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Seismic Attenuations in rocks
< Rocks elastic & dissipative properties

Field data Lab data
|Seismology Reservoir Sonic log
\ monitoring

| I
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) 1-D) Wave equation
Velocity of waves : (1-D) q

2 2
At <=> Travelled distance ( hence travel time) 0 3 u _ M(w) du
2 2

ot 9x
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Seismics

BEDROCK

Inverse problem

=> Rocks, fluids, P-T
from mechanical
properties

Geoffroy and Dorbath (2008), GRL



Seismics

Inverse problem
=> Rocks, fluids, P-T

from mechanical
properties

V, &V
< 2 Independent
informations

IF isotropic medium
& Only 2 elastic constants to
characterise the rock

linear reversible
elasticity
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) 1-D) Wave equation
Velocity of waves : (1-D) q

At <=> Travelled distance ( hence travel time) 32_11 = M(w) ig_
P2 2
ot 9x
Attenuation of waves : T —ax_iw(c-x/c)
a <=> Decay over travelled distance (& travel time) < Sesimology u=e ¢
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; 1-D) Wave equation
Velocity of waves : (1-D) q

At <=> Travelled distance ( hence travel time) Ezu 321.1
p—7 = M) —
ot ax

Attenuation of waves :

_ _ _ _=ox_iw(t-x/c)
o <=> Decay over travelled distance (& travel time ) & Sesimology e e

<=>Wave energy loss (e.g. from adsorption) & 4D seismic
Caracterised as Q, & Qs

Chauvigny Limestone (¢ ~ 16 %) Fontainebleau Sandstone (¢ ~ 16 %)
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Velocity of waves :
At <=> Travelled distance ( hence travel time)

Attenuation of waves :

o <=> Decay over travelled distance (& travel time ) & Sesimology
<=>Wave energy loss (e.g. from adsorption)

Caracterised as Q, & Qs

Normalised P-waveform [mV]

Normalised S-waveform [mV]

& 4D seismic

Chauvigny Limestone (¢ ~ 16 %) Fontainebleau Sandstone (¢ ~ 16 %)
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(1-D) Wave equation

2 2
3 2

o T8 e uw L3
at ox

_ e—axeiw(t-x/ c)

2.2 2.2
o= va/ (VR-hrI) , ¢ = (VR-l-'\rI)/vR

v, + :l.vI = M@w)/p

R

- Imaginary =0 & a =0

- Imaginary > 0 < wave energy
absorbed




Seismics

Inverse problem

=> Rocks, fluids, P-T
from mechanical
properties

Vo &V, & Q, & Qq
< 4 independent
iInformations !?




Seismics

Inverse problem

=> Rocks, fluids, P-T
from mechanical
properties

Vo &V, & Q, & Qq
< 4 independent
iInformations !?

(- (1-2v) 1+  2(2-v)

IF isotropic medium Qp Qg Qg linear reversible

<& Only 2 viscoelastic constants to iscoelosticity
characterise the rock I+ _3(1 -v) 2(1-2v)

Qk Qp Qs



Seismics

Inverse problem

=> Rocks, fluids, P-T
from mechanical
properties

Vo &V, & Q, & Qq
< 4 independent
iInformations !?

IF isotropic medium linear reversible
<& Only 2 viscoelastic constants to viscoelasticity

characterise the rock vV = \/ K+4/3G V = \/E
p P S P \

Complex quantities



Seismics

Inverse problem

=> Rocks, fluids, P-T
from mechanical
properties

Vo &V, & Q, & Qq
< 4 independent
iInformations !?

Limit;

Precise knowledge of elastic & dissipative properties in
fluid-saturated crustal rock/reservoirs




Seismic Attenuations In rocks
< Rocks elastic & dissipative properties

NN
.o(\\‘—) Q?} Eﬂu qu
o o o 2 o mw) 22
NN 2 2
™ <F ot ax
SR
?‘{\(\9\
.\Q\, 4 = e—axeiw(t—x/c)

2.2 2.2
o =va/ (vR-I"vI) , C= (vR-I-'vI)/vR

v, + ivI = M(w)/p

R

Elasticity & dissipation
<& 2 faces of the same
coin?

Why do we care ? Causes ??

Investigation in the
laboratory ?



Field data Lab data

| Seismology Reservoir Sonic log Laboratory

monitoring

I
0.1 Hz 1 Hz 10 Hz 100 Hz 1 kHz 10 kHz

Epl ce'nn‘e

Faills —> a profondeur
1% fosale

Foyel AT F

Can we compare between
measurements ?
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DISPESION |-t Modified from
: : ? i ; Pride etal. (2004)
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Cause ?

Viscoelasticity ?

High T-P conditions

Fluid mobility

Low T-P conditions




Poroelasticity: 2 mechanical regimes (e.g. Biot, 1941;1956)
— Drained < Fluid allowed to flow out of the REV

. o B
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REV1 o0
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REV2 0/

. d

Drained

REV = Representative Elementary Volume

Increasing
Pore pressure



Poroelasticity: 2 mechanical regimes (e.g. Biot, 1941;1956)
— Drained < Fluid allowed to flow out of the REV

. o B

-
28
REV1 o
se®
°
f:,.:i. Increasing
REV2 0/ Pore pressure

. d

Drained




Poroelasticity: 2 mechanical regimes (e.g. Biot, 1941;1956)
— Drained < Fluid allowed to flow out of the REV

Y (]
m * 2% | | =
i:il ’_’/ igi{]
REV 1 8/ REV1 Q705
e o\ S
-8 —— ==
f:-"‘fl igi 0 Increasing
REV2 -}:{ — REV2 OJos Pore pressure
K
K d N
Drained

Elastic constants
independent of the fluid

REV = Representative Elementary Volume




Poroelasticity: 2 mechanical regimes (e.g. Biot, 1941;1956)
— Drained <> Fluid allowed to flow out of the REV
— Undrained <> Fluid not allowed to flow out of the REV

o B
| ‘s .
\_
REV1 /08 REm]_y/
® oM\

Ku }Kd

Undrained

. d

Drained

|
|
|
|
|
A
REV2 -}.{ : REV 2
|
|
|
|
|

Bulk modulus K
dependent of the fluid

REV = Representative Elementary Volume

Increasing
Pore pressure



Poroelasticity: 2 mechanical regimes (e.g. Biot, 1941;1956)
— Drained <> Fluid allowed to flow out of the REV
— Undrained <> Fluid not allowed to flow out of the REV

o B
| ‘s .
\_
REV1 /08 REm]_y/
® oM\

Ku }Kd

| | a ]

Drained Undrained

\ )
|

Relaxed regimes
<> |sobaric at the scale of the REV

|
|
|
|
|
—_
"":, : “n : Increasing
REV2 0/ | REV2 Pore pressure
|
|
|
|
|

REV = Representative Elementary Volume




Poroelasticity: 2 mechanical regimes

(e.g. Biot, 1941;1956)

— Drained <> Fluid allowed to flow out of the REV

— Undrained <> Fluid not allowed to flow out of the REV

Isolated inclusions: 3" mechanical regime

— Unrelaxed <> Fluid overpressure dependent
on the geometry of the inclusion

\

|
o o | |
. 2874 | 5
ol o/e¥ | REVI ’_'/
|
. BN
Zesq !
REV2 e }: $ : REV 2
|
| X -
K | N ‘
Drained | Undrained
|

<> |sobaric at the scale of the REV

Relaxed regimes

REV = Representative Elementary Volume

EEV1

1

Unrelaxed

Increasing
Pore pressure



Fluid movement
— KFrequency dependence

&\
-—-—'.
L |z 3 |
by
REV 1 osed REm]_y/ REV

K =K,

. d . . HF u

Undrained
Cut-off frequency Cut-off frequency
1, £,
S— A S— A
e.g. Cleary (1978) e.g. O’Connell & Budiansky (1977)

Drained Unrelaxed

| I
| |
| |
| |
| |
L)
-"':_-f: | | Increasing
REV2 ’_’/ o } .- : REV2 : REV 2 Pore pressure
| |
| |
| |
i i
| I

Higher Viscosity <> Lower fluid velocity
Higher Frequency <> Shorter time for flow




Elastic modulus

M [GPa]

-

(a) Drained regime

u

(b) Undrained regime

Frequency [[Hz]

-

(¢) Unrelaxed regime

Dispersion/Attenuation
between regimes?




Pore pressure
tubing

Valves

- =

il e
/" Pore pressure v
‘<

\"-\-\_\_‘_\_\ pump _‘_.-""; ®_

Pore pressure
sensor

Piezo-electric

/ Sensors

End-platens

Strain gauges

Rock sample

Jacket

Confining oil 1

Constant

Confining

pressure
if—




50 — Drained ramp
— Oscillatory measurement

Pressure range [MPa]

Example in case of fluid-saturated Time of experiment
conditions Peff — |:>C _ pp

Sample measured at different confining pressures
— Sample’s behaviours at depth




Elastic behaviour of a rock
< Strain response to an applied Stress: Small, Instantaneous & Reversible
< Characterised by different elastic constants: K, G, E, v

Isotropic rock
< 2 independent constants

~ K < Bulk modulus
< Quasi-static stress-strain G <> Shear modulus

measurements 1= ====- or
E <= Young modulus

_ v <> Poisson ratio

< Ultrasonic wave velocity V) <> P-wave velocity

measurements V, <> S-wave velocity




Constant ,l
Confining

pressure [ o= == ]

Assume rock Isotropic —=> V, :\/
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Kir & Gye




“Isotropic” solicitation

Confining pressure
oscillations

strain

<~ Pore pressure

(55 (D) qﬂp

Volumetric

“Axial” solicitation

d2

Axial stress
oscillations W

Axial
Jm) strain
W Radial

strain

o —

Measured
Stress

«—_____ Pore pressure

(55 (1 qnp



“Isotropic” solicitation

Volumetric

strain M

| Confining pressure
oscillations

e
o
v

o

Stress Amplitude _ AP, [MPa]
S
o

-0.10

Strain amplitudes Ag ~ 106

010_ T T T T ! 110_6
_____ -7
! 5.10 w
i <]
|
1
=
=
0 =y
; g
<
=
E
) x
-5.107
—a-8- Stress | |
! : : : === Strain | |
L ol ey T ]-1.106
150 160 170 180 190

Recording time _ ¢ [s]

Elastic response:

— Amplitude ratio =>K_
— Phase shift => Q!

Gypsum sample

—P,~1MPa
—f ~ 0,1Hz




Volumetric
— strain ‘mb
€
Confining pressure
oscillations

Rock can be described
by complex elastic
properties

b
=}
>

Stress Amplitude _ AP, [MPa]
[=]

0057

] 1.10¢

—8—8- Siress i
-s=g= Strain

0100 o
150 160 170 180 190
Recording time _ ¢ [s]
Elastic response:
— Amplitude ratio =>K
— Phase shift => Q!

5.107

-5.107

1-1.10%

_Ae

Strain Amplitude



Volumetric
— strain ‘mb
€
Confining pressure
oscillations

Rock can be described
by complex elastic
properties

0.10
%0.05 -----
3
g o
£
2
g-0.0S_ o
—s—s- Stress | |
F 1 | ! ! —-g—g=~ Strain 1
010 .0
150 160 170 180 190
Recording time _ ¢ [s]
Elastic response:
— Amplitude ratio =>K
— Phase shift => Q!

An example ?
Rheological

viscoelastic models

Zener

M.,

AT M.,
- W—i

. MM, +iwMyM,,

" M., + M., +iwM,

1+ wT.1s

Qzen@) = e =)

] 1.10¢

5.107

-5.107

1-1.10%

_Ae

Strain Amplitude



Strain amplitudes Ag ~ 106

“Axial” solicitation i
2_11'.:{
P; Axial stress .‘;ﬂl 110
1€Z0 | oscillations W 2 [
— /= . = 0L
[ﬂﬁl Axial g' [
stral.n E L10¢]
W Radial ez I
strain -2.10¢ n axial
i s Sample axal stram
— B — [ s Sample radial strain ||
PR RN SR TR N T TN TN SN RNNN SR SR SN SN NN TR S S T
\ﬂﬂ Measured 120 130 140 150 160
4 U\ Stress Acquisition time _ ¢ [s] S I
Axial stress ypsum sampie
— T = & B — P, ~1 MPa

—f~ 0,1Hz

Elastic response:
—>| — Amplitude ratio =>E &y
— Phase shift =>Q1&0Q,*




Clean sandstone (= 100 % quartz)
Well sorted, constant grain size (= 100 um)
— Homogeneous medium
2 U Random crystal/grain orientations
f,}%’ =el < Spatial averaging of quartz anisotropy
e ol YN : .
/ — Isotropic medium

200 wm

Thin section of Fontainebleau sandstone _
using polarising microscope. — Fo7: < 1.2 % porosity

Example of a 7 % porosity sample «— 41015 m2 permeability

Measurements under:

— (1) Dry

(2) Glycerine saturation
(3) Water saturation
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— \Water saturation:

< No frequency dependence of K & Q!

—3 Kdry ~ Kwat

=
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P . H i Saturating fluid:
— | Bulk modulus |; B Gos
- . T R S e W Water 0.25
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— \\ater saturation:
s Kdry ~ Kwat

< No frequency dependence of K & Qk*

— Glycerine saturation:
< Large frequency dependence of K & Q!
< Direct correlation between K & Qg1




P, ~ 1 MPa

35 T [ ] R T - — .
Do B lk d 1 1 b Saturating fluid:  [] 0.30
o UIK MOduIus [ W Gas i
= RN S B e o
% 30 B Glycerine ]
:;.f‘ R e e e Rl L) 03:
| i
25
E _____________________________________ 0.15 E
= w
2 =1
g 20 _:
S I T T O O R O R [ ek TR CETL 0.10 T
;:3 m

—
o
T L

10l -
0.01

0001 o0l T T T T T T boot

Frequency f[Hz] Frequency _f[Hz]

— \\ater saturation:
s Kdry ~ Kwat

< No frequency dependence of K & Qk*

— Glycerine saturation:
< Large frequency dependence of K & Q!
< Direct correlation between K & Qg1

— Cause of Dispersion/Attenuation effect ?




2nd information in porous rocks:
— Pore fluid pressure out of the sample
< Sample’s « Hydraulic » response
— Obtained by
|- (1) Closing the pore fluid line & Creating a
dead volume at both sample’s ends.
(2) Measuring the build-up pressure in the
dead volume.




System experimentally undrained
< fluid not allowed to flow out of the system
(sample + dead volume).

I

Build up pore pressure (4p;) induced by confining pressure
(4P.) for different frequencies
— Characterised as a pseudo-Skempton coefficient:

=Apf/APC.

N

Dynamic response

Ap;~ 0 — B*~0 — No fluid flow out of the sample
Aps> 0 — B* > 0 — Fluid flow out of the sample




P, ~ 1 MPa

— \Water saturation:
< No frequency dependence of B*
— Glycerine saturation:
< Large frequency dependence of B”

Very low frequency — Large B” Higher frequency — B* ~ 0

— Large fluid flow out of the sample — No fluid flow out of the sample
] 1.0 ' ' : : :

‘e Hydraulic response|.

o M i

pseudo-Skempton coefficient

o4 : :> Frequency-dependent
02 [ Saturating flud: i fluid-flow out of the sample !
B Water 1
i B Glycerine |
0 0.001 o0l I 01 ~— 1

Frequency f[Hz]




P, ~ 1 MPa
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=

Dispersion/Attenuation < Macroscopic fluid-flow
& Drained/Undrained transition !




0~ uonenuane yng

(=1 wy (=1 vy o vy
(=] (=] (=] o (=] (=]
L ., L L LA L L L LIS
[ VoI R
. | HE—— R
I | S - ——
HeE L, Bo S
w @S2 i L
g0 =0 H i '
e L [ —
m EER ! ! !
] ' '
@ e fome- b
' ! !
; ; |
' ' |
; ;
1 1
' ' s
1 L |
: L
: . L

Frequency _ f[Hz]

30 |-

1
|
i
|

w

ol a

[edn] "y ~ 471 snpapow yng

15 [eeee

0.001

Frequency _f[Hz]

B Water
B Glycerine

0.001

0.2 || Saturating fl

g~ warange00 uoydweyg-opnasd

0.0

_/f[Hz]

Frequency

Why Water and Glycerine differ ?




Assuming a typical microstructure with: < compliant spheroidal microcracks
< Equant pores

= I heoretical cut-off frequencies:

Drained/Undrained: fl — (4.K.Kd)/(L2.n)

Undrained/Unrelaxed: f2 — (&3 Kd)/T]

L < Characteristic length for fluid diffusion
K < Permeability

Ky < Drained bulk modulus

n < Fluid’s viscosity

& <> Aspect ratio of the microcracks

» | 7 =f.(n/ngy

« (Cleary, 1978)

< (e.g. O’Connell & Budiansky, 1977)

Apparent frequency

With n, =103 Pa.s™!
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Assuming a typical microstructure with: < compliant spheroidal microcracks
< Equant pores

= I heoretical cut-off frequencies:

Drained/Undrained: fl — (4.K.Kd)/(L2.n) < (Cleary, 1978)

Undrained/Unrelaxed: f2 = (&3 Kd)/n + (e.g. O’Connell & Budiansky, 1977)

— Biot-Gassmann theory:
Ku < Undrained bulk modulus

K, = f (Kd1 K, K, (1)) Kd < Drained bulk modulus
Ks < Squeleton bulk modulus
Gu = Gd Kt < Fluid bulk modulus

G, « Undrained shear modulus
Gy Drained shear modulus
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Elastic modulus

M [GPa]

()

1t transition

(a) Drained regime

—

(b) Undrained regime

M

Frequency f[Hz]

(¢) Unrelaxed regime

=

From Drained to Undrained transition

Dispersion/Attenuation

Pimienta et al. (2015a), Geophysics

v



Why does it matter ?

Application to Low \elocity (subduction) Zones (e.g. Audet & Kim, 2016)

b) Fluid-flow theories : Frequency dependent V /V_ & Attenuations

Attenuations

Qp-l & Qg_l

~ permeability & wave-length ~ microcracks aspect ratio




Why does it matter ?

Application to Low \elocity (subduction) Zones (e.g. Audet & Kim, 2016)

b) Fluid-flow theories : Frequency dependent V /V_ & Attenuations

Attenuations

Qp-l & Qg_l

Frequency-dependent Fluid flow or viscoelasticity
Cannot explain both V /V & attenuations @ field scale !?
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