙ 18A + (280 − 18) ∙ 10.5A

3 = 1.19𝑥10=𝑚𝑚P 
 

𝐼Q =
𝑡4 ∙ Sℎ − 𝑡4T

"
∙ 𝑏A

24 =
18 ∙ (280 − 18)" ∙ 280A

24 = 1.13𝑥10@"𝑚𝑚= 
 
Therefore, the computation of Mcr is as follows: 
 

𝑀:; = 𝐶@ ∙
𝜋" ∙ 𝐸 ∙ 𝐼<
𝑘+𝑘,(𝐿R)"

∙ a
𝐼O
𝐼<
∙ b
S𝑘, ∙ 𝐿RT

" ∙ 𝐺 ∙ 𝛫
𝜋" ∙ 𝐸 ∙ 𝐼Q

+ 1de

$.&

= 2.3 ∙
𝜋" ∙ 210 ∙ 65.9 ∙ 10=

1.0 ∙ 1.0 ∙ (4000)"

∙ b
1.13 ∙ 10@"

65.9 ∙ 10= ∙ f
(1.0 ∙ 4000)" ∙ 80.8 ∙ 1.19 ∙ 10=

𝜋" ∙ 210 ∙ 1.13 ∙ 10@" + 1gd
$.&

~3309.2𝑘𝑁𝑚 

 

𝜆̅ST = P
𝑊/0,! ∙ 𝑓!
𝑀:;

= P 543.2
3309.2 = 0.41 > 0.40 

 
Therefore, the column bending resistance should be reduced due to lateral torsional buckling 
(i.e., 𝜒ST ≠ 1.0). Note here that if kv, kφ would not have been assumed as 1, this reduction would 
have been avoided. 
 
ΦST = 0.5 ∙ R1 + 𝛼ST ∙ SλOUV − 0.2T + λOST

"U = 0.5 ∙ (1 + 0.21 ∙ (0.41 − 0.2) + 0.41")
= 0.60 

 

𝜒ST =
1

ΦUV +IΦUV
" − λOST

"
=

1
0.60 + √0.60" − 0.41"

= 0.95 

 
Strong Axis Interaction: (Note that Mz,Ed = 0 because the column is pinned in the CBF 
direction): 
 

𝑁)*

𝜒< ∙ 𝐴 ∙
𝑓!
𝛾F@

+
𝜔!

1 − 𝑁)*
𝑁!,:;

∙
𝑀!,)*

𝜒ST
𝑀/0,!,1*
𝛾F@

≤ 1 

 
To compute ωy you should consider the moment sign in this case such that the moment gradient 
can reduce the interaction due to bending if the member is in double curvature. Therefore,  
 

𝜔! = 0.6 + 0.4 ∙ k−
61
78l = 0.29 < 0.40; 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝜔! = 0.40 
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𝑁)*

𝜒< ∙ 𝐴 ∙
𝑓!
𝛾F@

+
𝜔!

1 − 𝑁)*
𝑁!,:;

∙
𝑀!,)*

𝜒ST
𝑀/0,!,1*
𝛾F@

=
1395
3100 +

0.40

1 − 1395
11083

∙
78

0.95 ∙ 517.3 = 0.45 + 0.07 = 0.52 

 
Therefore, the column satisfies all the checks for interaction of axial load and bending. 
 
Question 4 
 
We need to estimate the axial load demand due to the seismic action in the steel beam. We will 
do this approximately without the use of a structural analysis program. However, because of 
this reason, we will safely estimate the axial load by using the plastic resistance of the steel 
brace. This involves a number of steps. 
 
Step 1: Treat the beam as simple supported because its connections at both ends do not carry 
moments. 
 
Angle, 𝛼	 = 	𝑎𝑡𝑎𝑛(4.0/6.0) 	= 	0.59𝑟𝑎𝑑	(33.7°) 
 
Step 2: Seismic action 
 
For the seismic action, the axial forces that should be considered in the bracing system that is 
intersecting to the beam of the first floor are as follows: 
 

 
Note here that we assume that the braces in compression do not contribute to the frame 
resistance. This is a conservative assumption, since they reduce by 30% the axial force in the 
beams (assuming that their resistance is 0.3𝑁/0,1*). Whereas, if a similar approach is followed 
for the columns, then the contribution of the braces in compression should not be neglected, 
since they increase the axial compressive force demand in the columns. 

 
As such, 
 
𝑁/0,1*,@ 	= 𝑁/0,1*," = 𝑁/0,1* = 522.9	𝑘𝑁 (brace is the same size in stories 1 and 2) 
 
Step 3: Reactions: 

 

 
 

6.0 m

Npl,Rd,1

Npl,Rd,2

33.7° 33.7°

6.0 m

522.9 kN

33.7° 33.7°

522.9 kN
6.0 m

33.7° 33.7°
435 kN 435 kN
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It should be noted that the vertical components of the bracing system axial forces are directly 
taken by the columns; thus, there are no shear or moment demands in the beam due to the 
seismic action. 
 
Step 4: Gravity loading 
 
The simple supported beams are loaded uniformly by 
 
 𝑔 = 𝐺 ∙ 𝑙',W44 = 7 ∙ 1 = 7𝑘𝑁/𝑚 
Consequently, the moment in the centre of the beam equals to  
 
𝑀8X' = 𝑔 ∙ 0(

)

J
= 7 ∙ =

)

J
= 31.5𝑘𝑁 −𝑚  

 
Moreover, the maximum shear force in the beam ends equals to 
  
𝑉8X' = 𝑔 ∙ 0(

"
= 7 ∙ =

"
= 21𝑘𝑁  

 
Step 5: Internal force diagrams for the given actions 
 

Seismic action Gravity loading 

 
 

Question 5 
 
The beam size is an IPE270: 
 

𝑉/0,1* =
𝐴+ ∙ 𝑓!
√3 ∙ 𝛾F$

=
2214 ∙ 0.355
√3 ⋅ 1.00

= 453.8𝑘𝑁 

 
 
Shear demand: 
 
Ω = 1.44 (we use the smallest Ω) 
 
𝑉)* = 𝑉)*,3 + 1.1 ∙ 𝛾B+ ∙ Ω ∙ 𝑉)*,) = 21 + 0 = 21	𝑘𝑁 < 453.8𝑘𝑁 = 𝑉/0,1* 
 
Bucking resistance of the steel beam (y-axis buckling): 
 

435 kN

N [kN]

M [kN]

Q [kN]

N [kN]

M [kN]

Q [kN]

31.5 kN-m

21 kN

21 kN
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𝑙# = 𝐿 = 6000𝑚𝑚  
 
C
-
= "I$

@A&
= 	2 > 1.2 and 𝑡𝑓 = 10.2𝑚𝑚 < 	100𝑚𝑚 therefore the imperfection curve is a and 

the imperfection factor is 𝛼 = 	0.21 (y-y axis) 
 

𝑁:;,! =
𝜋" ∙ 𝐸 ∙ 𝐼!

𝑙#"
= 3.14" ∙ 210 ∙

57.9 ∙ 10=

6000" = 3330.1𝑘𝑁 

λOD = P
𝐴 ∙ 𝑓!
𝑁:;,!

= P4590 ∙ 0.355
3330.1 = 0.7 

 
Φ! = 0.5 ∙ R1 + 𝛼 ∙ SλOD − 0.2T + λO!

"U = 0.5 ∙ (1 + 0.21 ∙ (0.7 − 0.2) + 0.7") = 0.8 
 

𝜒! =
1

ΦD + IΦD
" − λO!

"
=

1
0.8 + √0.8" − 0.7"

= 0.84 

 
Bucking resistance of the steel beam (z-axis buckling): 
 
𝑙# = 𝐿 = 1500𝑚𝑚 (the steel beam is braced laterally every lb/4) 
 
C
-
= "I$

@A&
= 	2 > 1.2 and 𝑡𝑓 = 10.2𝑚𝑚 < 	100𝑚𝑚 therefore the imperfection curve is b and 

the imperfection factor is 𝛼 = 	0.34 (z-z axis) 
 

𝑁:;,< =
𝜋" ∙ 𝐸 ∙ 𝐼<

𝑙#"
= 3.14" ∙ 210 ∙

4.2 ∙ 10=

1500" = 3865.0𝑘𝑁 

 

λOE = P
𝐴 ∙ 𝑓!
𝑁:;,<

= P4590 ∙ 0.355
3865.0 = 0.65 

 
Φ< = 0.5 ∙ R1 + 𝛼 ∙ SλOE − 0.2T + λO<

"U = 0.5 ∙ (1 + 0.34 ∙ (0.65 − 0.2) + 0.65") = 0.79 
 

𝜒< =
1

ΦE +IΦE
" − λO<

"
=

1
0.79 + √0.79" − 0.65"

= 0.81 

 
Therefore, z-axis buckling controls and 
𝑁)* = 𝑁)*,3 + 1.1 ∙ 𝛾B+ ∙ Ω ∙ 𝑁)*,) = 0 + 1.1 ∙ 1.25 ∙ 1.44 ∙ 435 = 861.3	𝑘𝑁 
 
Note: If you do explicit structural analysis with a software without the simplifications we did 
in Question 4, then you can directly use as 𝑁)*,) what the structural analysis program provides 
for the steel beam. Herein, we conservatively use as an axial demand due to the seismic action 
for the steel beam what we estimated from 𝑁/0,1* of the steel brace (see Question 4). 
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Nb,z,Rd = 𝜒< ∙ 𝐴 ∙
4!
7#'

= 0.81 ∙ 4590 ∙ $.A&&
@.$&

= 1257.0𝑘𝑁 > 861.3𝑘𝑁 (check is ok) 
 
Axial load –flexure interaction: 
 
The beam in its weak axis does not experience any bending; in the strong axis it experiences 	
𝑀)* = 𝑀)*,3 + 1.1 ∙ 𝛾B+ ∙ Ω ∙ 𝑀)*,) = 31.5 + 0 = 31.5	𝑘𝑁 at its center.  
Therefore, we should check for axial load – strong axis bending interaction. 
 
h/b = 270/135 = 2; therefore the buckling curve to be used is “a” (i.e., aLT = 0.21) , according 
to EC3. 
 
Plastic bending resistance with respect to y-y axis 

𝑀/0,!,1* = 𝑊/0,! ∙
𝑓!
𝛾F$

= 484 ∙ 10A ∙
0.355
1.00 = 171.8𝑘𝑁𝑚 

Computation of critical moment: 
 
𝑧G = 0 (cross section is symmetric – assume that loads are passing through the cross-section 
shear center). 
 
By checking the most critical part of the beam and assuming uniform loading in this part, we 
have C1 = 1.0 (conservative assumption) 
The steel beam is connected to the column with a shear connection; therefore, 𝑘+ = 𝑘, = 1.0. 
 
𝐿 = 1500mm  
 
Shear modulus: 𝐺 = )

"⋅(@M+)
= 80.8kN/mm2 

 
Computation of torsional constant: 
 

𝐾 =
2 ∙ 𝑏 ∙ 𝑡4A + Sℎ − 𝑡4T ∙ 𝑡OA

3 =
2 ∙ 135 ∙ 10.2A + (270 − 10.2) ∙ 6.6A

3 = 0.12𝑥10=𝑚𝑚P 
 

𝐼O =
𝑡4 ∙ Sℎ − 𝑡4T

"
∙ 𝑏A

24 =
10.2 ∙ (270 − 10.2)" ∙ 135A

24 = 7.06𝑥10@$𝑚𝑚= 
 
Therefore, the computation of Mcr is as follows: 

𝑀:; = 𝐶@ ∙
𝜋" ∙ 𝐸 ∙ 𝐼<
𝑘+𝑘,(𝐿R)"

∙ a
𝐼O
𝐼<
∙ b
S𝑘, ∙ 𝐿RT

" ∙ 𝐺 ∙ 𝛫
𝜋" ∙ 𝐸 ∙ 𝐼Q

+ 1de

$.&

= 1.00 ∙
𝜋" ∙ 210 ∙ 4.2 ∙ 10=

1.0 ∙ 1.0 ∙ (1500)"

∙ b
7.06 ∙ 10@$

4.2 ∙ 10= ∙ f
(1.0 ∙ 1500)" ∙ 80.8 ∙ 0.12 ∙ 10=

𝜋" ∙ 210 ∙ 7.06 ∙ 10@$ + 1gd
$.&

= 537.7𝑘𝑁𝑚 
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𝜆̅ST = P
𝑊/0,! ∙ 𝑓!
𝑀:;

= P 171.8
537.73 = 0.57 > 0.40 

 
ΦST = 0.5 ∙ R1 + 𝛼ST ∙ SλOUV − 0.2T + λOST

"U = 0.5 ∙ (1 + 0.21 ∙ (0.57 − 0.2) + 0.57")
= 0.70 

 

𝜒ST =
1

ΦUV +IΦUV
" − λOST

"
=

1
0.70 + √0.70" − 0.57"

= 0.90 

 
Reduction of bending due to shear-bending interaction: 
𝑉)* = 21	𝑘𝑁 < 0.5 ∙ 453.8𝑘𝑁 
Therefore, no reduction due to shear is required.  
 
Strong Axis Interaction: (Note that Mz,Ed = 0) 
 

𝑁)*

𝜒< ∙ 𝐴 ∙
𝑓!
𝛾F@

+
𝜔!

1 − 𝑁)*
𝑁!,:;

∙
𝑀!,)*

𝜒ST
𝑀/0,!,1*
𝛾F@

≤ 1 

 
𝜔! = 1, since uniform moment diagram is assumed in the mid spans on the beam 

𝑁)*

𝜒< ∙ 𝐴 ∙
𝑓!
𝛾F@

+
𝜔!

1 − 𝑁)*
𝑁!,:;

∙
𝑀!,)*

𝜒ST
𝑀/0,!,1*
𝛾F@

=
861
1257 +

1.0

1 − 861
3330.1

∙
31.5

0.9 ∙ 163.6 = 0.68 + 0.29

= 0.97 < 1 
 
Therefore, the beam satisfies all the checks for interaction of axial load and bending. 
 
Question 6  
 
Step 1: Compute, 𝑅* = 1.1	𝛾B+	𝑁/0,-;X:W; where 𝑁/0,-;X:W is calculated in the first question. 
 
For the first and second storey: 𝑅* = 1.1 ∙ 1.25 ∙ 522.9 = 719	𝑘𝑁 
For the third storey: 𝑅* = 1.1 ∙ 1.25 ∙ 312.1	 = 	429	kN	 
 
Step 2: Weld length and weld resistance 

 
To size the length of the weld we check the block shear rupture. 
 
𝑁$%%,'( =

)
*!"

#0.9	𝑓+𝐴,,#$, +	
%#
√.
4𝐿𝑡. ≥ 𝑅(  where we may assume 𝐴,,#$, ≈ 0 to be on the 

conservative side. 
 
First and second storey:  
  @
@."&

R0 + $.A&&
√A

. 4 ∙ 𝐿 ∙ 5U 	≥ 719 → 𝐿	 ≥ 219	𝑚𝑚 ; therefore, use 𝐿 = 220𝑚𝑚		 
 
Third storey: 
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@
@."&

R0 + $.A&&
√A

∙ 	4 ∙ 𝐿 ∙ 4	U 	≥ 429 → 𝐿	 ≥ 164	𝑚𝑚 , therefore, use	𝐿 = 164	𝑚𝑚		 
 
 
Step 3: Size the gusset plate in tension and compression 
 

a. Net Section verification at the Whitmore section:  
 
𝑁,,'( =

)
*!"

𝑓/𝐿0𝑡1 ≥ 𝑅( 	where 𝐿O = 2𝐿OW0* tan(30) + 𝑤𝑖𝑑𝑡ℎ-;X:W 
 
First and second storey: 
𝐿0 = 2 ∙ 220 ∙ tan(302) + 100 = 354	𝑚𝑚 
𝑁,,'( =

)
).45

0.355 ∙ 354 ∙ 𝑡1 	≥ 719𝑘𝑁 → 𝑡1 	≥ 7.15	𝑚𝑚	:  use	𝑡1 = 7.5	𝑚𝑚 
 
Third storey:  
𝐿0 = 2 ∙ 164 ∙ tan(30) + 60 = 249.4	𝑚𝑚 
𝑁,,'( =

)
).45

0.355 ∙ 249.4 ∙ 𝑡1 	≥ 429	𝑘𝑁 → 𝑡1 	≥ 6.1	𝑚𝑚	:  use	𝑡1 = 6.5	𝑚𝑚 
 

b. Compressive verification at the Whitmore section: 
 
For first and second storey: as the buckling length for both weak and strong axis is the same, 
we calculate the buckling resistance for the weak axis. Here, we consider conservatively 
assume that the buckling length of a bracing member is equal to lk = (3.02 + 2.02)0.5 = 3.61m. 
 

𝑁:;,< = 𝜋" ∙ 𝐸 ∙
𝐼<
𝑙#"
= 3.14" ∙ 210 ∙

0.836 ∙ 10=

3610" = 133𝑘𝑁 

λOE = P
𝐴 ∙ 𝑓!
𝑁:;,<

= P1473 ∙ 0.355
133 = 1.98 

 
According to SIA 263/2013 (Fig. 7), for hot-rolled ST355 square hollow structural profiles, the 
imperfection factor is 𝛼 =0.21. 
 
Φ< = 0.5 ∙ R1 + 𝛼 ∙ SλOE − 0.2T + λO<

"U = 0.5 ∙ (1 + 0.21 ∙ (1.98 − 0.2) + 1.98") = 2.65 
 

𝜒< =
1

ΦE +IΦE
" − λO<

"
=

1
2.65 + √2.65" − 1.98"

= 0.227 

 
Nb,z,Rd = 𝜒< ∙ 𝐴 ∙

4!
7#'

= 0.227 ∙ 1473 ∙ $.A&&
@.$&

= 113	𝑘𝑁  
 
Similarly, in the third storey, we have a hollow square structural profile; therefore, 
 

𝑁:; = 𝜋" ∙ 𝐸 ∙
𝐼<
𝑙#"
= 3.14" ∙ 210 ∙

0.454 ∙ 10=

3610" = 72.2	𝑘𝑁 

λOE = I
6∙4!
>%&,+

= IJIP∙$.A&&
I"."

= 2.07  
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Φ< = 0.5 ∙ R1 + 𝛼 ∙ SλOE − 0.2T + λO<

"U = 0.5 ∙ (1 + 0.21 ∙ (2.07 − 0.2) + 2.07") = 2.84 

𝜒< =
1

ΦE +IΦE
" − λO<

"
=

1
2.84 + √2.84" − 2.07"

= 0.209 

 
Nb,z,Rd = 𝜒< ∙ 𝐴 ∙

4!
7#'

= 0.209 ∙ 847 ∙ $.A&&
@.$&

= 59.9	𝑘𝑁  
 
Hence, 

𝑁:;,G[\\WH =
𝜋"𝐸𝐿O𝑡G[\\WHA

12(𝑘𝐿)" 	≥ 𝑅* 

 
Assumptions: 𝑘 = 0.65 and 𝐿 = 2𝑡𝑝 +

𝐿𝑤
2
cot(33.7) (see Figure 3) 

 
Figure 3. Gusset plate schematic for its buckling resistance calculation 

 
First and second storey: 

𝐿 = 2 ∙ 7.5 +
354
2 cot(33.7) = 280.4	𝑚𝑚 

𝑅* = 1.1	𝛾B+	𝑁-,1* = 1.1 ∙ 1.25 ∙ 113 = 155.4𝑘𝑁 

𝑁:; =
𝜋" ∙ 210 ∙ 354 ∙ 7.5A

12(0.65 ∙ 280.4)" = 776.5𝑘𝑁	 > 	155.4𝑘𝑁	𝑜𝑘	 

 
Third storey: 

𝐿 = 2 ∙ 6.5 +
249
2 cot(33.7) = 200	𝑚𝑚 

𝑅* = 1.1	𝛾B+	𝑁-,1* = 1.1 ∙ 1.25 ∙ 59.9 = 82.4𝑘𝑁 

𝑁:; =
𝜋" ∙ 210 ∙ 249.4 ∙ 6.5A

12(0.65 ∙ 200)" = 	700	𝑘𝑁	 > 	82.4𝑘𝑁	𝑜𝑘	 

 
c. Net section verification: 

 
𝑁#$,,'( =

9.:%%;&,()&
*!"

≥ 𝑅( = 1.1𝛾2<𝑁1=,'(	 = 1.1𝛾2<𝑓/𝐴 →
;&,()&
;

≥ ).)∙).45∙9..55
9.:∗9.AB9

∙ 1.25 = 1.44; 
Note that this check should not control as 𝐴#$,		is always smaller than 𝐴. 
 
First and second storey: 
𝐴,,#$,
𝐴 =

1473 − 2 ∙ 5 ∙ 7.5
1473 = 0.95 

 
Third storey: 

beam top flange

co
lu

m
n 

fla
ng

e

brace end
𝐿"/233.7°

2𝑡*
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𝐴,,#$,
𝐴 =

879 − 2 ∙ 4 ∙ 6.5
879 = 0.94 

The preliminary sketches for the bracing connections are as follows 
 

 
Figure 4. Connection detail for 1st and 2nd storeys (dimensions in mm) 

 

 
Figure 5. Connection detail for 3rd storey (dimensions in mm) 

 
 


