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Exercise #8: Seismic Design of Steel MRFs - Steel Columns 
 
The steel moment-resisting frame (MRF) shown in Figure 1 has been designed in a high 
seismicity zone for gravity and earthquake loading. The cross sections represent the final 
design of the steel MRF in the North-South loading direction. Steel beams and columns have 
been designed with S355J2 profile (i.e., 𝐸 = 210𝐺𝑃𝑎, 𝑓! = 355𝑀𝑃𝑎). A behaviour factor of 
𝑞	 = 	5 has been adopted as part of the design process. End plate beam-to-column connections 
have been utilized for the seismic design. The total floor weight due to gravity loading is 𝐺	 =
	5𝑘𝑁/𝑚" (all included). The stability coefficient is 𝜃	 = 	0.13 for story 1 of the steel MRF. 
For stories 2, 3, 4 assume that 𝜃	 < 	0.10. The column can be assumed to be fixed at the base 
(exposed type column-base connection). 
 
The following questions should be addressed: 
 

1. Compute the force demands (𝑁#$, 𝑀#$, 𝑉#$) for column 1. For these computations use 
the shear, axial and bending force diagrams shown in Figure 2. 

2. Does column 1 satisfy the design requirements for shear demand/shear resistance? 
3. What is the section classification of column 1? Can it be used for the seismic design of 

the steel MRF? 
4. Compute the buckling resistance of column 1. Check if it is adequate for the design 

against compression. Assume that the steel column is restrained laterally with respect 
to its weak axis every 0.75m. 

5. Check the column resistance for the effects of lateral torsional buckling. The steel 
column is braced laterally only at the first-floor level (𝐿 = 3500𝑚𝑚). 

6. What should the flexural resistance of the column be after considering bending and 
axial load interaction? 

7. Check the column for biaxial bending interaction. Assume that the 𝑀%,#$  = -150kN-m 
(top end) and 𝑀%,#$ = 300kN-m (fixed end). 

8. Check the stability of the column for interaction of axial load and biaxial bending. 
Assume that the 𝑀%,#$  = -150kN-m (top end) and 𝑀%,#$  = 300kN-m (fixed end). 

9. Is the strong column/weak beam ratio check satisfied at the first floor exterior joint? 
Assume that the steel beams are braced laterally to develop their full plastic moment 
resistance 𝑀!,'(,)$. The steel beams are not considered to be fully composite (i.e., the 
slab does not provide additional strength to the steel beam). 

 
Depending on the assumptions made, the answers can vary. 
The axial, shear and bending diagrams are shown in Figures 2, 3, 4, respectively. 
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Figure 1.  Final design of steel MRF 
 

 

   
(a) due to gravity (b) due to earthquake 

Figure 2. Axial force diagram for gravity and seismic loading 
  

8m8m

3.
5m

3.
5m

3.
5m

3.
5m

HE
40

0B IPE450

IPE450

IPE400

IPE400

IPE450

IPE450

IPE400

IPE400

HE
40

0B
HE

40
0B

8m
8mN

8m8m

HE
40

0B

HE
40

0B
HE

40
0B

HE
40

0B
HE

40
0B

HE
40

0B
HE

40
0B

HE
40

0B
HE

40
0B

Column 1

610kN

450kN

303kN

146kN

610kN

450kN

303kN

146kN

1200kN

890kN

590kN

307kN

51kN

90kN

51kN

90kN

25kN

7kN

25kN

7kN



Seismic Engineering  Prof. Dr. Dimitrios G. Lignos, EPFL 3 

   
(a) due to gravity (b) due to earthquake 

Figure 3. Shear force diagram for gravity and seismic loading 
 

   
(a) due to gravity (b) due to earthquake 

Figure 4. Bending force diagram for gravity and seismic loading 
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Solution 
 
1. The following loading combinations should be used for the computation of the force 
demands on the column: 
 
𝑁#$ = 𝑁#$,* + 1.1 ∙ 𝛾+, ∙ Ω ∙ 𝑁#$,# 
𝑉#$ = 𝑉#$,* + 1.1 ∙ 𝛾+, ∙ Ω ∙ 𝑉#$,# 
𝑀#$ = 𝑀#$,* + 1.1 ∙ 𝛾+, ∙ Ω ∙ 𝑀#$,# 
 
The overstrength of the members should be computed based on the flexural resistance/demand 
of the beams at their ends.  
 
Floor 1: 
Beam 1 Left: MEd,E = 35 + 50 = 85kNm, Right: MEd,E = (110 + 67)/2 = 88.5kNm. 
Only the max moment should be considered each time. 
 
The stability coefficient θ > 0.10; P-Delta effects should be considered to compute the first 
floor beam demands. Therefore,  
 
MEd,tot = (75 + 92) ∙ 1/(1 − 𝜃) 	+ 	88.5 ∙ 1/(1 − 𝜃) = 	294kNm 
 
NOTE: In MEd,tot , the first term represents the moment due to gravity load and the second one 
the moment due to the seismic action. 
 
Beam 2 Left: MEd,E = 29 + 20 = 49kNm, Right: MEd,E = (50 + 50)/2 = 50kNm 
 
The stability coefficient θ < 0.10; P-Delta effects should not be considered. Therefore,  
 
MEd,tot = (70+92)+ 50 = 212kNm  
 
NOTE: In MEd,tot, the first term represents the moment due to gravity load and the second one 
the moment due to seismic action. 
 
Beam 3 Left: MEd,E = 23 + 24 = 47kNm, Right: MEd,E = (43 + 45)/2 = 44kNm. 
 
The stability coefficient θ < 0.10; P-Delta effects should not be considered. Therefore,  
 
MEd,tot = (70+120) + 47 = 237kNm  
 
NOTE: In MEd,tot, the first term represents the moment due to gravity load and the second one 
the moment due to seismic action. 
 
Beam 4 Left: MEd,E  = 18kNm, Right: MEd,E = (43)/2 = 21.5kNm. 
 
The stability coefficient θ < 0.10. P-Delta effects should not be considered. Therefore,  
 
MEd,E = 109 + 21.5 ~ 131kN-m  
 
NOTE: In MEd,E, the first term represents the moment due to gravity load and the second one 
the moment due to seismic action. 
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Beams at Floor 1 and 2: IPE 450; 𝑀'( 	= 	𝑊'( ∙ 𝑓!	/𝛾-.= 1700 ∙ 10/ ∙ /00
1...!

= 603.5𝑘𝑁𝑚 

Beams at Floor 3 and 4: IPE 400; 𝑀'( 	= 	𝑊'( ∙ 𝑓!	/𝛾-.= 1310 ∙ 10/ ∙ /00
1...!

= 465.05𝑘𝑁𝑚 
 

Ω = min K
603.5
294 ,

603.5
212 ,

465.05
237 ,

465.05
131 L = 1.96 

 
 
1. Force demands for column 1: 
 
Note 1: Earthquake loading is cyclic; therefore, it can act on a structure in both directions; 
therefore, when the gravity and seismic actions are added, an “absolute” value should be used. 
In this way, the most critical combination can be taken into consideration for the design.  
 
𝑁#$ = (|610| + 1.1 ∙ 1.25 ∙ 1.96 ∙ |90|) = 852.5𝑘𝑁 

𝑉#$ =
1

1 − 0.13
(|−38| + 1.1 ∙ 1.25 ∙ 1.96 ∙ |40|) = 167.6𝑘𝑁 

 
Column 1 top end: 

𝑀#$ =
1

1 − 0.13 (
|75| + 1.1 ∙ 1.25 ∙ 1.96 ∙ |50|) = 241.1𝑘𝑁 −𝑚 

 
Column 1 bottom end: 

𝑀#$ =
1

1 − 0.13
(|98| + 1.1 ∙ 1.25 ∙ 1.96 ∙ |60|) = 298.5𝑘𝑁 −𝑚 

 
2. Shear demand/shear resistance check: 
 
𝐴,	= 6998mm2, 𝑓! = 355MPa 
 

𝑉'(,)$ =
𝐴, ∙ 𝑓!
√3 ∙ 𝛾2.

=
6998 ∙ 0.355
√3 ⋅ 1.00

= 1434𝑘𝑁 

 
Check: 
𝑉#$
𝑉'(,)$

=
167.6
1434 = 0.117 < 0.50 

 
Therefore, the shear demand is not critical. The column flexural resistance should not be 
reduced due to bending-shear interaction. 
 
3. Section classification for HE400B: 
Consider the case that you have compression only. 
 
Flange under compression: 

𝑐
𝑡3
=
0.5𝑏 − 𝑟 − 0.5𝑡4

𝑡3
=
0.5 ∙ 300 − 27 − 0.5 ∙ 13.5

24 = 4.84 < 7.32 = 9 ∙ U
235
355 

Flange is Class 1 
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Web subject to compression only. This is more conservative than flexure and compression. If 
the check fails, then you should check for flexure and compression: 

𝑐
t =

ℎ − 2𝑟 − 2𝑡3
𝑡4

=
298
13.5 = 22.07 < 26.85 = 33 ∙ U

235
355 

 
Therefore, the web is Class 1 and the cross-section is Class 1. Because q = 5 > 4, only Class 1 
members are permitted to be used in the seismic design process. 
 
If the web was not Class 1 the check should be repeated for flexure and compression, which is 
the real stress condition of the web. 
 
4. Buckling Resistance: 
 
We are concerned with buckling resistance with respect to the strong axis bending of the 
column because it is restrained adequately with respect to its weak-axis. 
 
For a hot rolled section (HEB400) with h/b = 400/300 = 1.33 > 1.2, 𝑡3	= 24mm < 40mm; 
therefore, for strong-axis y-y buckling, we are allowed to use a buckling curve a. 
 
Therefore, the imperfection factor is, a =0.21. 
 

• Computation of normalized slenderness ratio, 𝜆̅ 
 
We have a multi-storey MRF that deforms laterally (sway frame). The factors 𝑛56'	and 𝑛783 
shall be computed with the Cross method by assuming that we have continuous columns, which 
is only allowed in seismic applications: 
 

𝑛56' =
𝐾9 + 𝐾9,56'

𝐾9 + 𝐾9,56' + ∑𝐾:,56'
=

𝐼9
𝐿9

⋅ 2

𝐼9
𝐿9

⋅ 2 + 𝐼:
𝐿:

=
576.8𝑥10;
3500 ⋅ 2

576.8𝑥10;
3500 ⋅ 2 + 337.4𝑥10

;

8000

=
164800 ⋅ 2

164800 ⋅ 2 + 42175 = 0.887 
 
Note that IPE450 is not so stiff compared to the columns; therefore, the column top end is not 
restrained by much. 
 
𝑛783 = 0; The first storey column is fixed at the base; therefore, the term ΣKt,inf is infinite at 
the ground floor). 
 
The effective length factor, 𝛽, may be computed with the following formula or by interpolating 
on the nomogram shown in the lecture notes, which approximately gives, 𝛽 = 1.7. 
 

𝛽 = U
1 − 0.2 ∙ `𝑛56' + 𝑛783a − 0.12 ∙ 𝑛56' ∙ 𝑛783
1 − 0.8 ∙ `𝑛56' + 𝑛783a + 0.6 ∙ 𝑛56' ∙ 𝑛783

= U
1 − 0.2 ∙ (0.887) − 0
1 − 0.8 ∙ (0.887) + 0 = 1.683 

 
Therefore,  
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𝑁<=,! =
𝜋"𝐸𝐼!

(1.683 ∙ 𝐿)" =
3.14" ∙ 210 ∙ 576.8 ∙ 10;

(1.683 ∙ 3500)" = 34454𝑘𝑁 

 
Therefore,  
 

𝜆̅! = U19800 ∙ 0.355
34454 = 0.452 

 
Computation of buckling factor: 
 
Φ = 0.5 ∙ [1 + 0.21 ∙ (0.452 − 0.2) + 0.452"] = 0.629 
 

𝜒! =
1

Φ +g`Φ" − 𝜆̅"a
= 0.938 

 
Therefore, the buckling resistance of the column in compression should be, 
 

𝑁>,!,)$ =
𝜒! ⋅ 𝐴 ∙ 𝑓!
𝛾21

=
0.938 ∙ 19800 ∙ 0.355

1.05 = 6281𝑘𝑁 > 852.5𝑘𝑁 = 𝑁#$ 

 
The buckling resistance of the column is very close to its plastic resistance. This is because the 
normalized column slenderness is very small (i.e., 𝜆̅! =0.452). Columns in steel MRFs 
designed for seismic action are typically not critical for member buckling. 
 
In the weak axis, the steel column 1 is braced at 0.75m. Therefore, Lb = 750mm. The column 
is considered to be pinned in the weak axis orientation, 
 

𝑁%,<= =
𝜋"𝐸𝐼%
(𝐿>)"

=
3.14" ∙ 210 ∙ 108 ∙ 10;

(750)" = 397942𝑘𝑁 

𝜆̅% = U19800 ∙ 0.355
397942 = 0.133 

Because of the excessive buckling resistance with respect to the weak axis orientation, 𝜒% = 1 
(no reduction for flexural buckling with respect to the weak axis). 
 
Question 5 
 
ℎ/𝑏 = 400/300 = 1.33 < 2; according to ΕΝ 1993-1-1 the buckling curve to be used is “a” and 
aLT = 0.21 
 
The Plastic flexural resistance of the column with respect to y-y axis 

𝑀'(,!,)$ = 𝑊'(,! ∙
𝑓!
𝛾2.

= 3230 ∙ 10/ ∙ 0.355/1.00 ≅ 1147𝑘𝑁𝑚 

 
Plastic flexural resistance with respect to z-z axis 
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𝑀'(,%,)$ = 𝑊'(,% ∙
𝑓!
𝛾2.

= 1100 ∙ 10/ ∙ 0.355/1.00 ≅ 390.5𝑘𝑁𝑚 

 
Computation of critical moment: 
 
𝑧? = 0 (the cross section is symmetric. We assume for simplicity that the loads are passing 
through the cross-section shear center). 
 
𝑀#$,:+' = 241.1𝑘𝑁𝑚 
𝑀#$,>+::+9 = 298.5𝑘𝑁𝑚 
 
Because the steel column is in double curvature (opposite moments), 𝜅 = "@1.1

"BC.0
= 0.807 

 
The coefficient 𝐶1 may be computed as follows, 
 
𝐶1 = 1.75 + 1.05 ⋅ 𝜅 + 0.3 ⋅ 𝜅" = 2.79 > 2.3 
 
A value of 𝐶1=2.3 is chosen. 
 
The column is assumed as fixed at the base with exposed type connection, 𝑘, = 0.8 
(assumption) and 𝑘D=0.5. Designers would often select 𝑘, = 1.0 and 𝑘D = 1.0 in this case 
because this location is considered to be a potential dissipative zone for a steel MRF. 
 
L = 3500mm (story height because the column is not braced with respect to y-y axis) 
 
Shear modulus: 𝐺 = #

"⋅(1G,)
= 80.8kN/mm2 

 
Computation of the torsional constant: 
 

𝐼: =
2 ∙ 𝑏 ∙ 𝑡3/ + `ℎ − 𝑡3a ∙ 𝑡4/

3 =
2 ∙ 300 ∙ 24/ + (400 − 24) ∙ 13.5/

3 = 3.07𝑥10;𝑚𝑚@ 
 
Computation of the warping constant, 
 

𝐼4 =
𝑡3 ∙ `ℎ − 𝑡3a

"
∙ 𝑏/

24 =
24 ∙ (400 − 24)" ∙ 300/

24 = 3.82𝑥101"𝑚𝑚; 
 
Therefore, the 𝑀<= computation is as follows: 
 

𝑀<= = 𝐶1 ∙
𝜋" ∙ 𝐸 ∙ 𝐼%
𝑘,𝑘I(𝐿)"

∙ m
𝐼4
𝐼%
n
`𝑘I ∙ 𝐿a

" ∙ 𝐺 ∙ 𝐼:
𝜋" ∙ 𝐸 ∙ 𝐼4

+ 1op

..0

= 2.3 ∙
𝜋" ∙ 210000 ∙ 108 ⋅ 10;

0.8 ⋅ 0.5 ⋅ (3500)"

∙ n
3.82 ⋅ 101"

108 ⋅ 10; q
(0.5 ∙ 3500)" ∙ 80769 ∙ 3.07 ⋅ 10;

𝜋" ∙ 210000 ∙ 3.82 ⋅ 101" + 1ro
..0

= 20680𝑘𝑁𝑚 
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Note that if 𝑘,	= 1.0 and 𝑘D=1.0 were assumed, then 𝑀<= = 9296𝑘𝑁𝑚 
 

𝜆̅JK = U
𝑀'(,!,)$

𝑀<=
= 0.23 < 0.40 

As the modified slenderness ratio is below 0.4; the column is able to develop its full plastic 
flexural resistance (i.e., 𝜒JK = 1.0).  
 
The reduction factor 𝜒JK is only calculated below for illustration purposes: 
 
ΦJK = 0.5 ∙ s1 + 𝑎JK ∙ `𝜆̅JK − 0.2a + 𝜆̅JK" t = 0.532 
 
Therefore,  

𝜒JK =
1

ΦJK +gΦJK
" − 𝜆̅JK"

=
1

0.532 + √0.532" − 0.237"
= 0.991~1.00 

 
Note that, the reduction factor is really close to 1.0, as expected. 
 
Therefore, 
 
𝑀>,)$ = 0.991 ∙ 1147/1.05 = 1030.6𝑘𝑁𝑚 
 
Question 6: 
 
We need to check the axial load ratio first: 
 

𝑛 =
𝑁#$
𝑁'(,)$

=
852.5

19800 ∙ 0.355/1.05 = 0.126 < 0.25 

 
and  
 

𝑁#$ = 852.5𝑘𝑁 >
0.5 ∙ ℎ4 ∙ 𝑡4 ∙ 𝑓!

𝛾2.
=
0.5 ∙ (400 − 2(24 + 27)) ∙ 13.5 ∙ 0.355

1.0 = 714.1𝑘𝑁 

 
Therefore, the flexural resistance of the steel column should be reduced for the effects of axial 
load in both the y-y and z-z axes. 
 

• Strong axis Bending 
 

Position of neutral axis, 𝑎 = LM"⋅>"⋅:"
L

= 1BC..M"⋅/..⋅"@
1BC..

= 0.273 
Thus, 

𝑀!,N,)$ = 𝑀!,'(,)$ ⋅
1 − 𝑛

1 − 0.5 ⋅ 𝑎 = 1092 ⋅
1 − 0.126

1 − 0.5 ⋅ 0.273 = 1104.9𝑘𝑁𝑚 >	𝑀!,'(,)$

= 1092𝑘𝑁 
 

• Weak axis Bending 
For 𝑛	 < 	𝑎 
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𝑀%,N,)$ = 𝑀%,'(,)$ = 390.5/1.05 = 372𝑘𝑁𝑚 
Question 7: 
 
We shall check for biaxial bending both top and bottom column locations. 
For an H-shape cross sections: a=2 and 𝛽 = 5 ∙ 𝑛 = 5 · 0.146 = 0.73 < 1 therefore 𝛽 = 1. 
 
The biaxial bending check at the column base location (location of highest axial load and 
bending demands) is as follows, 
 
𝑀!,#$ = 298.5𝑘𝑁𝑚 (computed in Question 1) 
𝑀%,#$= 300kNm (given by the in-class exercise) 
 

w
𝑀!,#$

𝑀!,N,)$
x
?

+ w
𝑀%,#$

𝑀%,N,)$
x
O

= y
298.5
1092z

"

+ y
300
372z

1

= 0.074 + 0.806 = 0.881 < 1 

 
The check is verified. 
 
Question 8: 
 
Stability of the column under interaction of axial load and biaxial bending. 
 

𝑁P$
𝑁Q,)$

+
𝜔!

1 − 𝑁#$
𝑁<=,!	

⋅
𝑀!,#$

𝑀!,)$
+

𝜔%

1 − 𝑁#$
𝑁<=,%	

⋅
𝑀%,#$

𝑀%,)$
≤ 1 

 

𝑁Q,)$ = min K𝜒! ⋅
NRS,TU
𝛾21

; 	𝜒% ⋅
NRS,TU
𝛾21

	L = 6281𝑘𝑁 

 
𝑀!,#$ = 298.5𝑘𝑁𝑚 (computed in Question 1) 
𝑀%,#$= 300	𝑘𝑁𝑚 (given by the in-class exercise) 
 
𝑀!,)$ = 0.991 ∙ 1092/1.05 =1030.6	𝑘𝑁𝑚 
𝑀%,)$= 390.5/1.05 = 372	𝑘𝑁𝑚 
𝑁#$ = 979.9𝑘𝑁 
𝑁<=,! = 34454𝑘𝑁 
𝑁<=,% = 397942𝑘𝑁 
 

𝜔! = 0.6 + 0.4 ~−
241
298.5� = 0.277 < 0.4 → 𝜔! = 0.4 

𝜔% = 0.6 + 0.4 ~−
150
300� = 0.40 → 𝜔% = 0.4 

 
Therefore, 
 
852.5
6281 +

0.4

1 − 852.5
34454	

⋅
298.5
1030.6 +

0.4

1 − 852.5
397942	

⋅
300
372 = 0.136 + 0.119 + 0.330 = 0.584 < 1 

Check is verified 
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Question 9: 
 
We should calculate the strong column/weak beam ratio at the first story exterior joint and this 
ratio must be greater than 1.3 (capacity design). 
 
The beams are braced such that they can develop their full plastic flexural resistance 𝑀'(,)$. 
End-plate beam-to-column connections are used. We should compute 𝑠V to transfer the shear 
force of the steel beam to the column centerline. 
 

𝑠V = min K
ℎ>
2 ; 3𝑏3L = min K

450
2 = 225; 3 ⋅ 190 = 570L = 225	[𝑚𝑚] 

 
The shear demand in the beam is calculated by assuming simultaneous plastic hinges forming 
at the beam ends. In this case, the length from plastic hinge-to-plastic hinge shall be used, 
 

𝑉#$ = 1.1 ⋅ 𝛾+, ⋅
2𝑀'(,)$

𝐿 − ℎ<2 −
ℎ<
2 − 2 ∙ 𝑠V

+
𝐺 ∙ 𝐿 ∙ 𝐿2
2 = 1.1 ⋅ 1.25 ⋅

2 ⋅ 1700 ⋅ 0.3551.05
8 − 0.4 − 2 ∙ 0.225 +

5 ⋅ 8 ∙ 82
2

= 301.1𝑘𝑁 
 
There is one beam connected to the exterior joint, therefore the moment at the connection is, 

𝑀)$,> = 1.1 ⋅ 𝛾+, ⋅ 𝑀'(,!,)$ + 𝑉#$ ⋅ ~𝑠V +
ℎ<
2 �

= 1.1 ⋅ 1.25 ⋅ 1700 ⋅
0.355
1.00 + 301.1 ⋅ ~0.225 +

0.400
2 � = 957.8𝑘𝑁𝑚 

 
The design values of the moment should be reduced by the effects of compressive axial load 
at the bottom and the top of the beam-to-column joint. 
 
The calculation was already made in Question 6 for the column below the joint (first story 
column), we can apply the same method for the column above the joint (second story column). 
 
𝑁#$,:+' = (|450| + 1.1 ∙ 1.25 ∙ 1.96 ∙ |51|) = 587.4𝑘𝑁 
𝑁#$,>+: = (|610| + 1.1 ∙ 1.25 ∙ 1.96 ∙ |90|) = 852.5𝑘𝑁 
 

𝑛:+' =
𝑁#$,:+'
𝑁'(,)$

=
587.4

19800 ∙ 0.355/1.05 = 0.0877 < 0.25 

 
In addition, the following check shall be done: 
 

𝑁#$,:+' <
0.5 ∙ ℎW ∙ 𝑡4 ∙ 𝑓!

𝛾-1
=
0.5 ∙ 298 ∙ 13.5 ∙ 0.355

1.05 = 680.1𝑘𝑁 

 
Therefore, there is no need to reduce the bending resistance due to axial load, 
 
𝑀!,N,)$,:+' = 𝑀!,'(,)$ = 1092𝑘𝑁𝑚 
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Similarly, for the bottom location,  
 

𝑛>+: =
𝑁#$,>+:
𝑁'(,)$

=
852.5

19800 ∙ 0.355/1.05 = 0.126 < 0.25 

 
In addition, the following check shall be done: 
 

𝑁#$,>+: >
0.5 ∙ ℎW ∙ 𝑡4 ∙ 𝑓!

𝛾-1
=
0.5 ∙ 298 ∙ 13.5 ∙ 0.355

1.05 = 680.1𝑘𝑁 

 
Therefore, in this case we need to reduce the flexural resistance due to axial load in this case, 
 

𝑀!,N,)$,>+: = 𝑀!,'(,)$ ⋅
1 − 𝑛

1 − 0.5 ⋅ 𝑎 = 1092 ⋅
1 − 0.126

1 − 0.5 ⋅ 0.273 = 1104.9𝑘𝑁𝑚
> 1092𝑘𝑁𝑚	(𝑎𝑠𝑠𝑢𝑚𝑒	1092𝑘𝑁𝑚) 

 
The SCWB ratio is computed as follows, 
 

Σ𝑀< = 𝑀N,'(,)$,:+' +𝑀N,'(,)$,>+: = 1092 + 1092 = 2184𝑘𝑁𝑚 
 
Note that we neglect the shear transfer from the columns to the joint in order to be conservative 
when we conduct the SCWB ratio check. 
 
The SCWB ratio is computed, 

Σ𝑀<

Σ𝑀>
=
2184
957.8 = 2.28 > 1.3 

 
Therefore, the check is verified. 


