

PHYSICS OF ROCKS

BRITTLE
PLASTIC

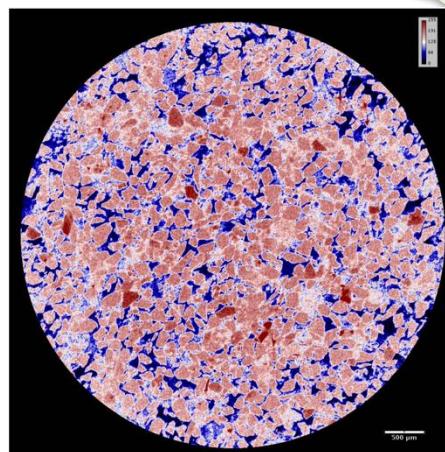
HYDRAULIC

THERMAL

ELASTICITY
Poroelasticity
viscoelasticity

FRICTIONAL

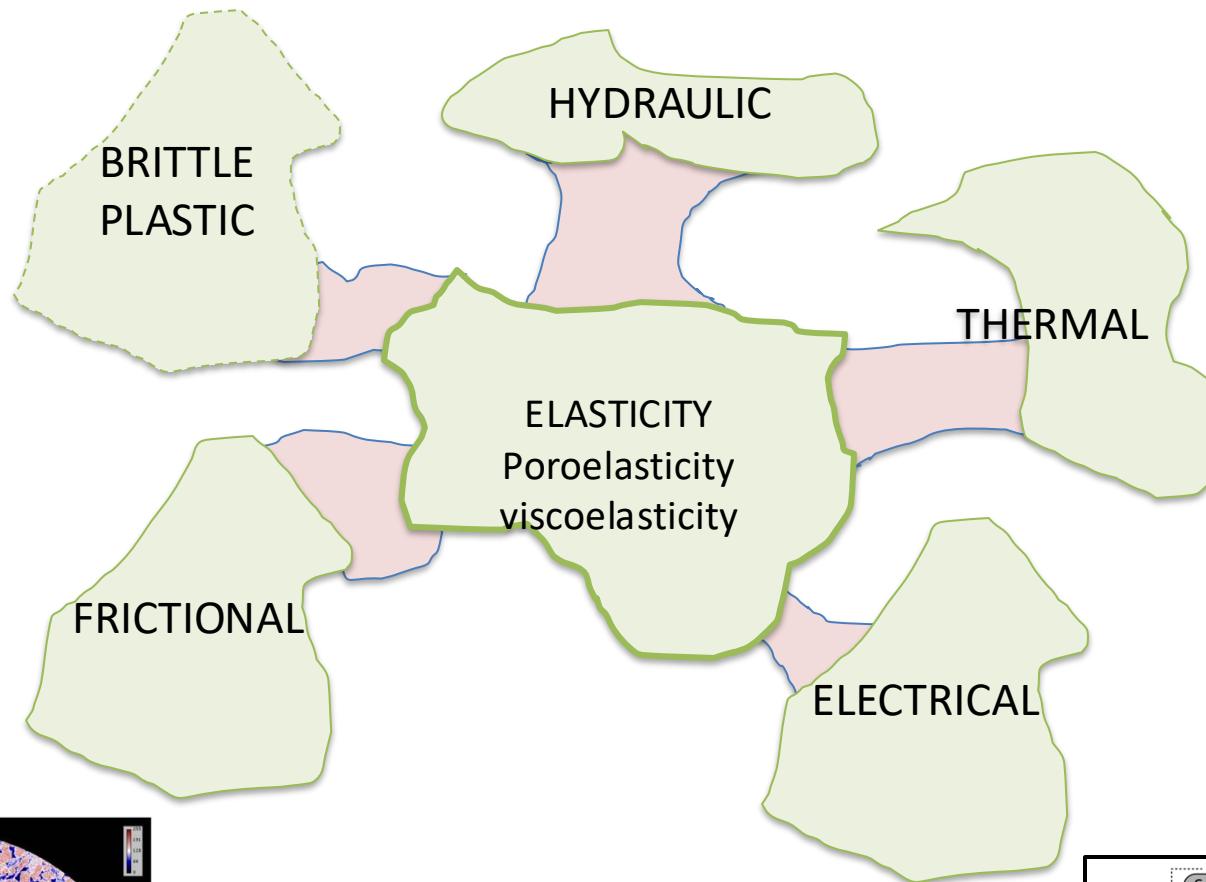
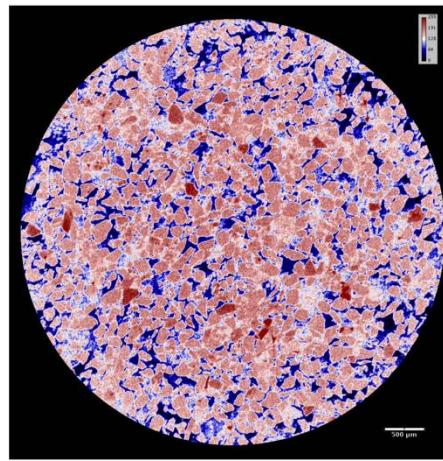
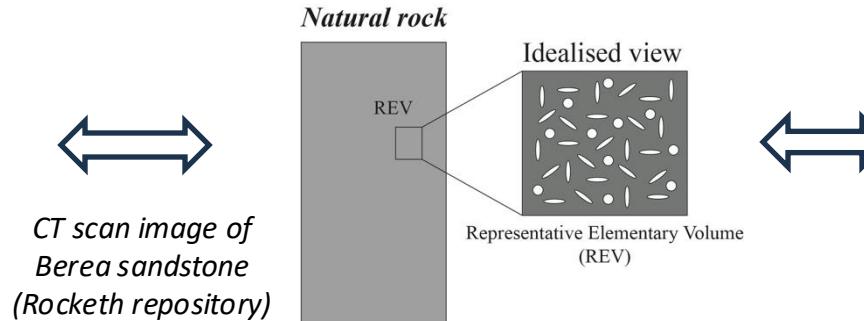
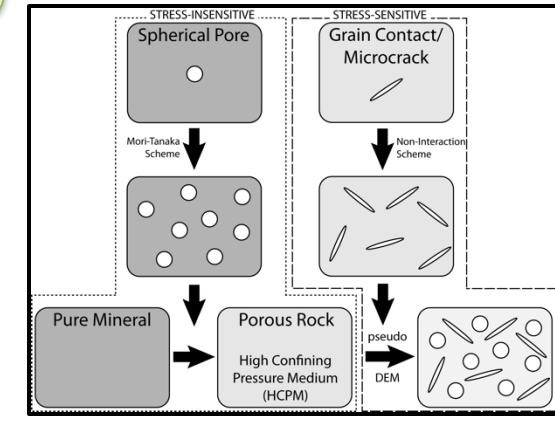
ELECTRICAL



CT scan image of
Berea sandstone
(Rocketh repository)

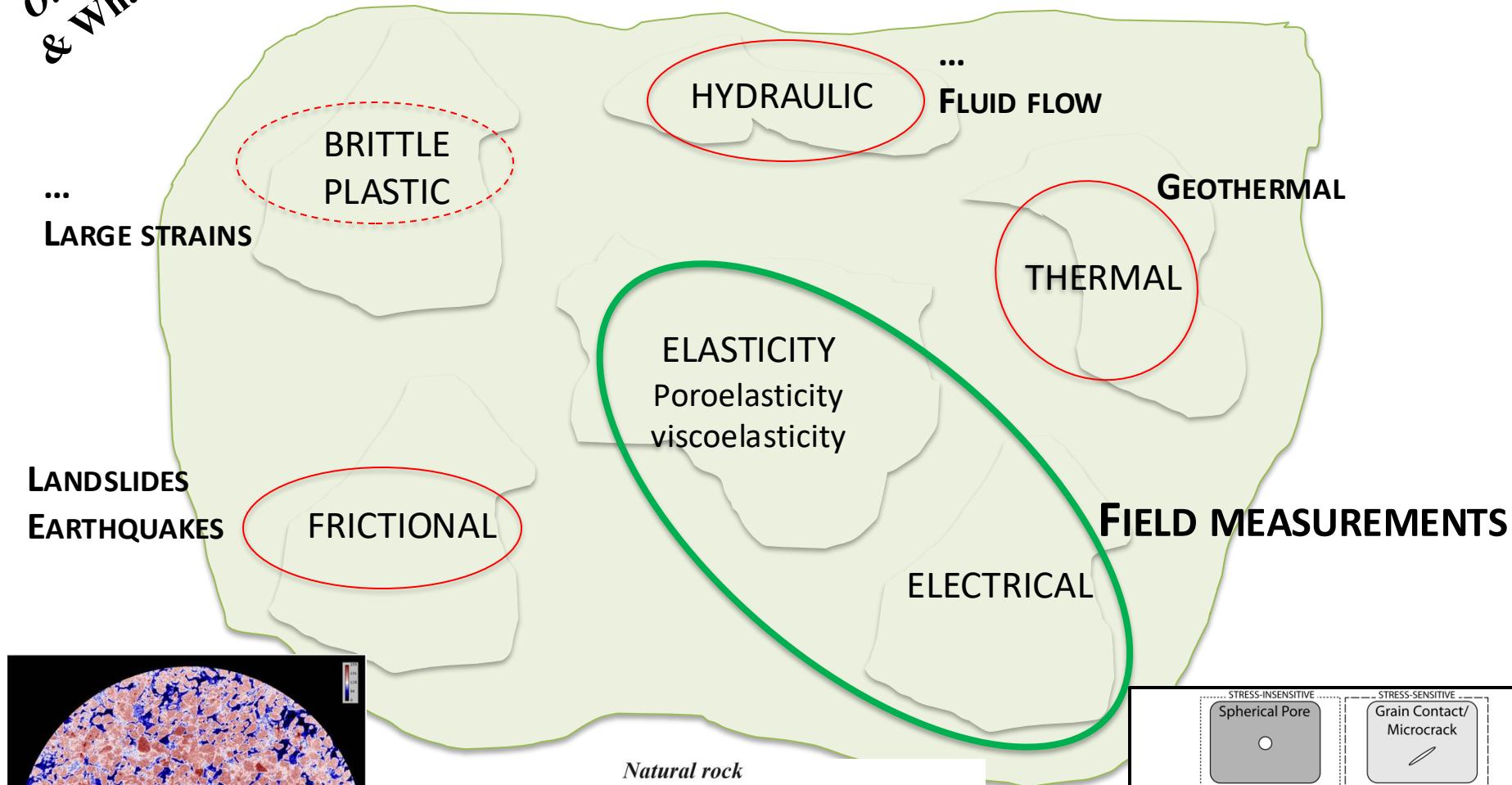
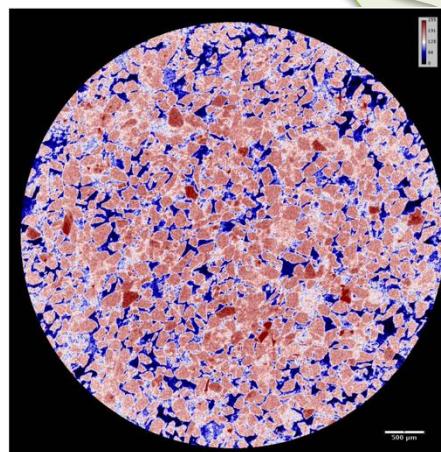
Our research
& What we do

PHYSICS OF ROCKS

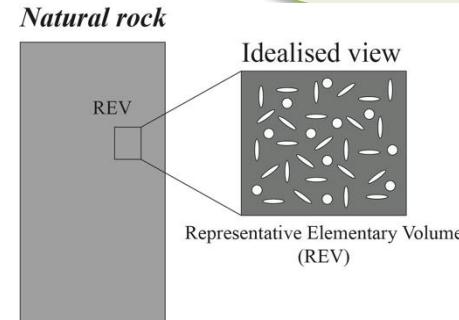
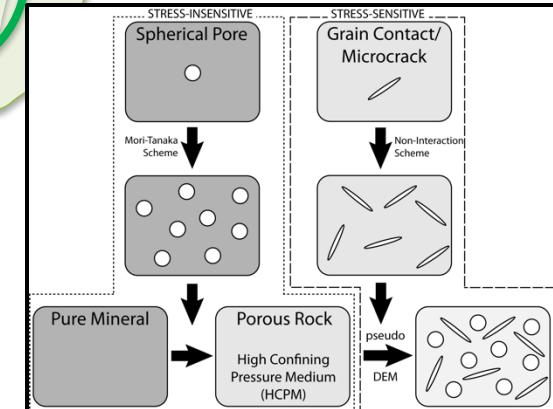


Our research
& What we do

PHYSICS OF ROCKS

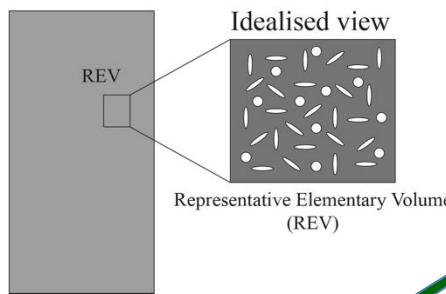


CT scan image of
Berea sandstone
(Rocketh repository)



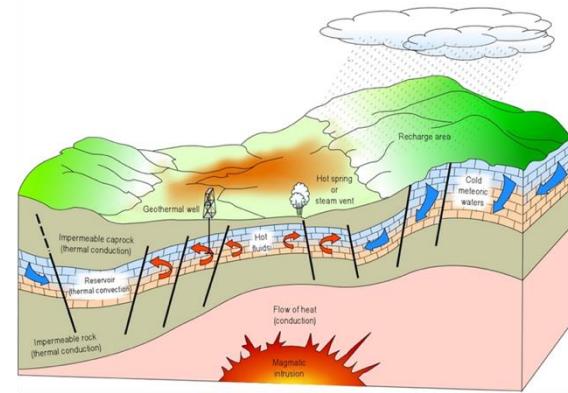
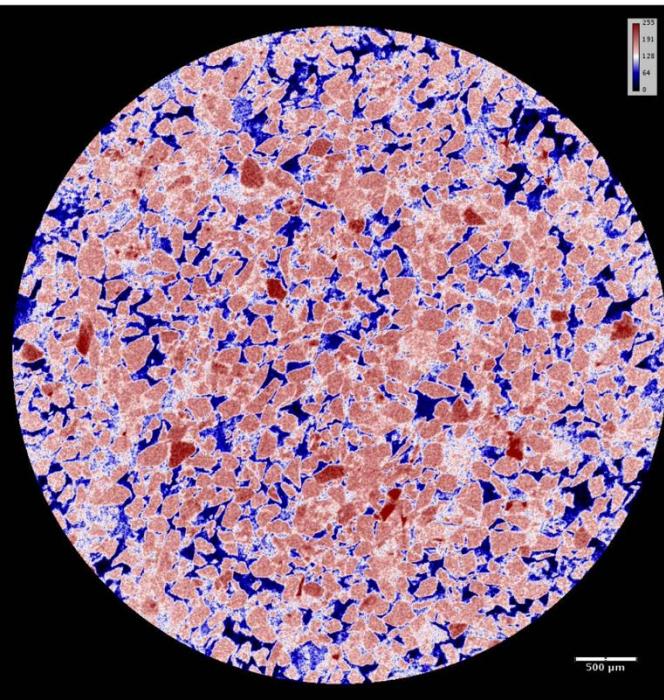
Poroelastic; Hydraulic; Electrical;
Thermal; Frictional; Dissipative

Natural rock

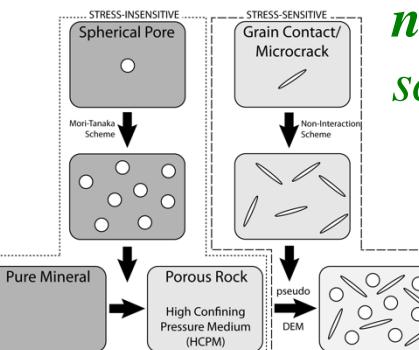


Laboratory
Experiments

cm \rightarrow nm- μ m \rightarrow km
... the scales !?



CT scan image of
Berea sandstone
(Rocketh repository)

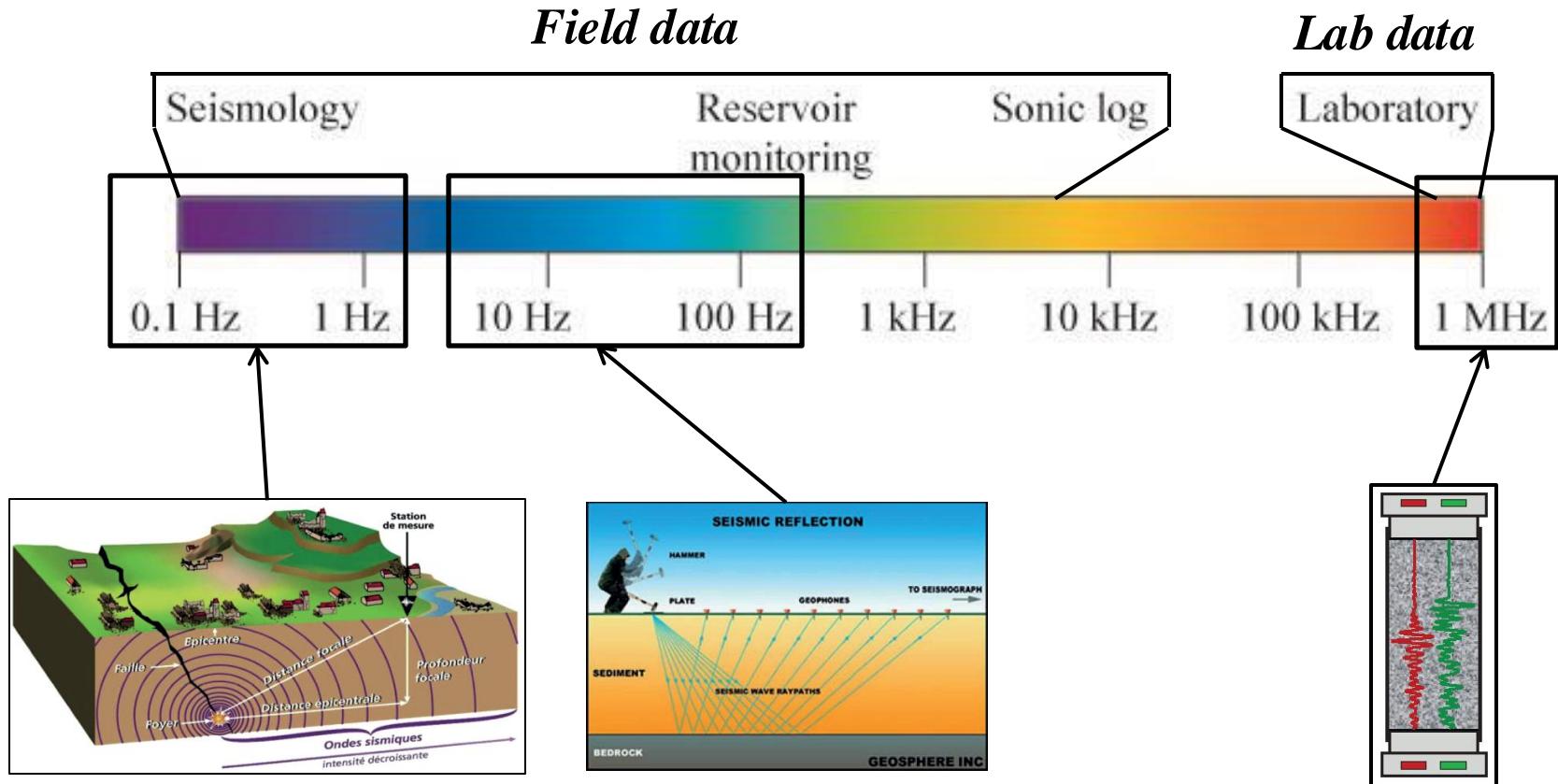


nm- μ m
scale

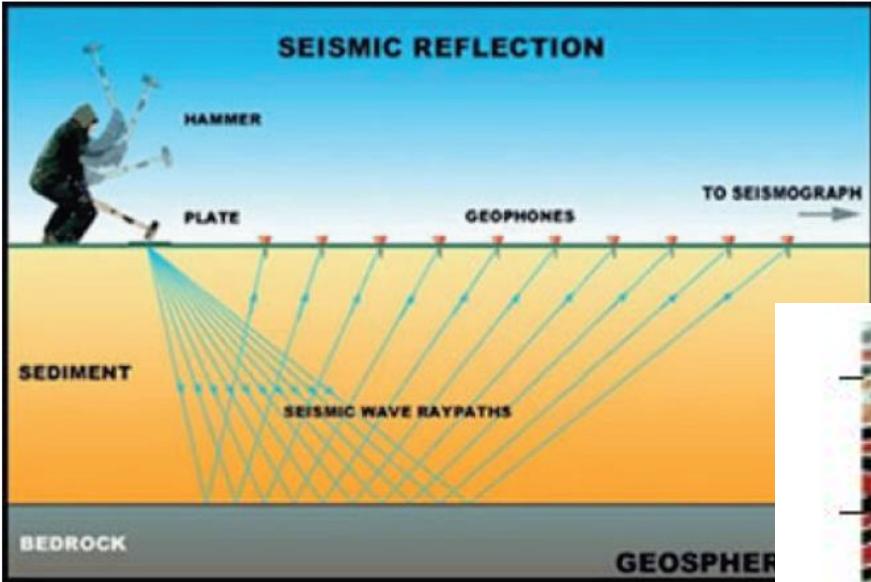
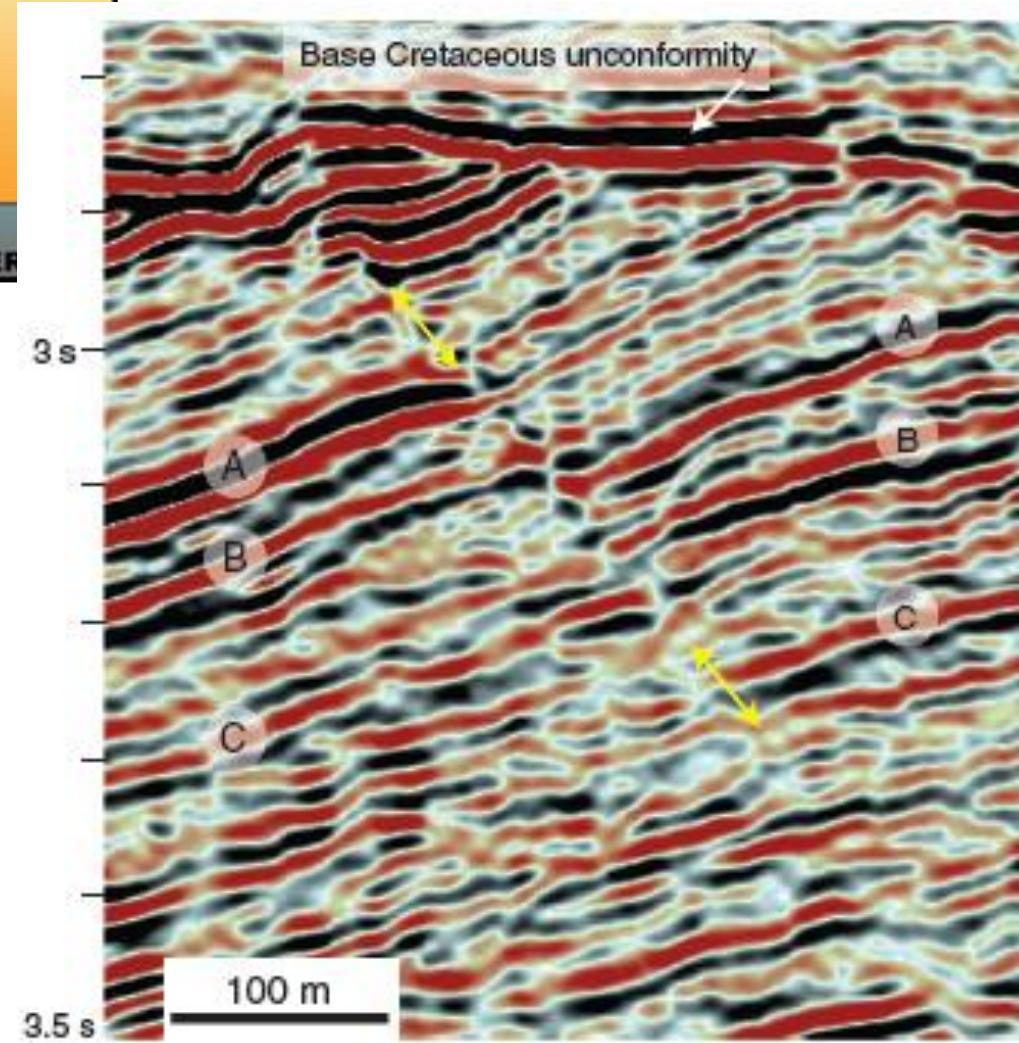
μ m-mm
scale

Seismic Attenuations in rocks

↔ Rocks elastic & dissipative properties



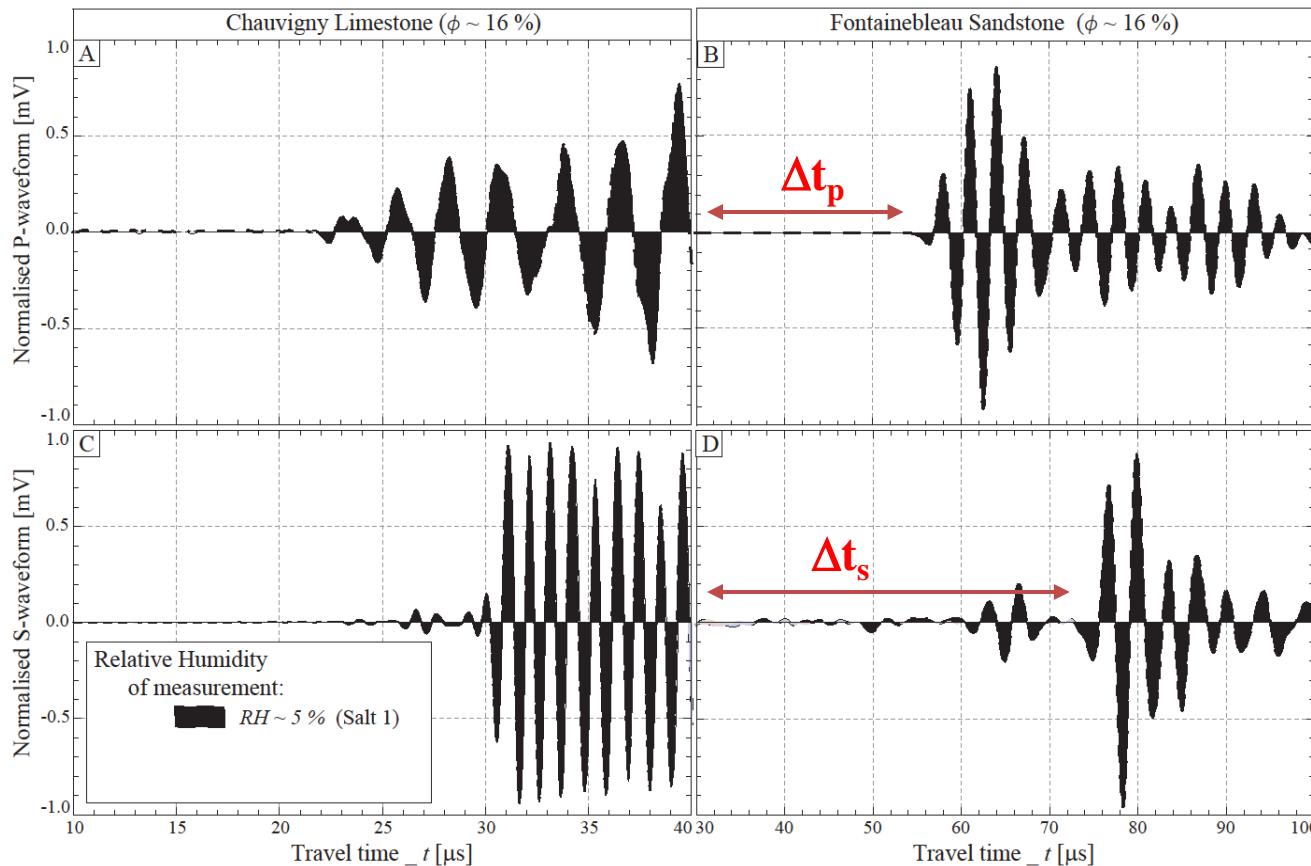
Seismics



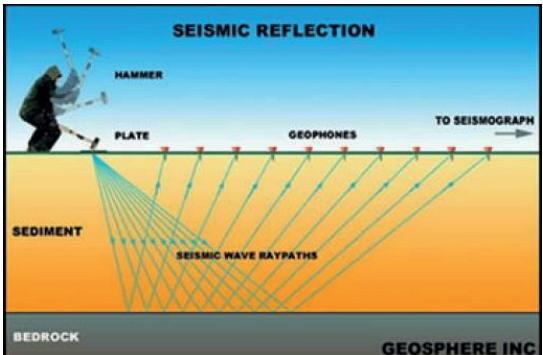
$$\rho \frac{\partial^2 u}{\partial t^2} = M(\omega) \frac{\partial^2 u}{\partial x^2}$$

Velocity of waves :

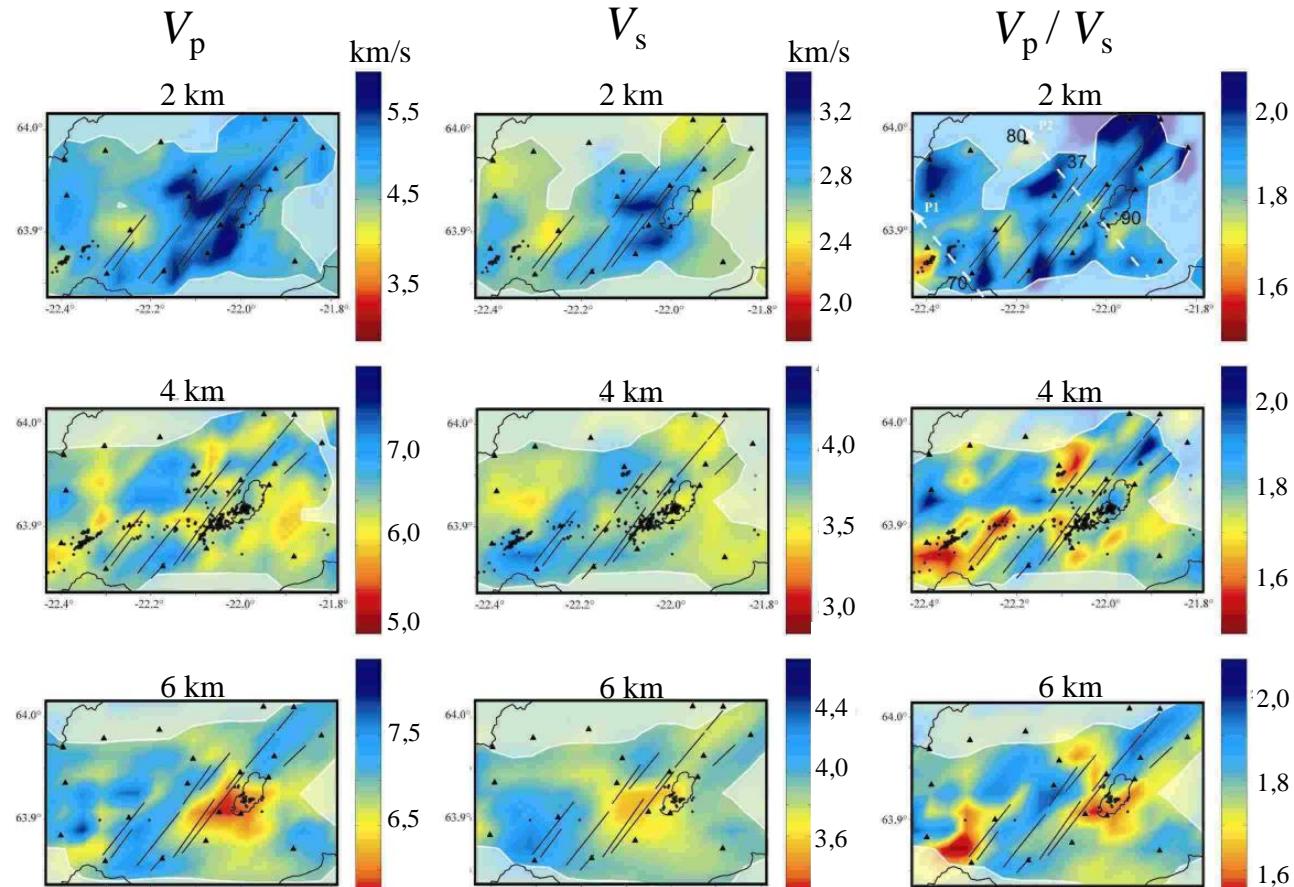
At \Leftrightarrow Travelled distance (hence travel time)



Seismics

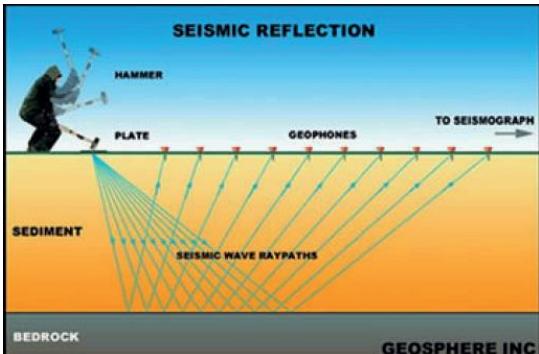


Inverse problem
 => Rocks, fluids, P-T
 from mechanical
 properties



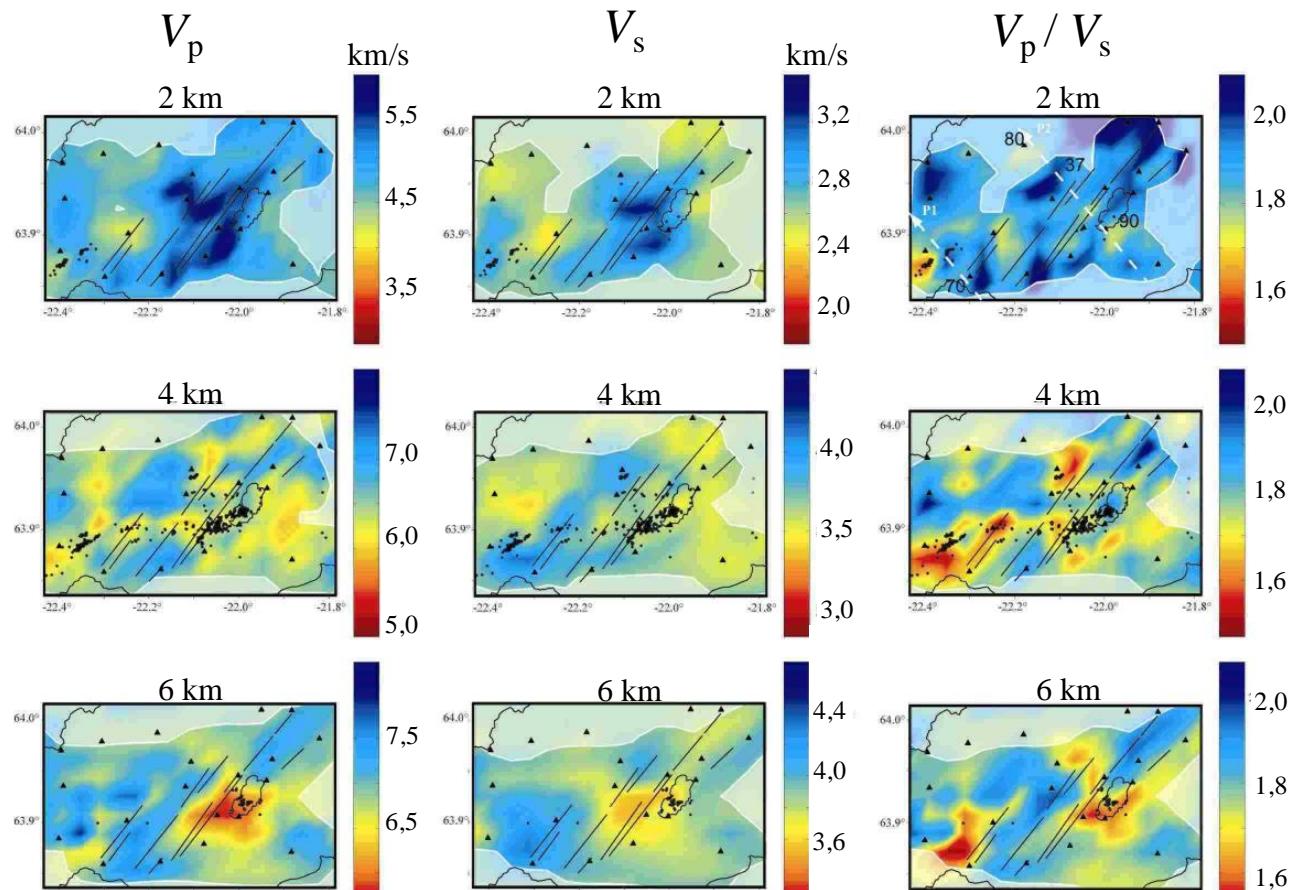
Geoffroy and Dorbath (2008), GRL

Seismics



Inverse problem
 => Rocks, fluids, P-T
 from mechanical
 properties

V_p & V_s
 ⇔ 2 independent
 informations



IF isotropic medium
 ⇔ Only 2 elastic constants to
 characterise the rock

$$V_p = \sqrt{\frac{K + 4/3G}{\rho}} \quad V_s = \sqrt{\frac{G}{\rho}}$$

linear reversible
 elasticity

$$\rho \frac{\partial^2 u}{\partial t^2} = M(\omega) \frac{\partial^2 u}{\partial x^2}$$

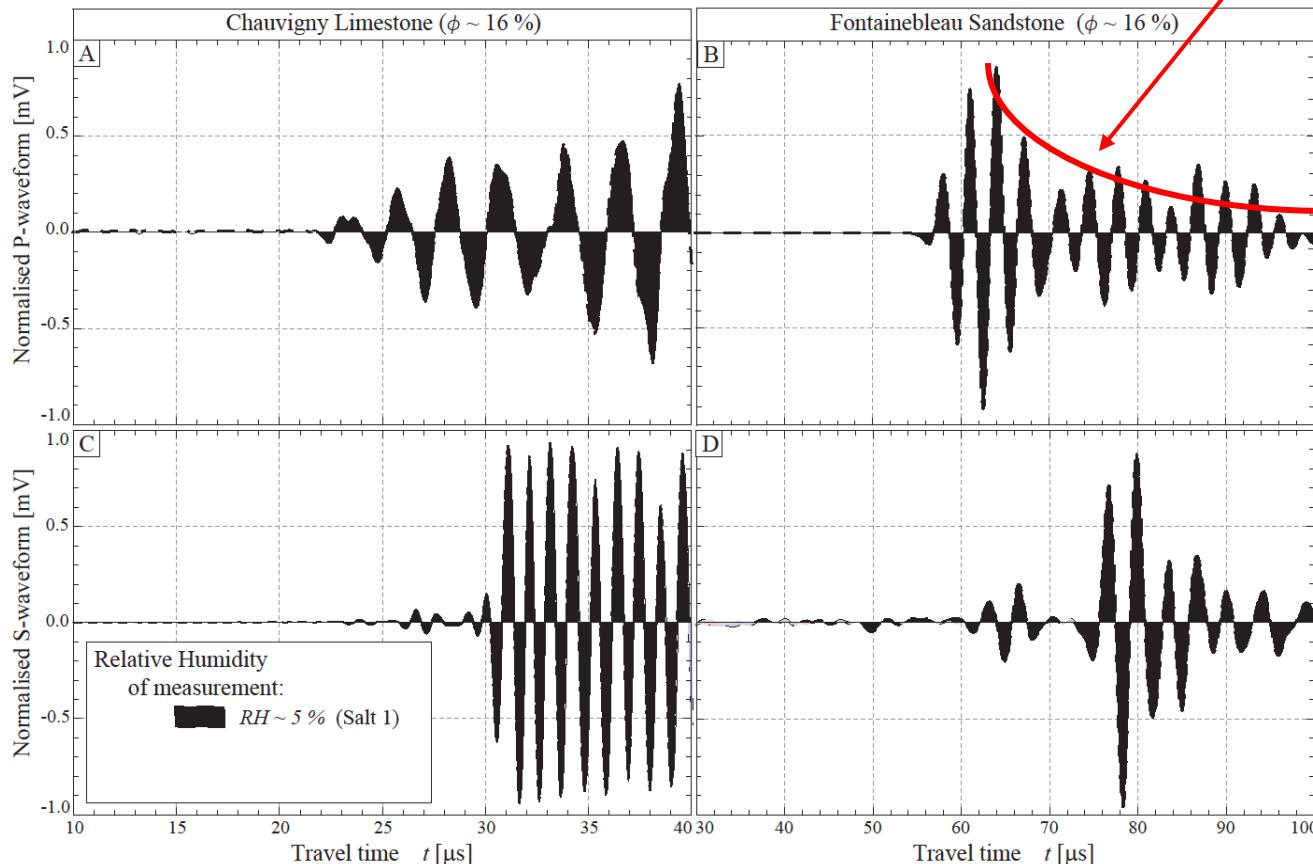
Velocity of waves :

At \Leftrightarrow Travelled distance (hence travel time)

Attenuation of waves :

$\alpha \Leftrightarrow$ Decay over travelled distance (& travel time) \Leftrightarrow Seismology

$$u = e^{-\alpha x} e^{i\omega(t-x/c)}$$



$$\rho \frac{\partial^2 u}{\partial t^2} = M(\omega) \frac{\partial^2 u}{\partial x^2}$$

$$u = e^{-\alpha x} e^{i\omega(t-x/c)}$$

Velocity of waves :

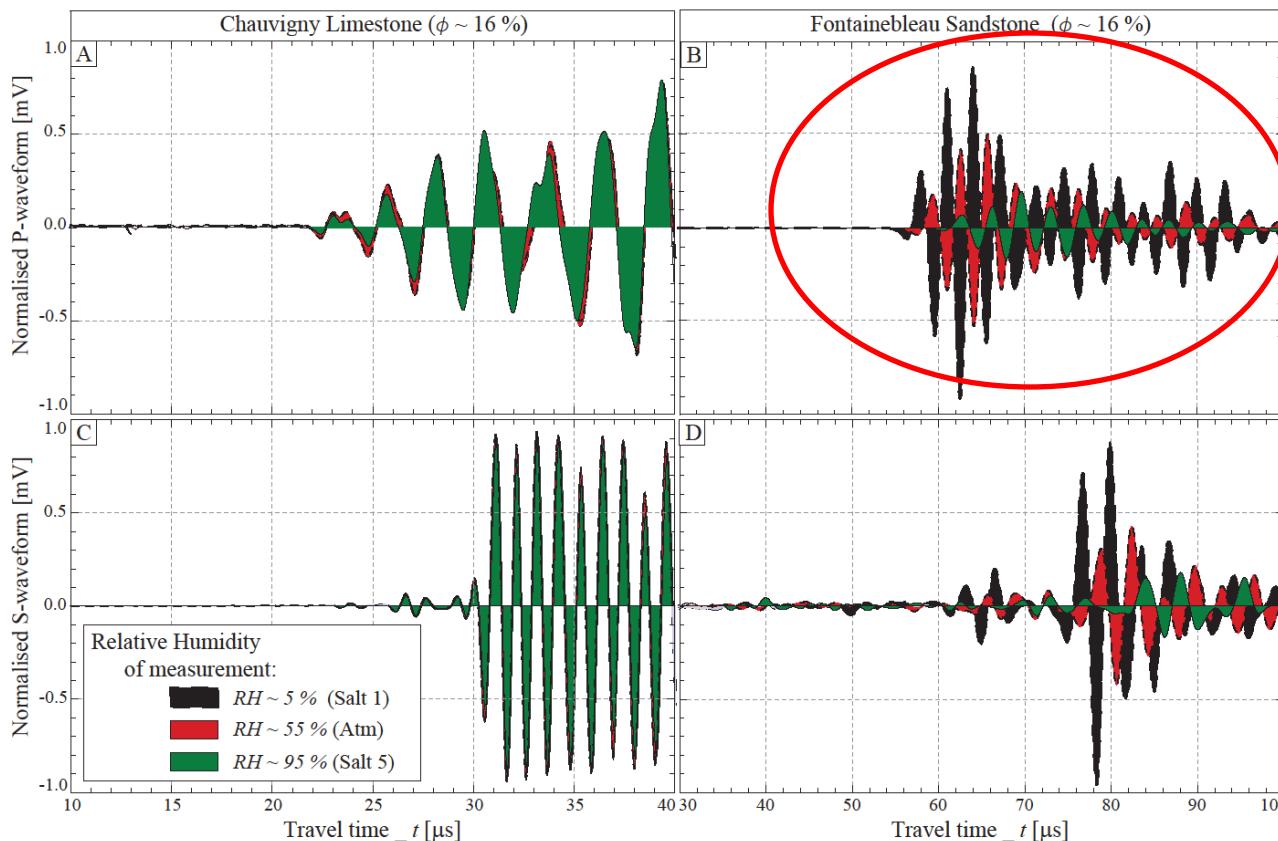
At \leftrightarrow Travelled distance (hence travel time)

Attenuation of waves :

$\alpha \leftrightarrow$ Decay over travelled distance (& travel time) \leftrightarrow Seismology

\leftrightarrow Wave energy loss (e.g. from adsorption) \leftrightarrow 4D seismic

Characterised as Q_p & Q_s



(1-D) Wave equation

$$\rho \frac{\partial^2 u}{\partial t^2} = M(\omega) \frac{\partial^2 u}{\partial x^2}$$

$$u = e^{-\alpha x} e^{i\omega(t-x/c)}$$

Velocity of waves :

At \Leftrightarrow Travelled distance (hence travel time)

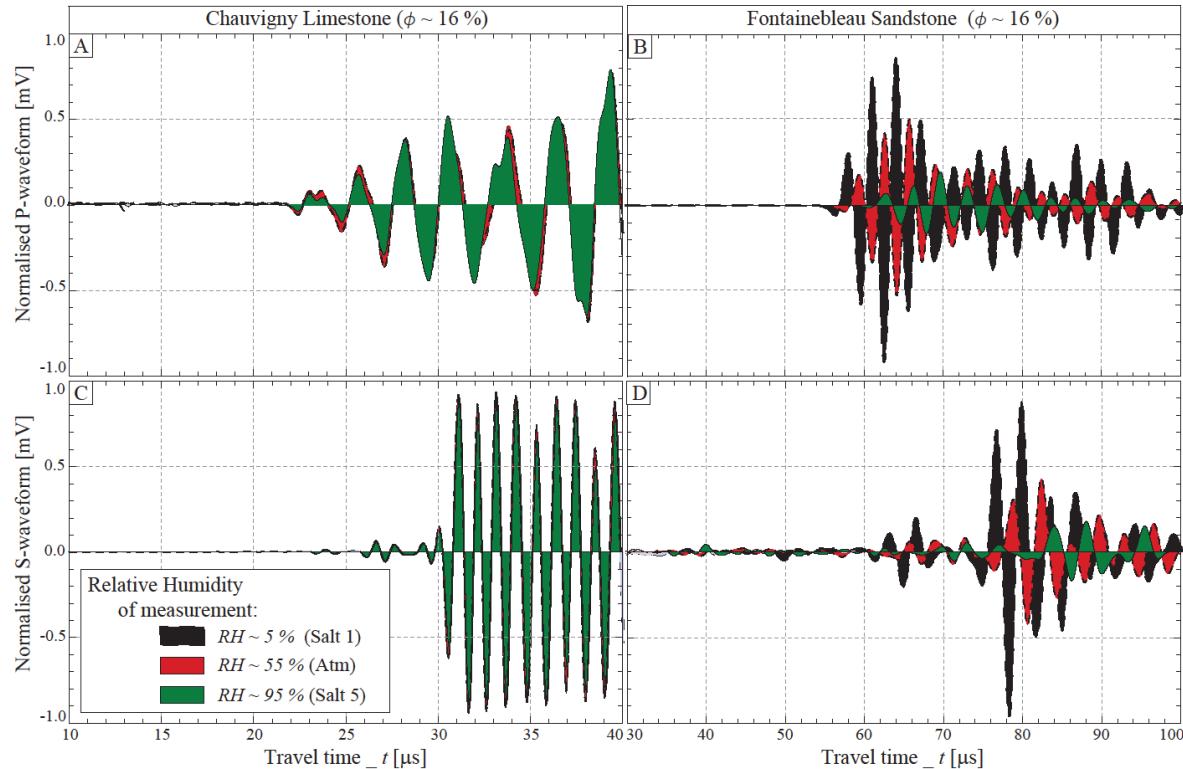
Attenuation of waves :

$\alpha \Leftrightarrow$ Decay over travelled distance (& travel time) \Leftrightarrow Seismology
 \Leftrightarrow Wave energy loss (e.g. from adsorption) \Leftrightarrow 4D seismic

Characterised as Q_p & Q_s

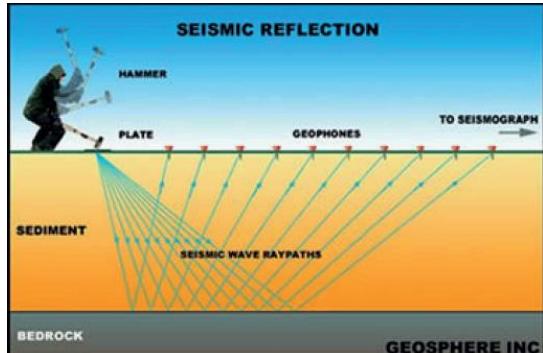
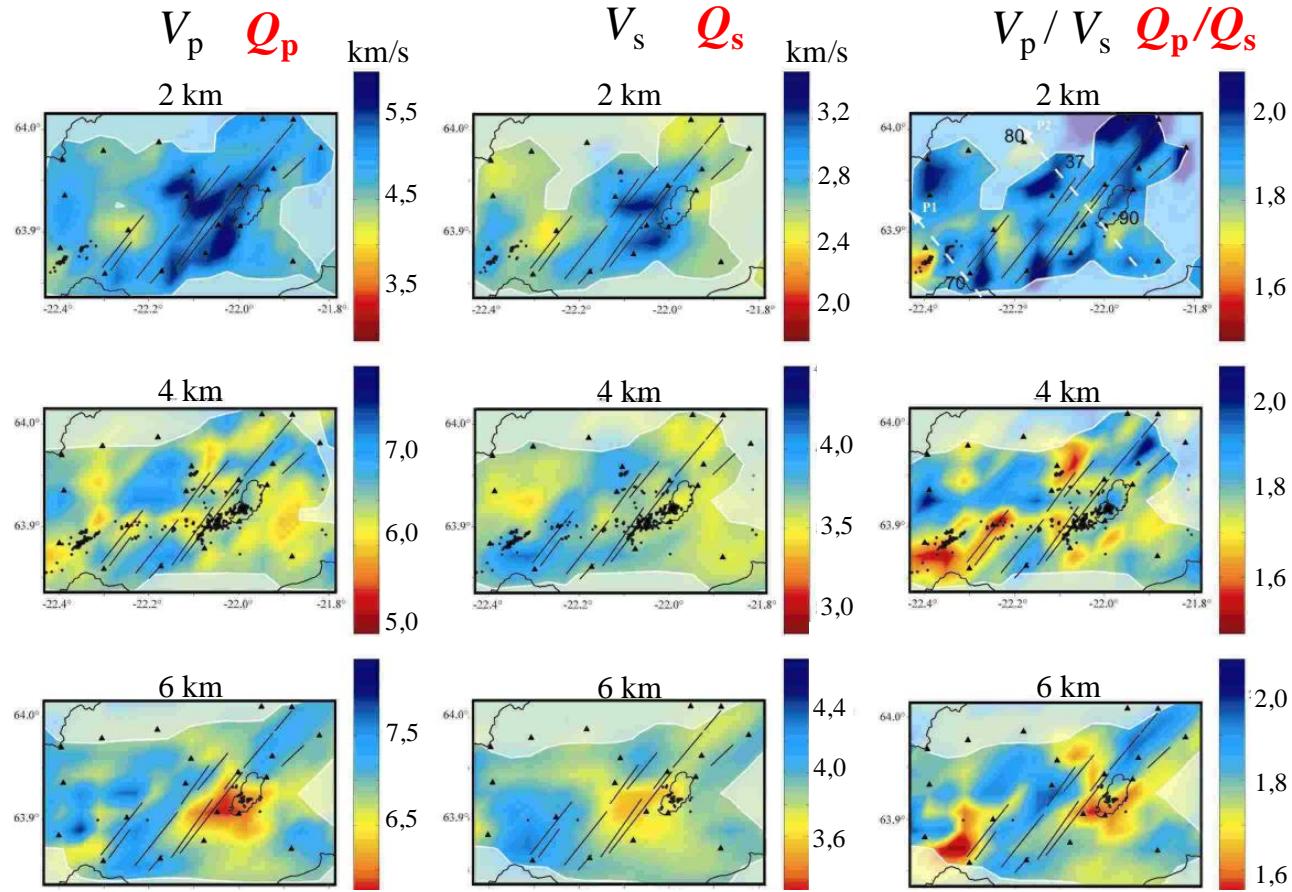
$$\alpha = \omega v_I / (v_R^2 + v_I^2) , \quad c = (v_R^2 + v_I^2) / v_R$$

$$v_R + i v_I = \sqrt{M(\omega) / \rho}$$



- Imaginary = 0 $\Leftrightarrow \alpha = 0$
- Imaginary $> 0 \Leftrightarrow$ wave energy absorbed

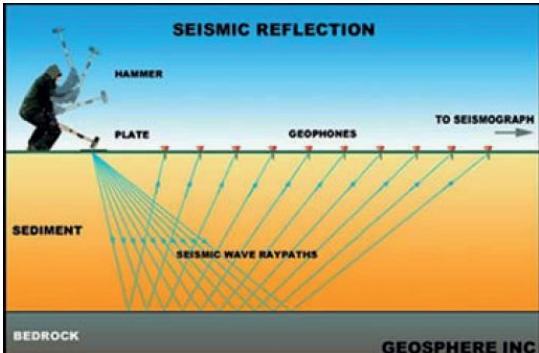
Seismics



Inverse problem
 => Rocks, fluids, P-T
 from mechanical
 properties

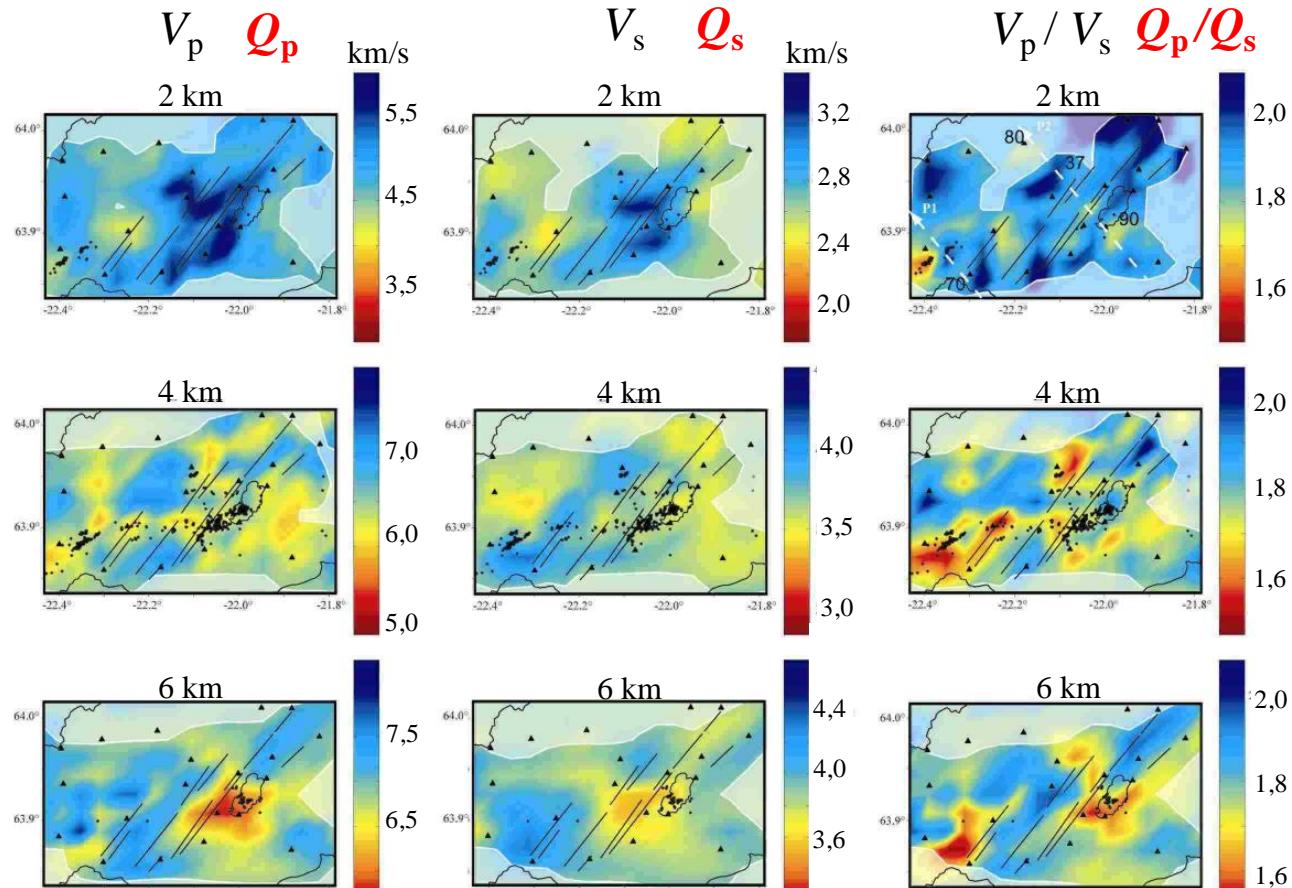
V_p & V_s & Q_p & Q_s
 \Leftrightarrow 4 independent
 informations !?

Seismics



Inverse problem
 => Rocks, fluids, P-T
 from mechanical
 properties

V_p & V_s & Q_p & Q_s
 \Leftrightarrow 4 independent
 informations !?



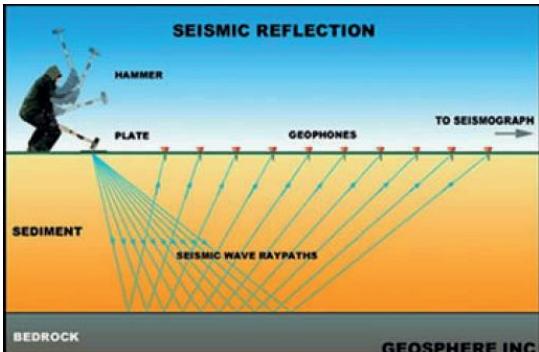
IF isotropic medium
 \Leftrightarrow Only 2 viscoelastic constants to
 characterise the rock

$$\frac{(1-\nu)(1-2\nu)}{Q_p} = \frac{1+\nu}{Q_E} - \frac{2\nu(2-\nu)}{Q_S}$$

$$\frac{1+\nu}{Q_K} = \frac{3(1-\nu)}{Q_p} - \frac{2(1-2\nu)}{Q_S}$$

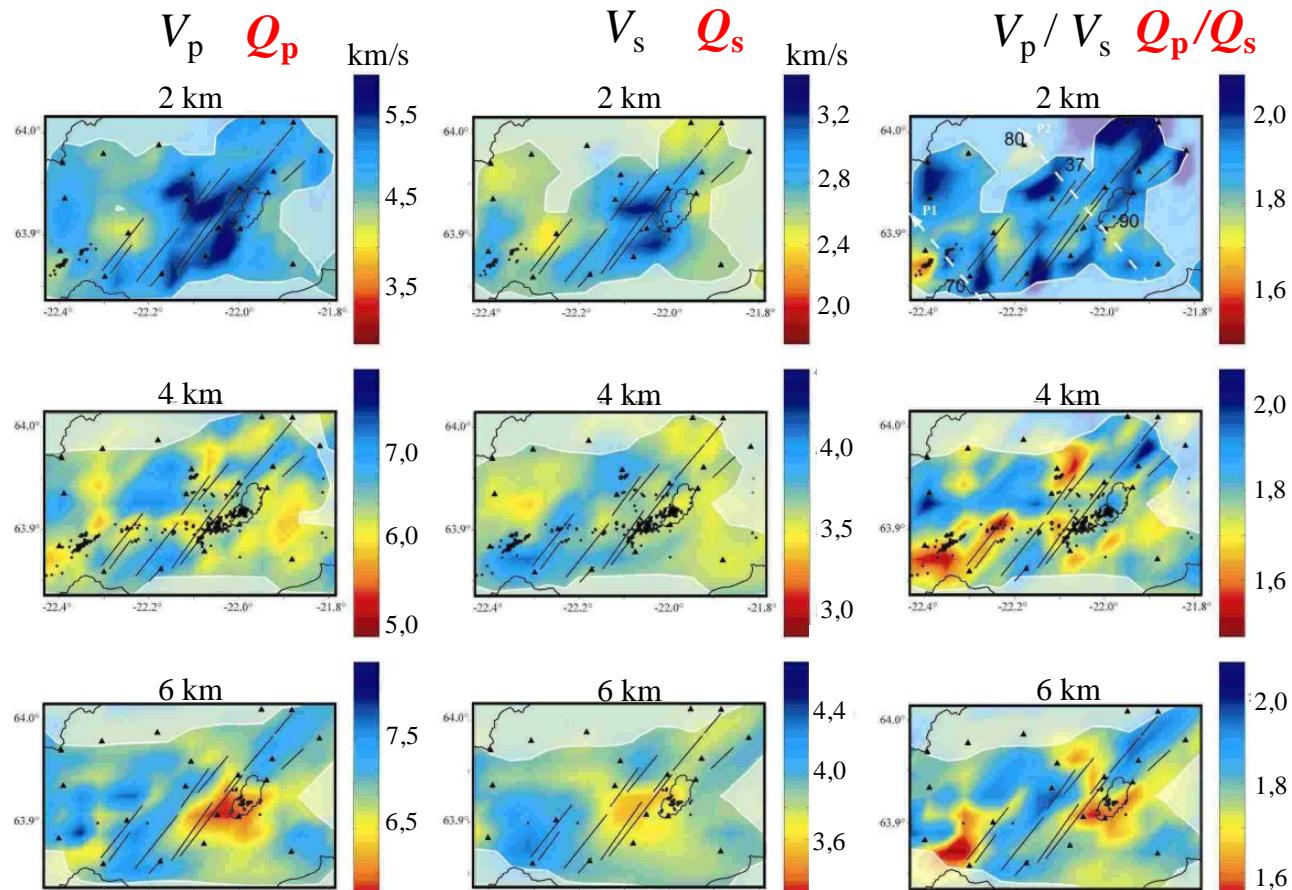
linear reversible
 viscoelasticity

Seismics



Inverse problem
 => Rocks, fluids, P-T
 from mechanical
 properties

V_p & V_s & Q_p & Q_s
 \Leftrightarrow 4 independent
 informations !?



$$\frac{1+\nu}{Q_K} = \frac{3(1-\nu)}{Q_p} - \frac{2(1-2\nu)}{Q_s}$$

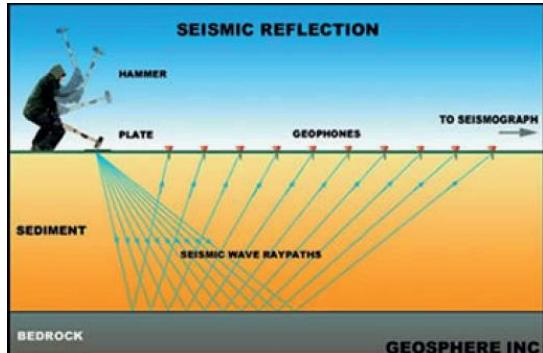
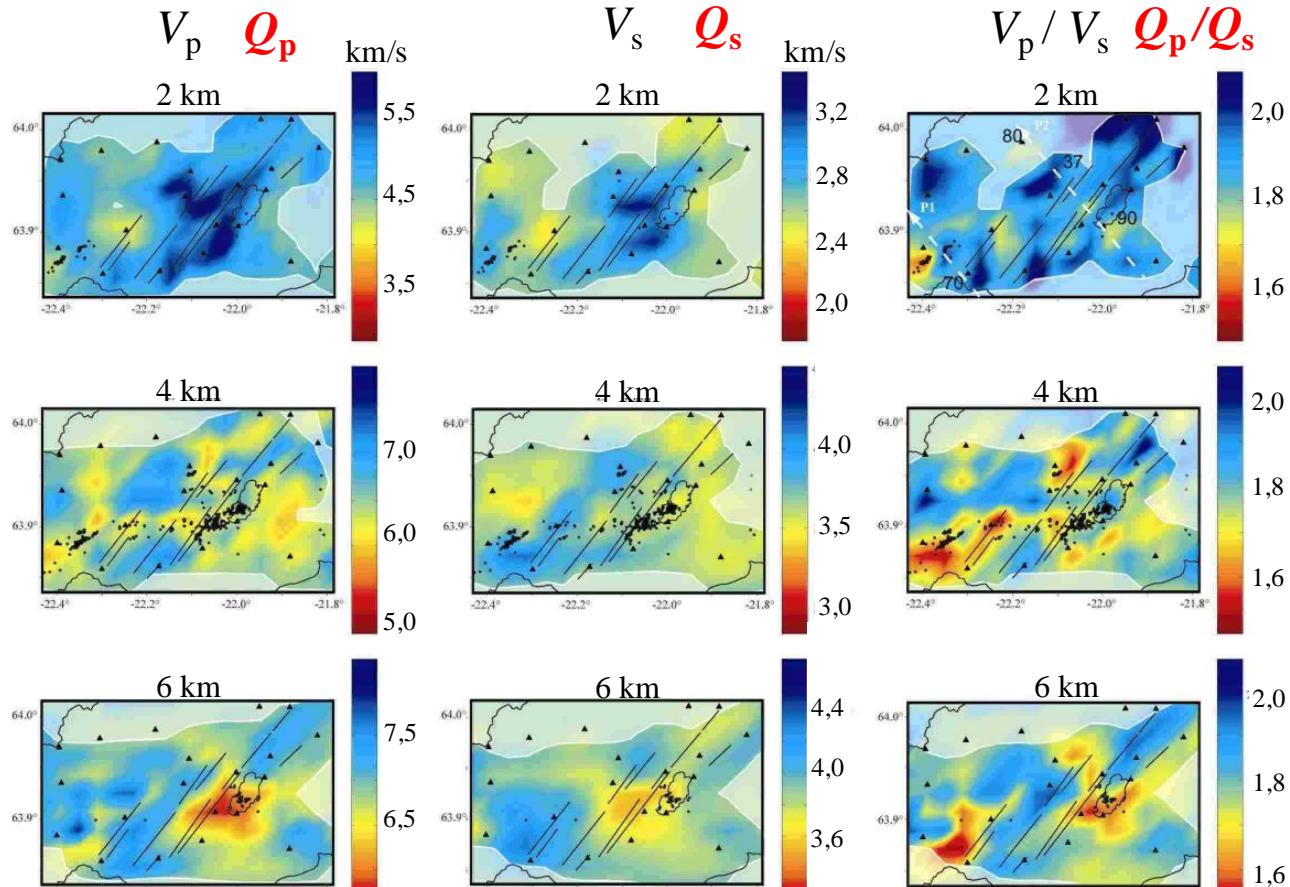
IF isotropic medium
 \Leftrightarrow Only 2 viscoelastic constants to
 characterise the rock

$$V_p = \sqrt{\frac{K + 4/3G}{\rho}} \quad V_s = \sqrt{\frac{G}{\rho}}$$

linear reversible
 viscoelasticity

Complex quantities

Seismics



Inverse problem
 => Rocks, fluids, P-T
 from mechanical
 properties

V_p & V_s & Q_p & Q_s
 \Leftrightarrow 4 independent
 informations !?

Limit:

Precise knowledge of *elastic & dissipative properties* in
 fluid-saturated crustal rock/reservoirs

Seismic Attenuations in rocks

↔ Rocks elastic & dissipative properties

Attenuation is an intrinsic rock property

$$\rho \frac{\partial^2 u}{\partial t^2} = M(\omega) \frac{\partial^2 u}{\partial x^2}$$

$$u = e^{-\alpha x} e^{i\omega(t-x/c)}$$

Realm of linear rev.
viscoelasticity

$$\alpha = \omega v_I / (v_R^2 + v_I^2) , \quad c = (v_R^2 + v_I^2) / v_R$$

$$v_R + i v_I = \sqrt{M(\omega) / \rho}$$

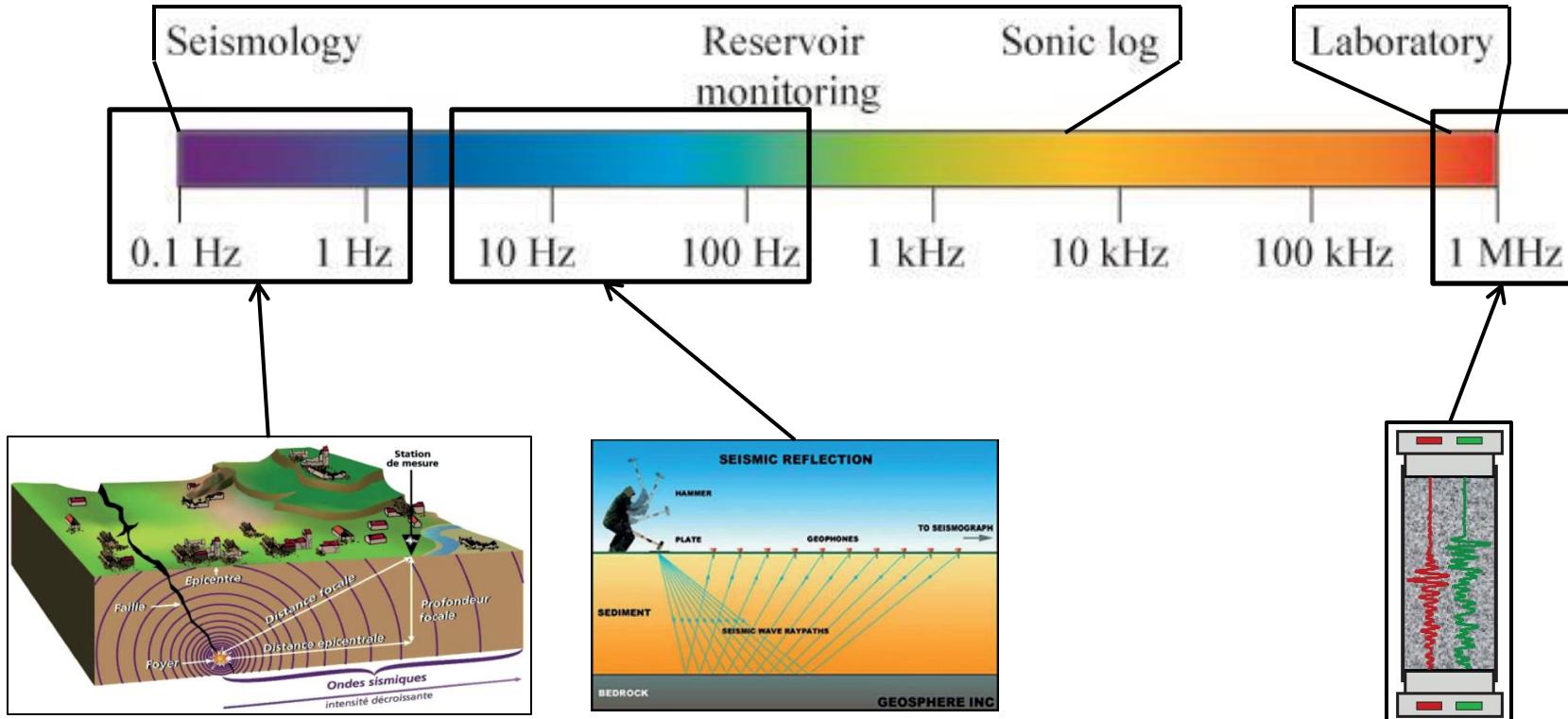
Why do we care ?

Elasticity & dissipation
↔ 2 faces of the same coin ?

Causes ??

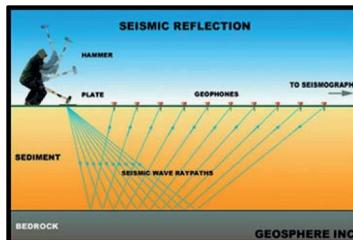
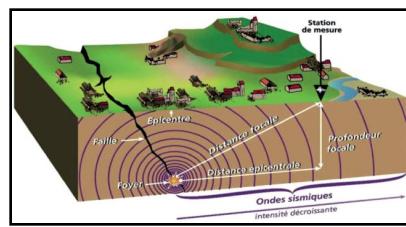
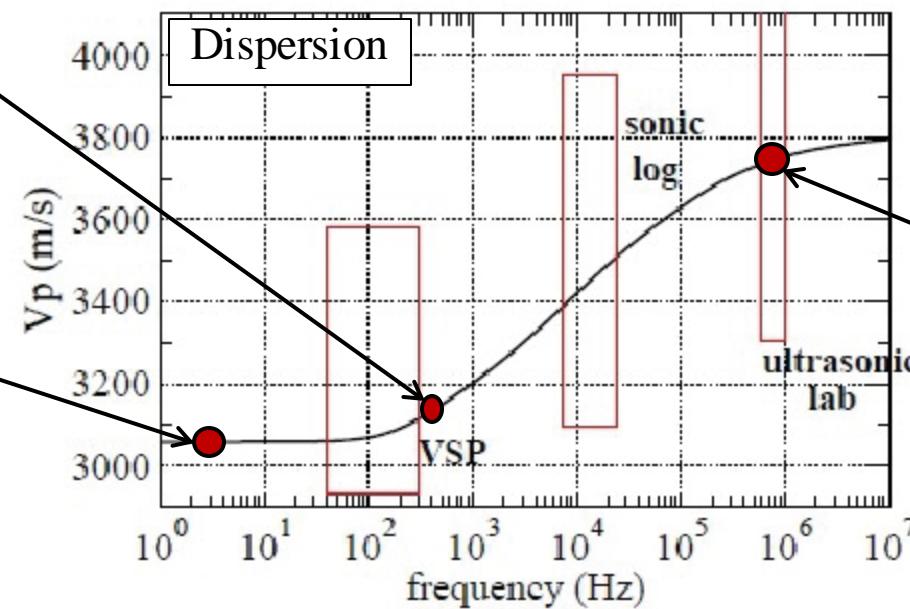
Investigation in the laboratory ?

Field data

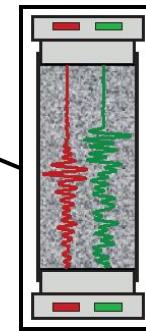
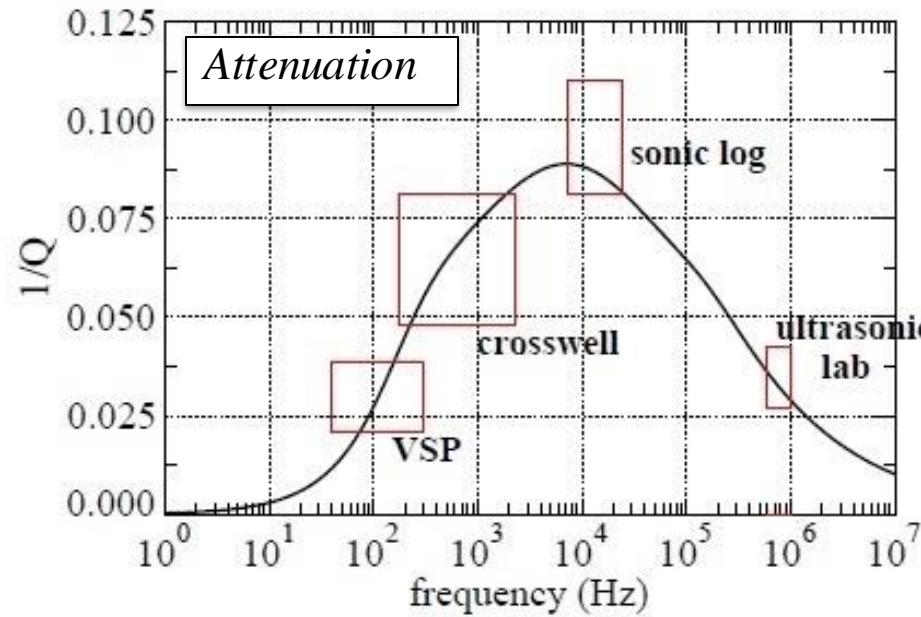


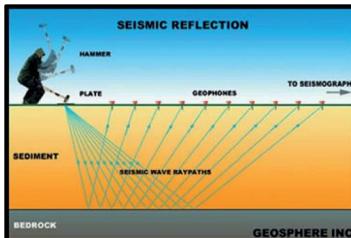
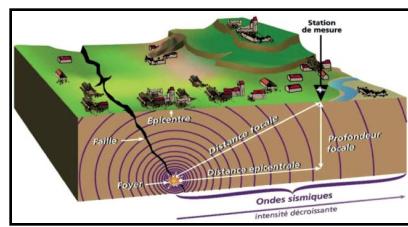
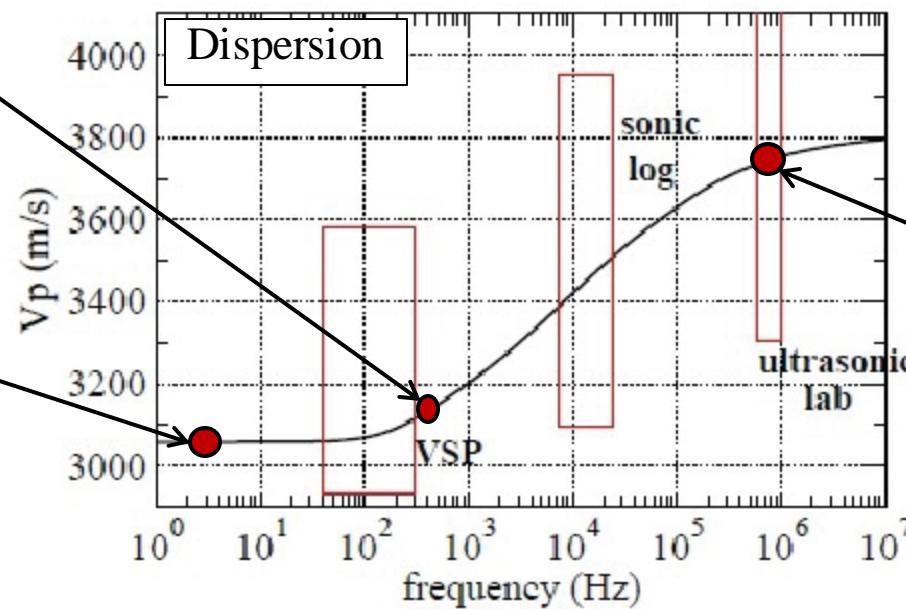
Lab data

Can we compare between
measurements ?

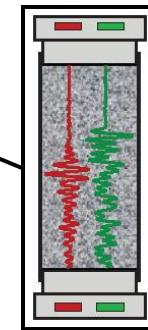


Modified from
Pride et al. (2004)





Modified from
Pride et al. (2004)



Cause ?

Viscoelasticity ?

High T-P conditions

Fluid mobility

Low T-P conditions

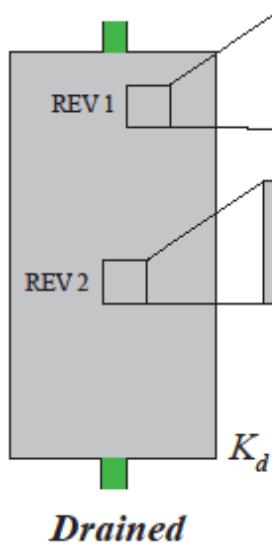
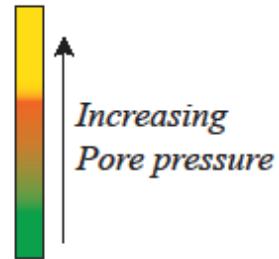
Poroelasticity: 2 *mechanical* regimes (e.g. Biot, 1941;1956)

→ **Drained** ⇔ Fluid allowed to flow out of the REV

REV = Representative Elementary Volume

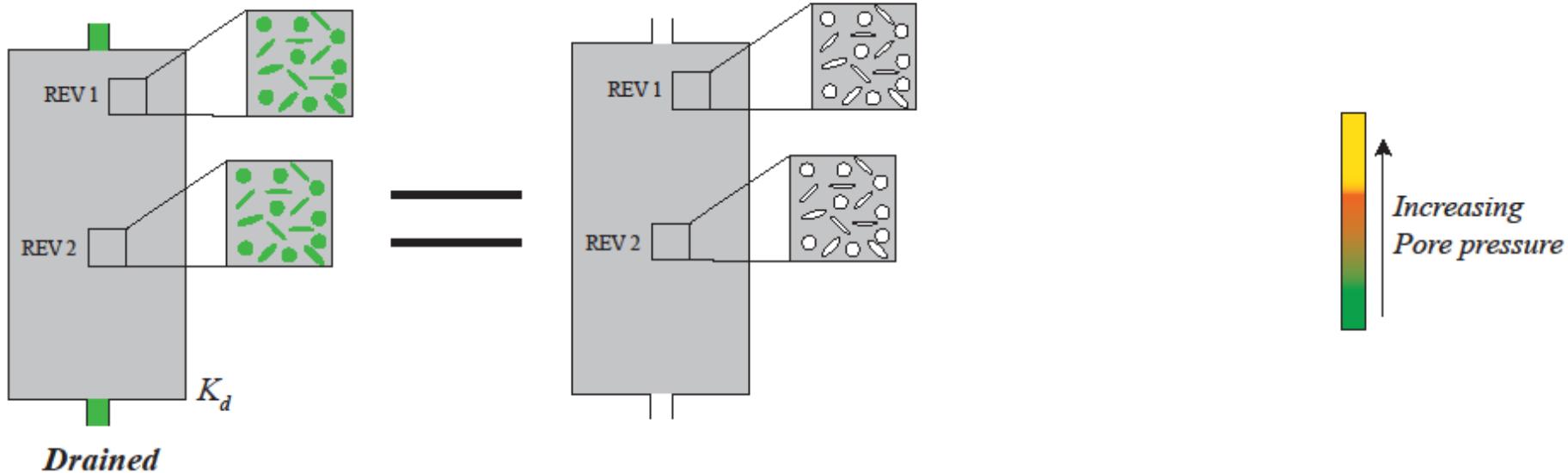
Poroelasticity: 2 *mechanical* regimes (e.g. Biot, 1941;1956)

→ **Drained** ⇔ Fluid allowed to flow out of the REV



Poroelasticity: 2 *mechanical* regimes (e.g. Biot, 1941;1956)

→ **Drained** ⇔ Fluid allowed to flow out of the REV



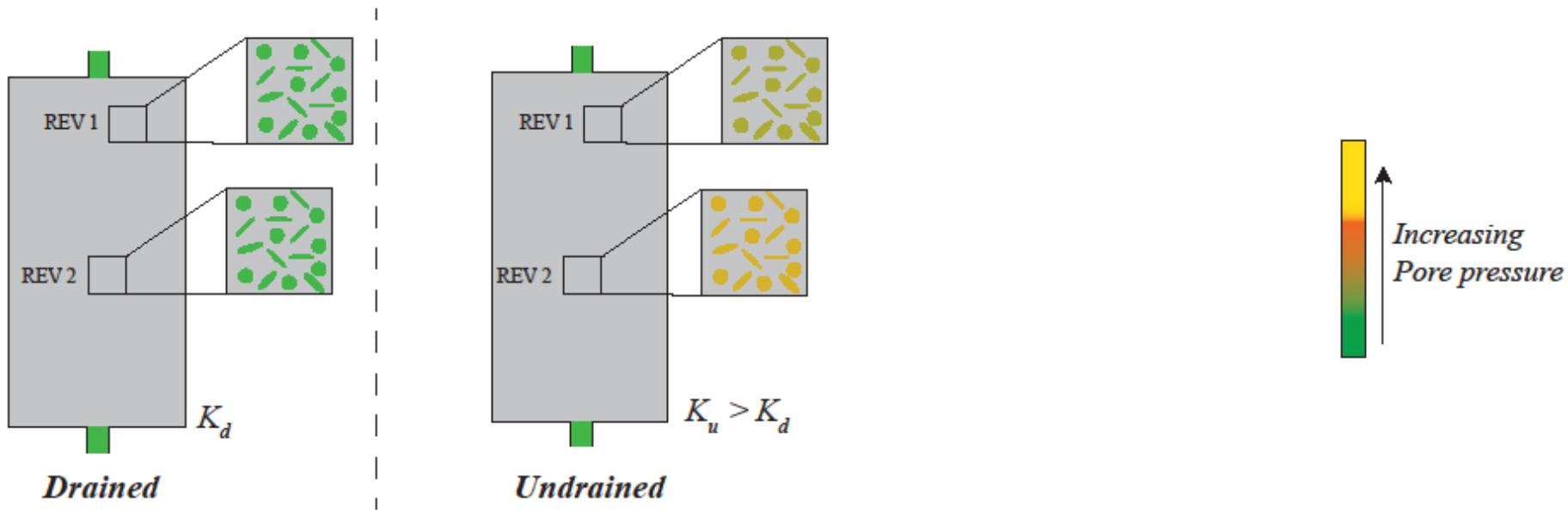
Elastic constants
independent of the fluid

REV = Representative Elementary Volume

Poroelasticity: 2 *mechanical* regimes (e.g. Biot, 1941;1956)

→ **Drained** ⇔ Fluid allowed to flow out of the REV

→ **Undrained** ⇔ Fluid **not** allowed to flow out of the REV



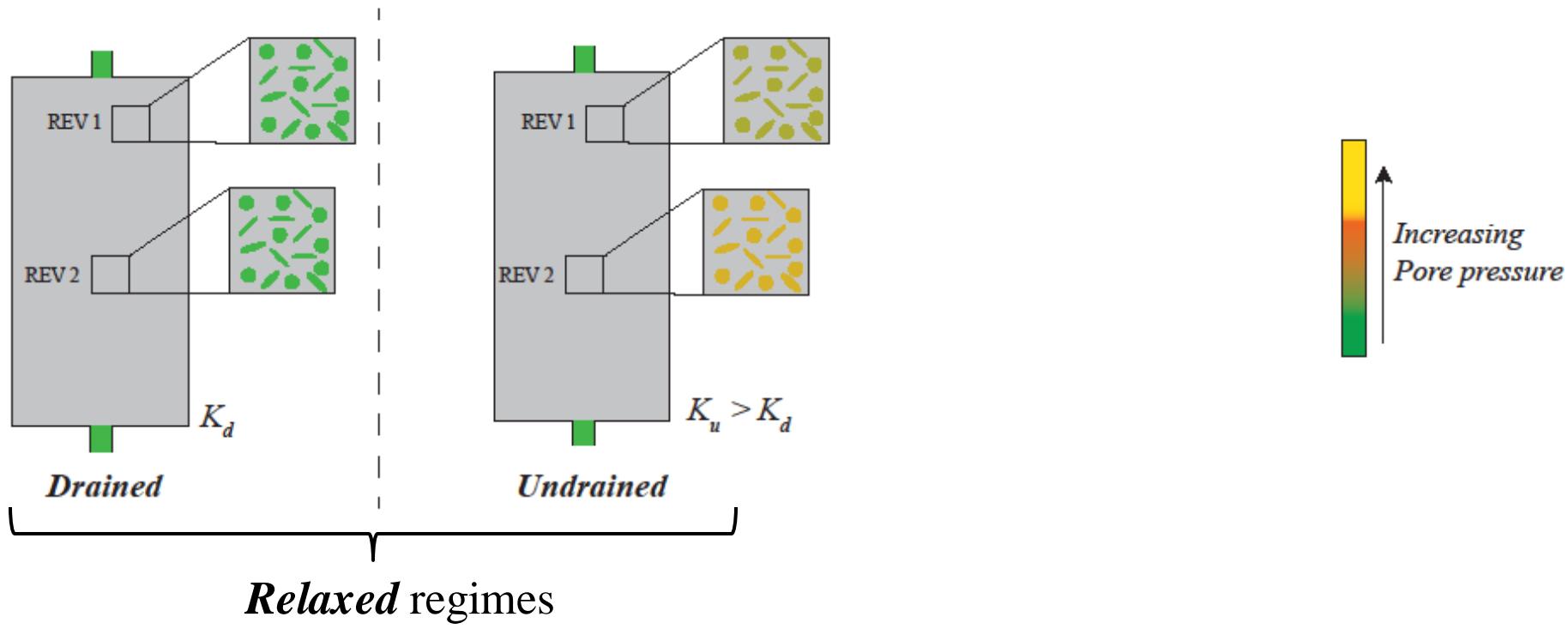
Bulk modulus K
dependent of the fluid

REV = *Representative Elementary Volume*

Poroelasticity: 2 *mechanical* regimes (e.g. Biot, 1941;1956)

→ **Drained** ⇔ Fluid allowed to flow out of the REV

→ **Undrained** ⇔ Fluid **not** allowed to flow out of the REV



REV = *Representative Elementary Volume*

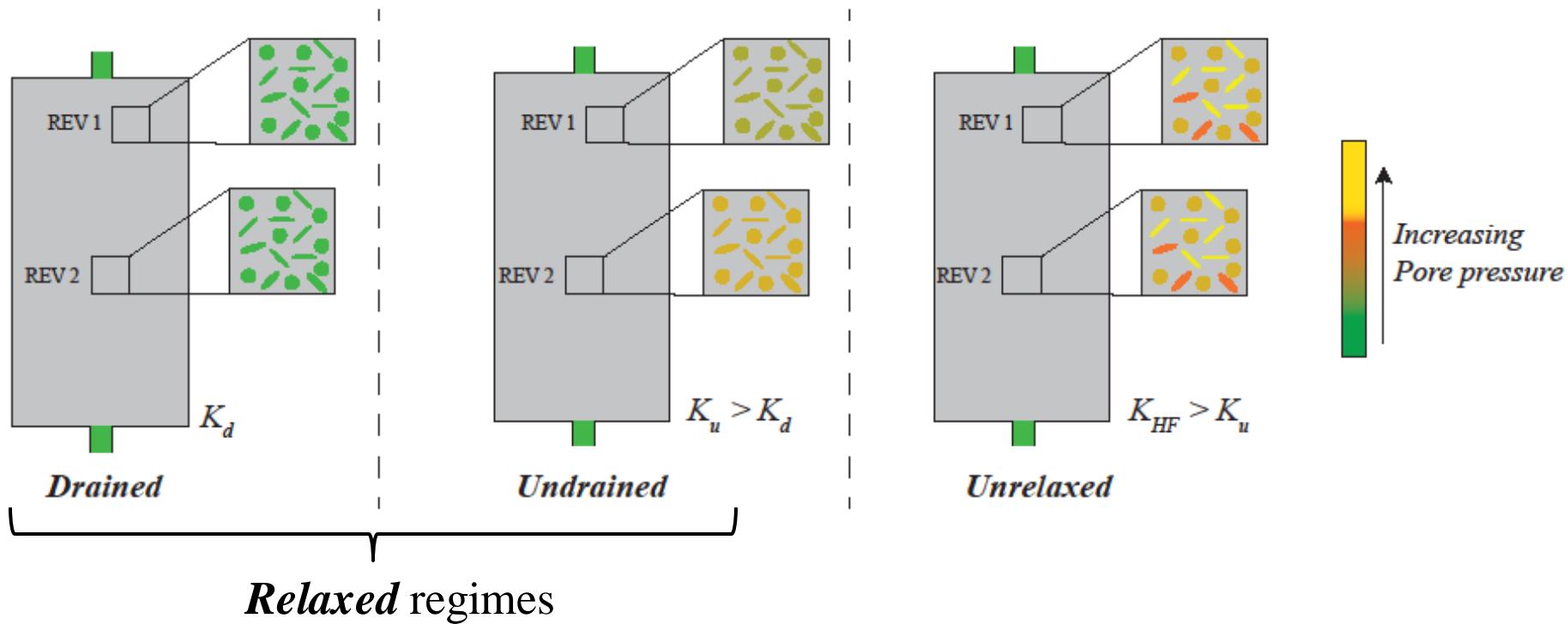
Poroelasticity: 2 *mechanical* regimes (e.g. Biot, 1941; 1956)

→ **Drained** ⇔ Fluid allowed to flow out of the REV

→ **Undrained** ⇔ Fluid **not** allowed to flow out of the REV

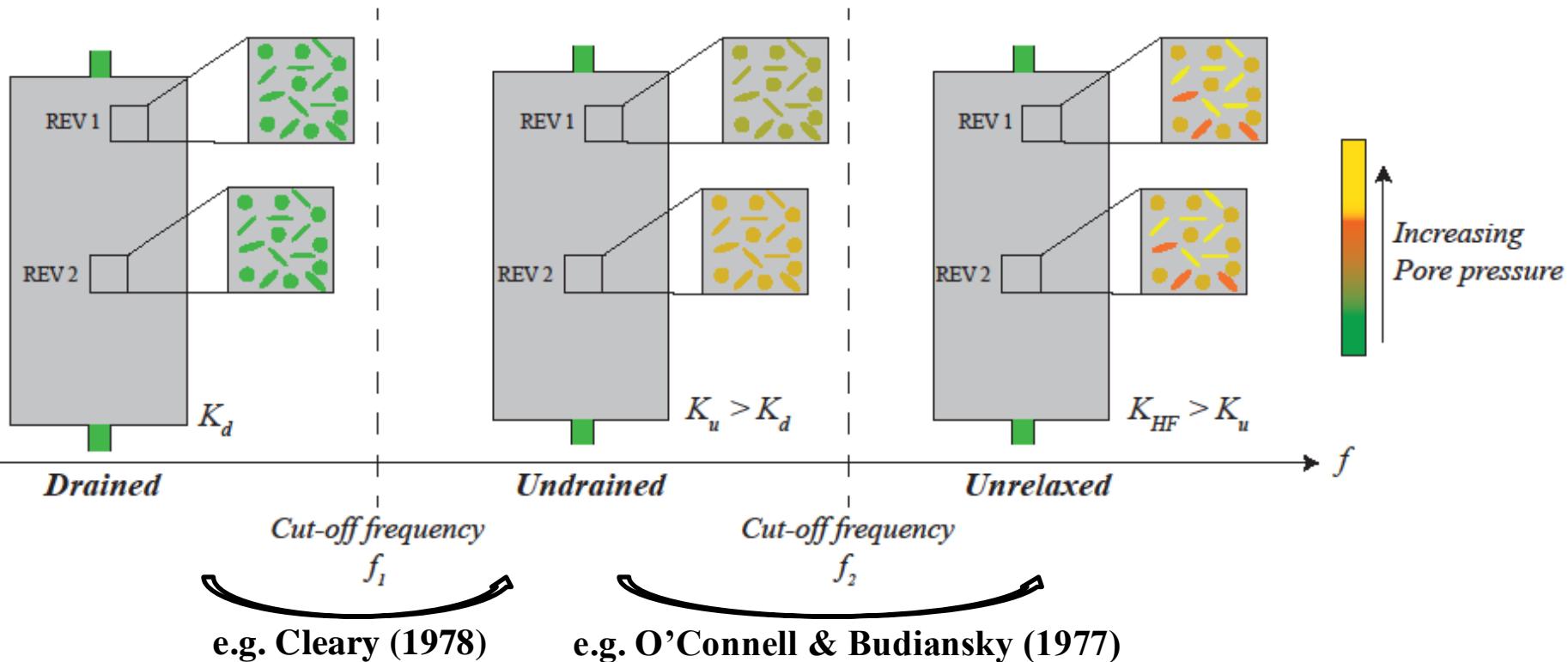
Isolated inclusions: 3rd *mechanical* regime

→ **Unrelaxed** ⇔ Fluid overpressure dependent on the **geometry** of the inclusion

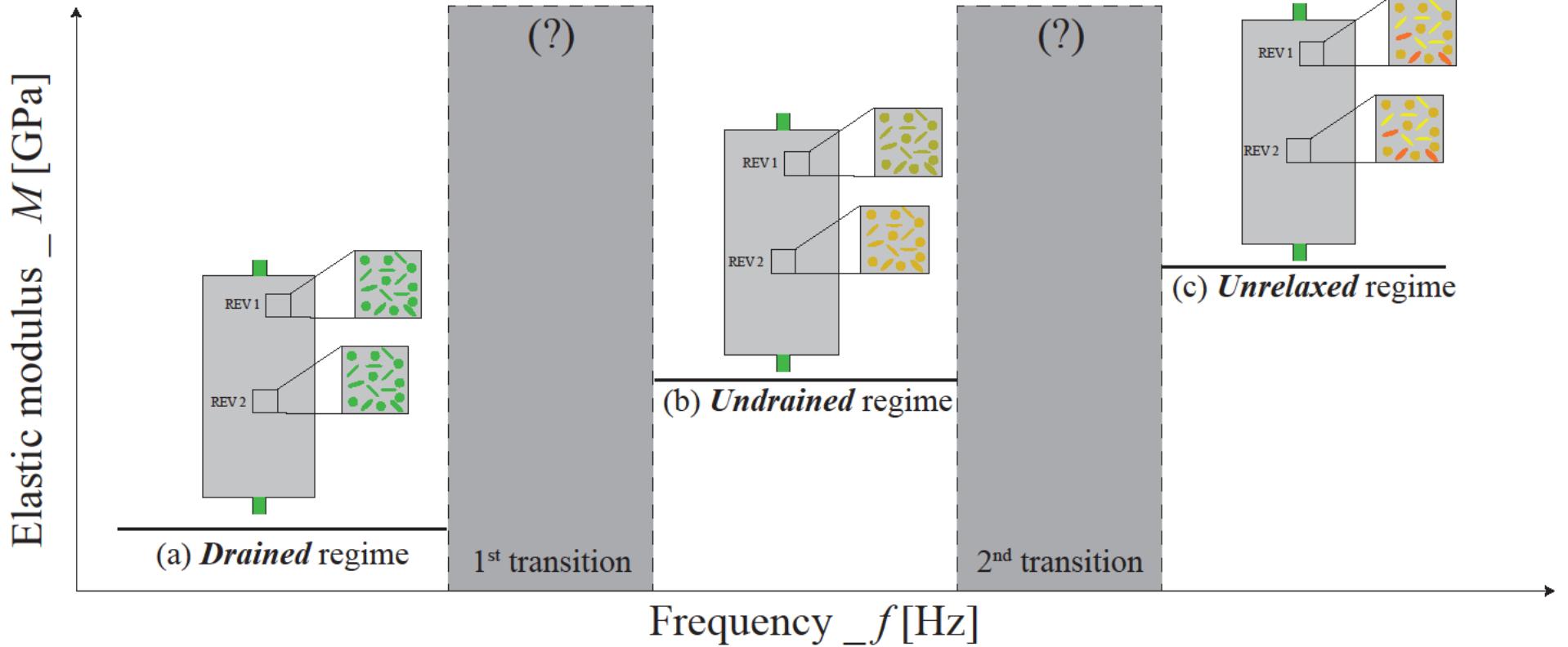


REV = *Representative Elementary Volume*

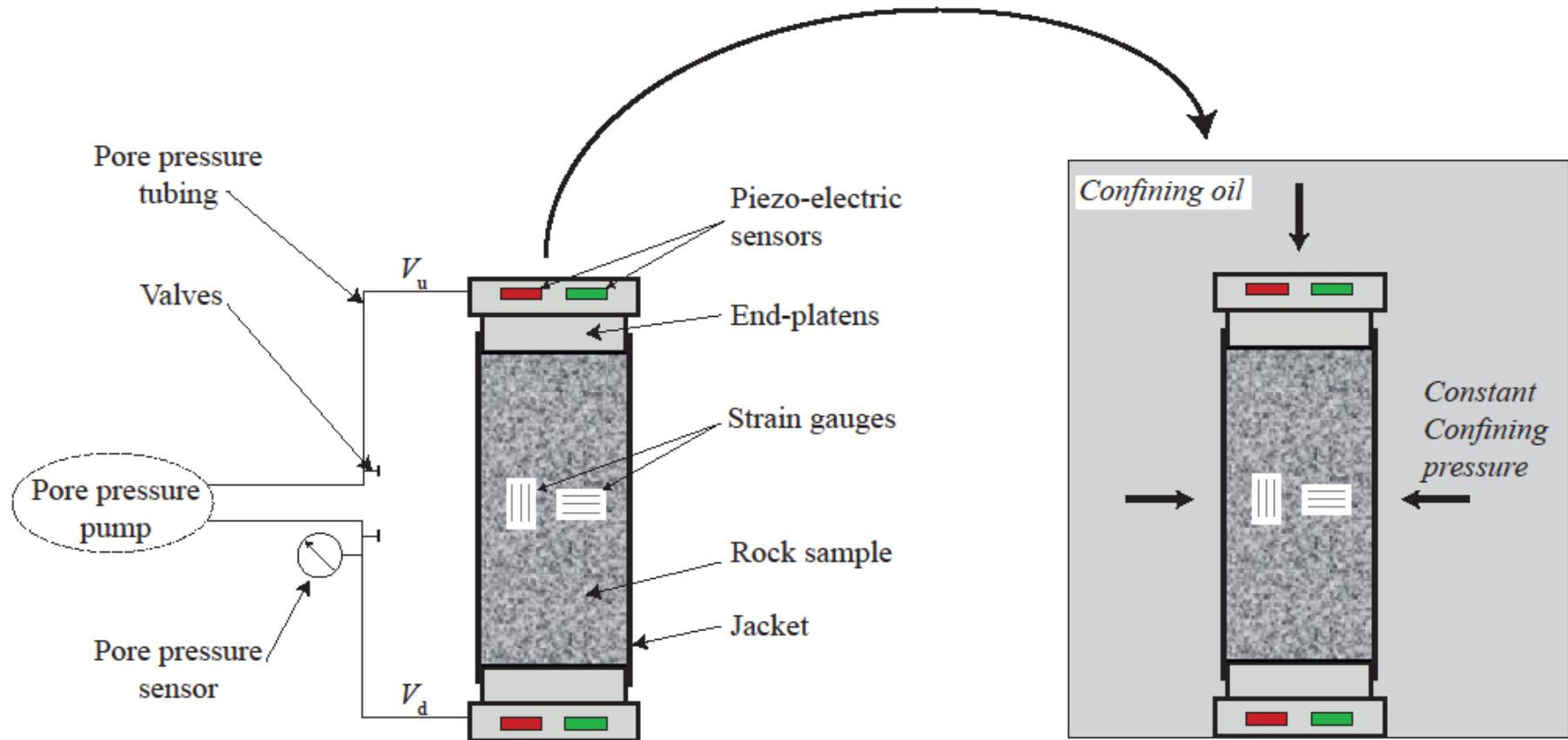
Fluid movement → Frequency dependence

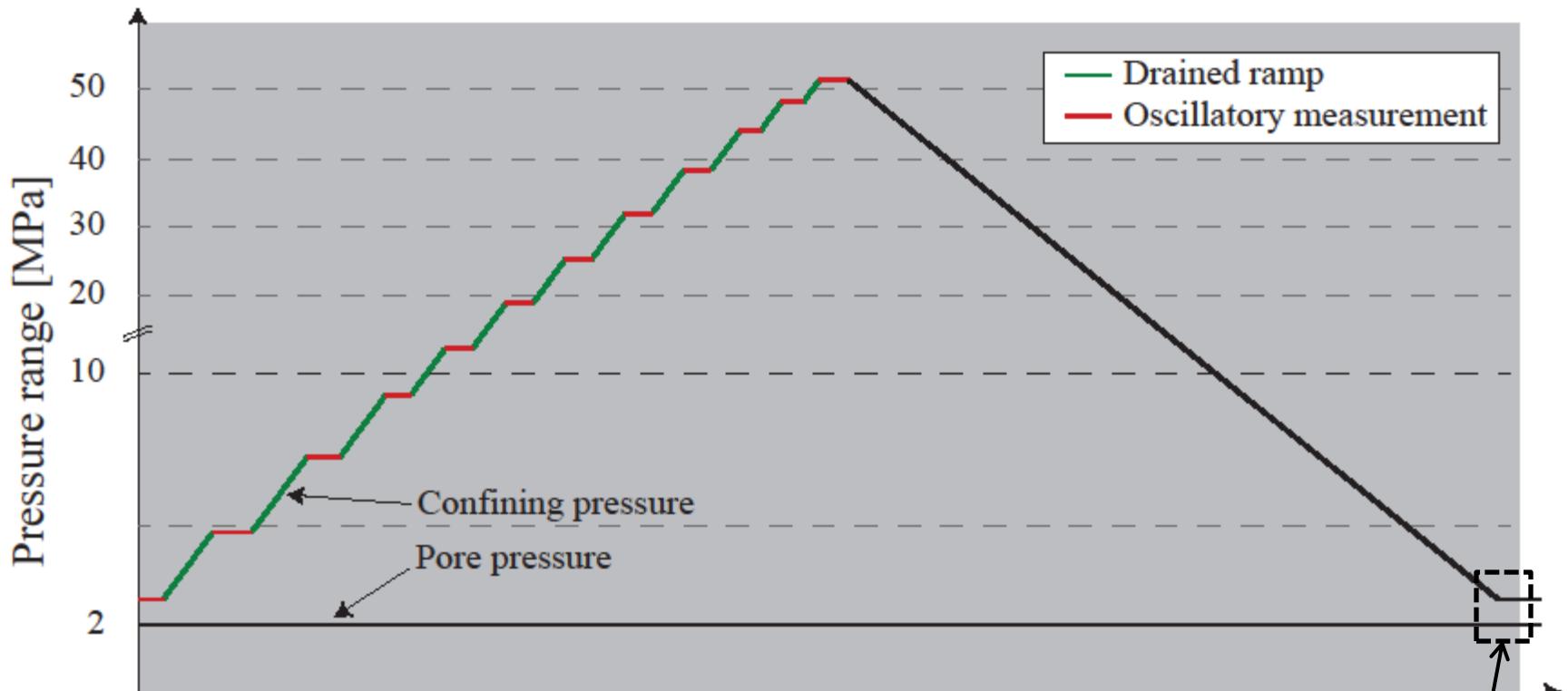


Higher Viscosity \leftrightarrow Lower fluid velocity
Higher Frequency \leftrightarrow Shorter time for flow



**Dispersion/Attenuation
between regimes?**





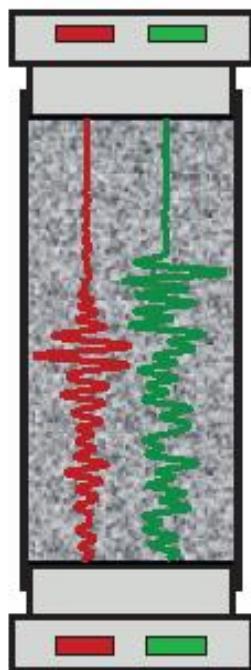
Example in case of **fluid**-saturated conditions

Time of experiment

Sample measured at different confining pressures
 \Rightarrow Sample's behaviours at depth

Elastic behaviour of a rock

- ↔ **Strain** response to an applied **Stress**: Small, Instantaneous & Reversible
- ↔ Characterised by different elastic constants: K, G, E, ν



Isotropic rock

- ↔ 2 independent constants

↔ *Quasi-static* stress-strain measurements

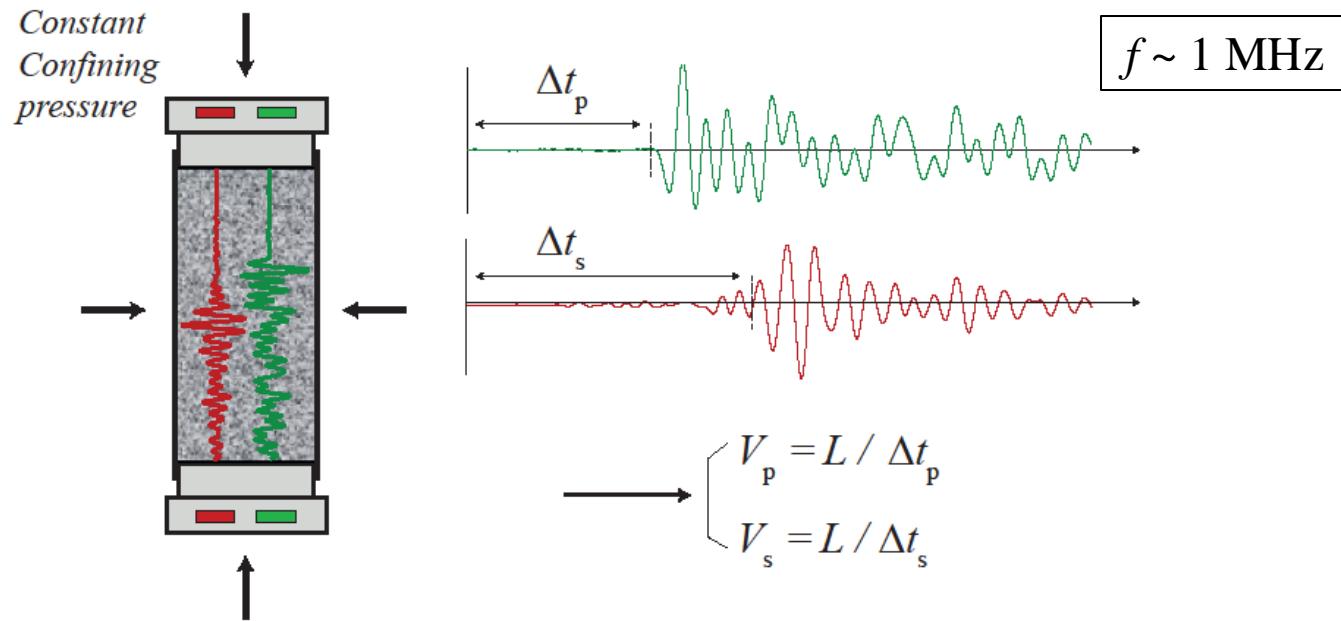
↔ *Ultrasonic* wave velocity measurements

- $K \leftrightarrow$ Bulk modulus
- $G \leftrightarrow$ Shear modulus
- $E \leftrightarrow$ Young modulus
- $\nu \leftrightarrow$ Poisson ratio

or

- $V_p \leftrightarrow$ P-wave velocity
- $V_s \leftrightarrow$ S-wave velocity

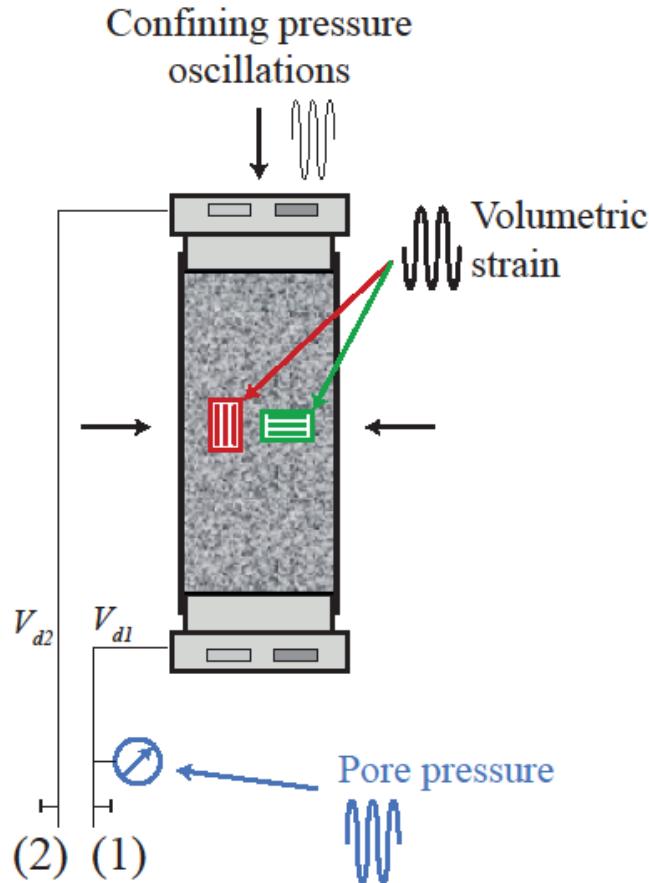
or



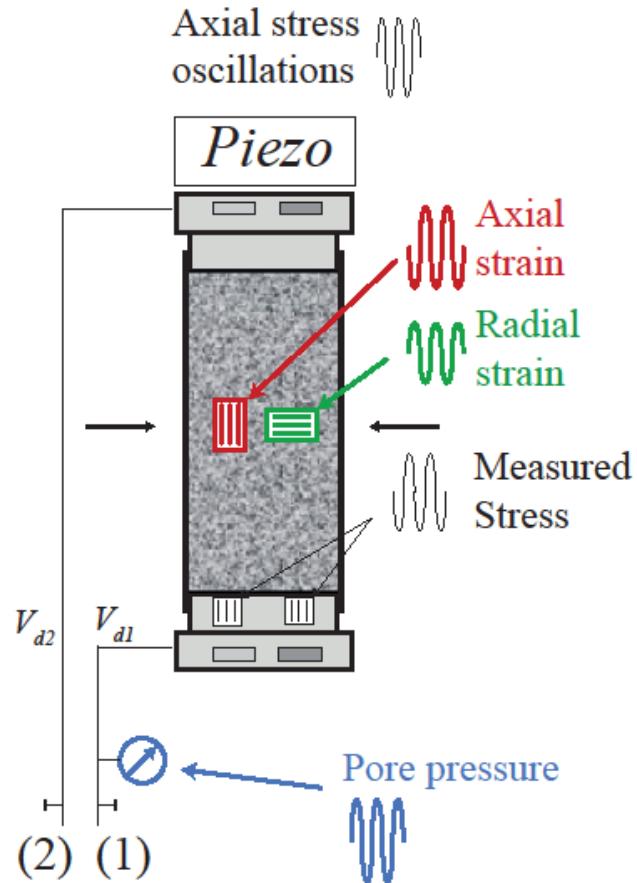
Assume rock **Isotropic** $\implies V_p = \sqrt{\frac{K + 4/3G}{\rho}} \quad V_s = \sqrt{\frac{G}{\rho}}$

$\implies \boxed{K_{\text{HF}} \text{ & } G_{\text{HF}}}$

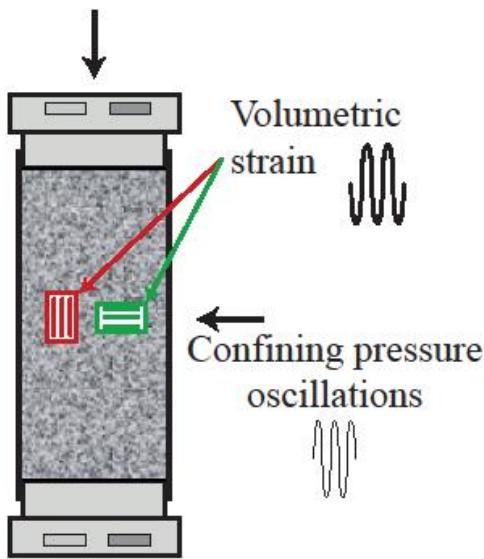
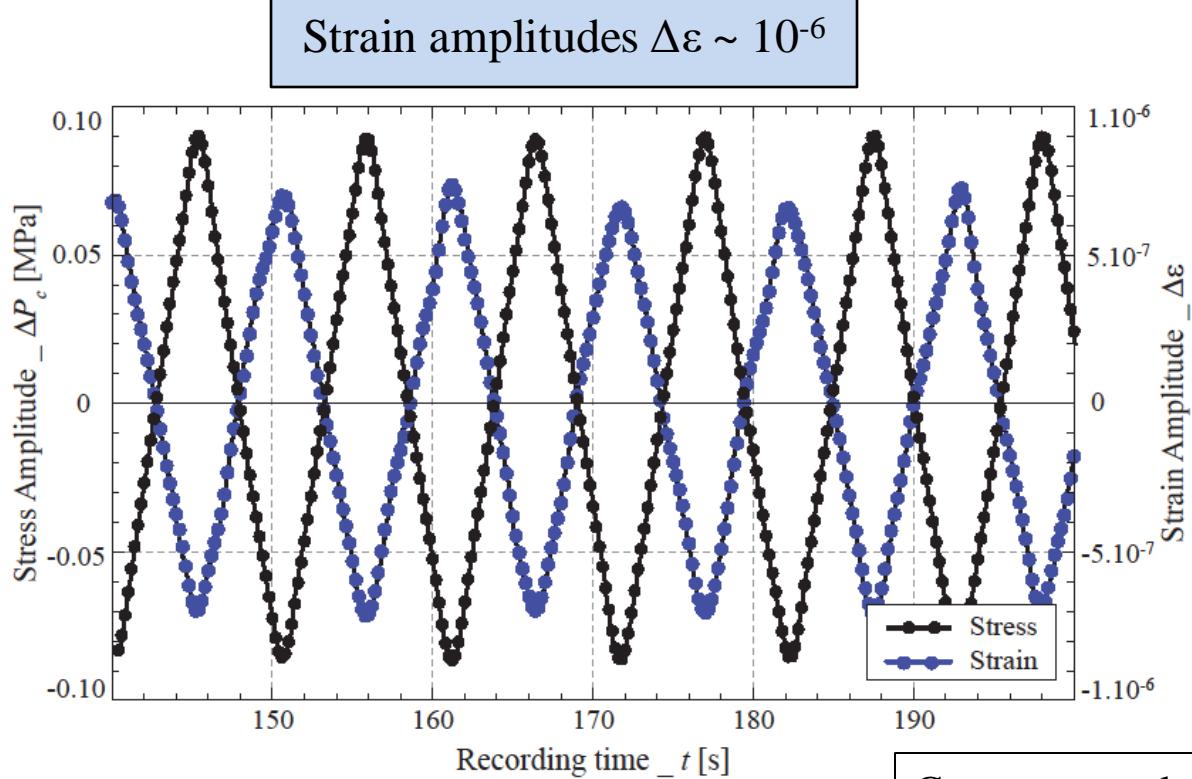
“Isotropic” solicitation



“Axial” solicitation



“Isotropic” solicitation

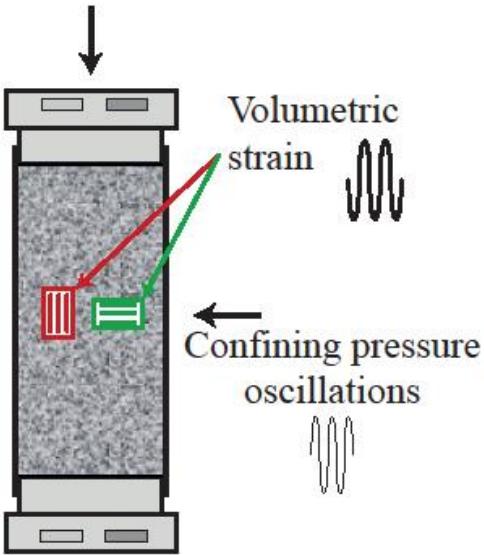


Gypsum sample

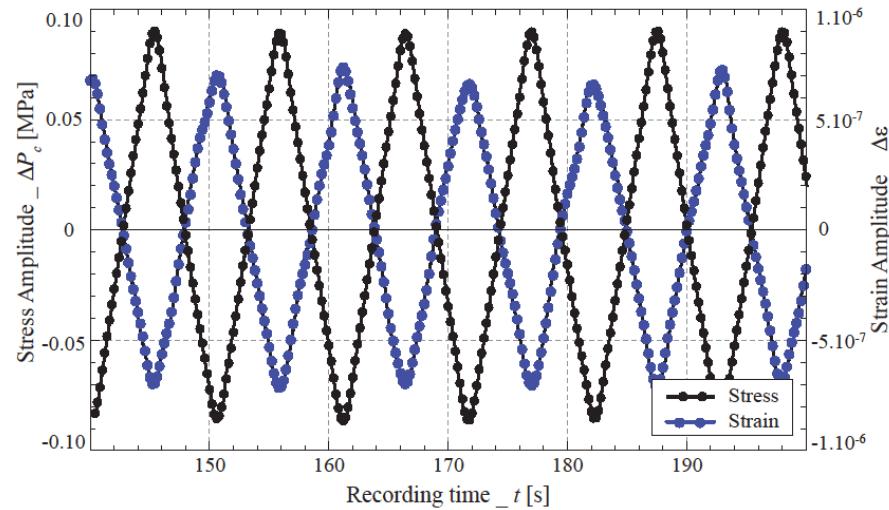
$\rightarrow P_c \sim 1 \text{ MPa}$
 $\rightarrow f \sim 0,1 \text{ Hz}$

Elastic response:

- Amplitude ratio $\Rightarrow K_{LF}$
- Phase shift $\Rightarrow Q_K^{-1}$

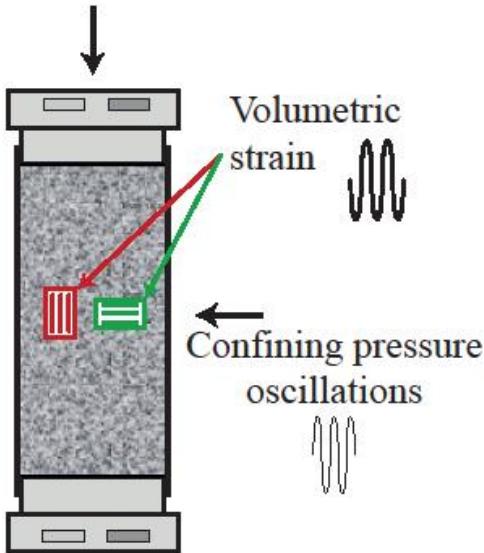


Rock can be described
by **complex elastic**
properties

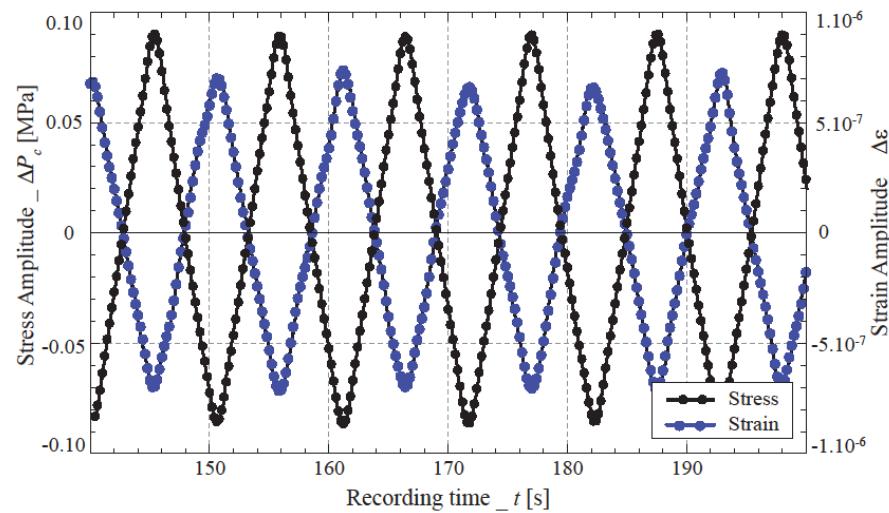


Elastic response:

- Amplitude ratio $\Rightarrow K_{LF}$
- Phase shift $\Rightarrow Q_K^{-1}$



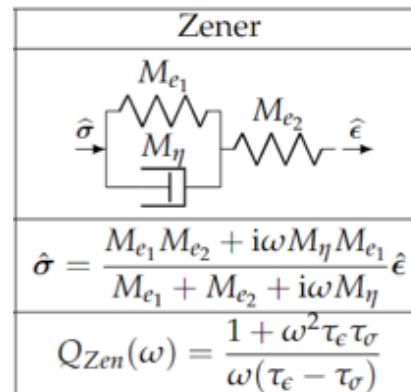
Rock can be described by **complex elastic properties**



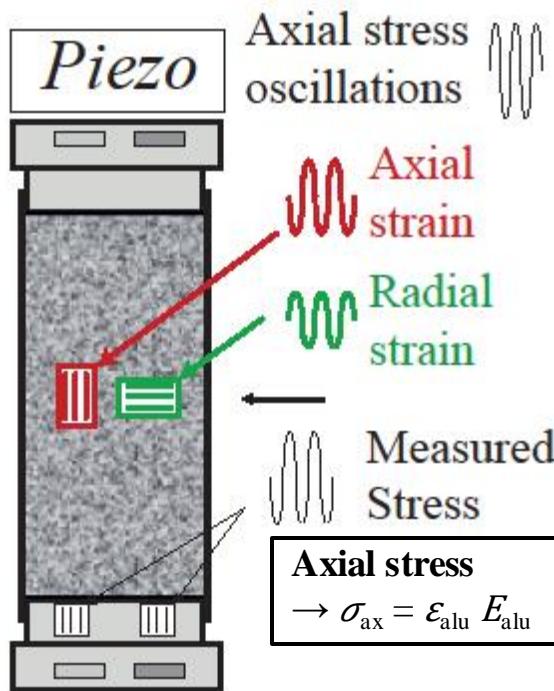
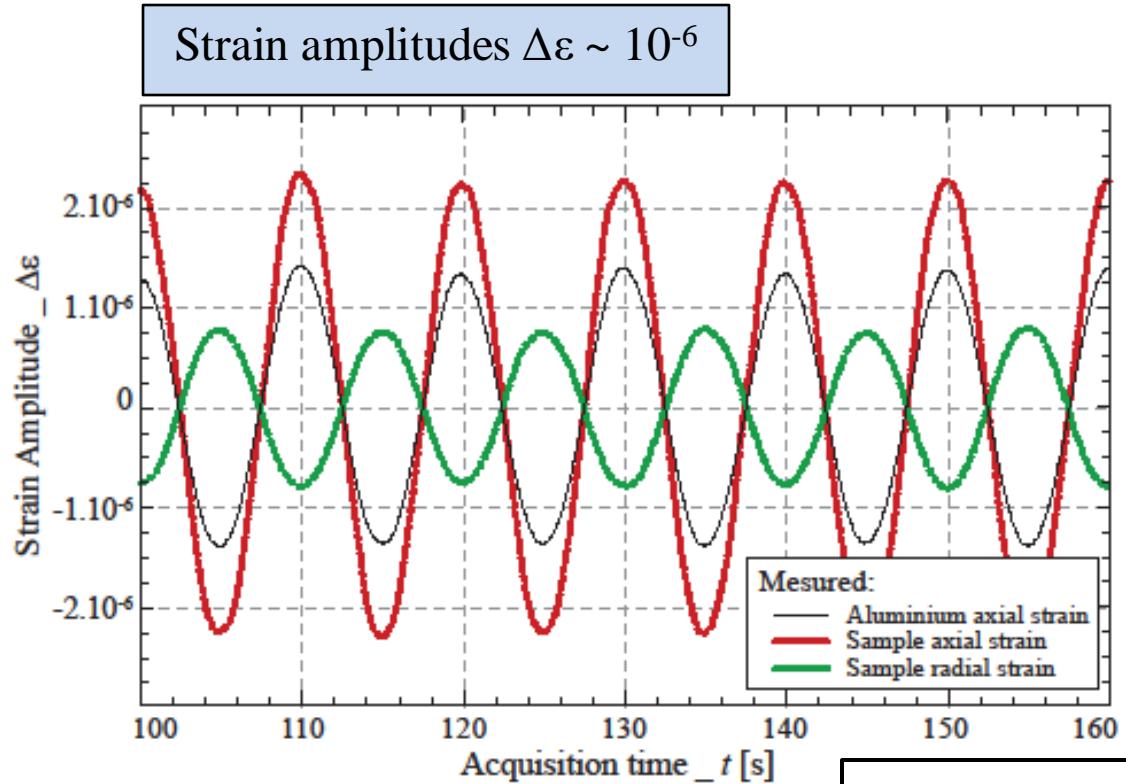
Elastic response:

- Amplitude ratio $\Rightarrow K_{LF}$
- Phase shift $\Rightarrow Q_K^{-1}$

An example?
Rheological viscoelastic models



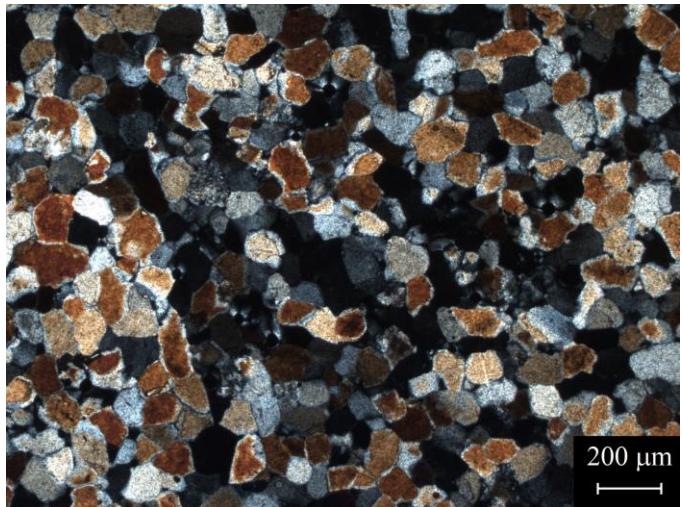
“Axial” solicitation



Elastic response:

\Rightarrow

- Amplitude ratio $\Rightarrow E_{LF} \& v_{LF}$
- Phase shift $\Rightarrow Q_E^{-1} \& Q_v^{-1}$



*Thin section of Fontainebleau sandstone
using polarising microscope.*

Example of a 7 % porosity sample

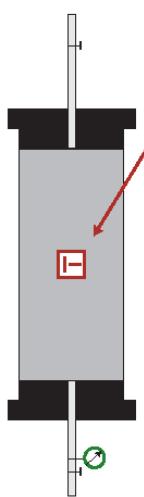
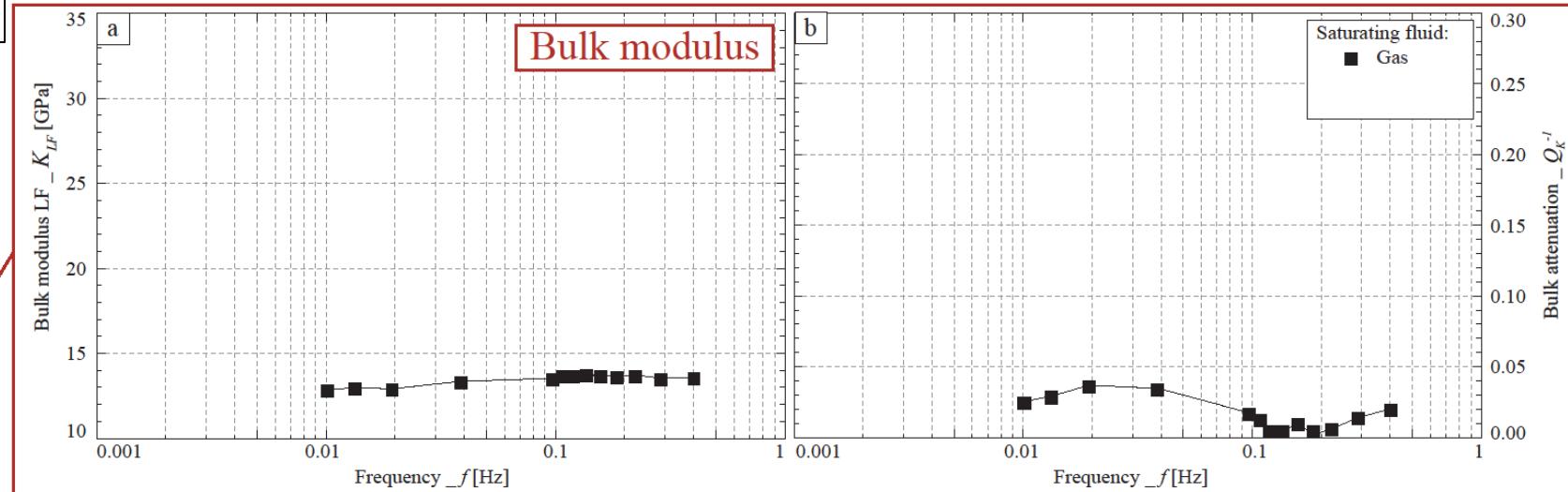
- Clean sandstone (≈ 100 % quartz)
- Well sorted, constant grain size (≈ 100 μm)
→ **Homogeneous** medium
- Random crystal/grain orientations
 \leftrightarrow Spatial averaging of quartz anisotropy
→ **Isotropic** medium

→ **Fo7:** \leftrightarrow 7.2 % porosity
 \leftrightarrow $4 \cdot 10^{-15} \text{ m}^2$ permeability

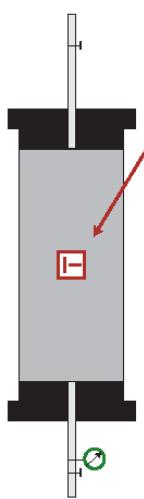
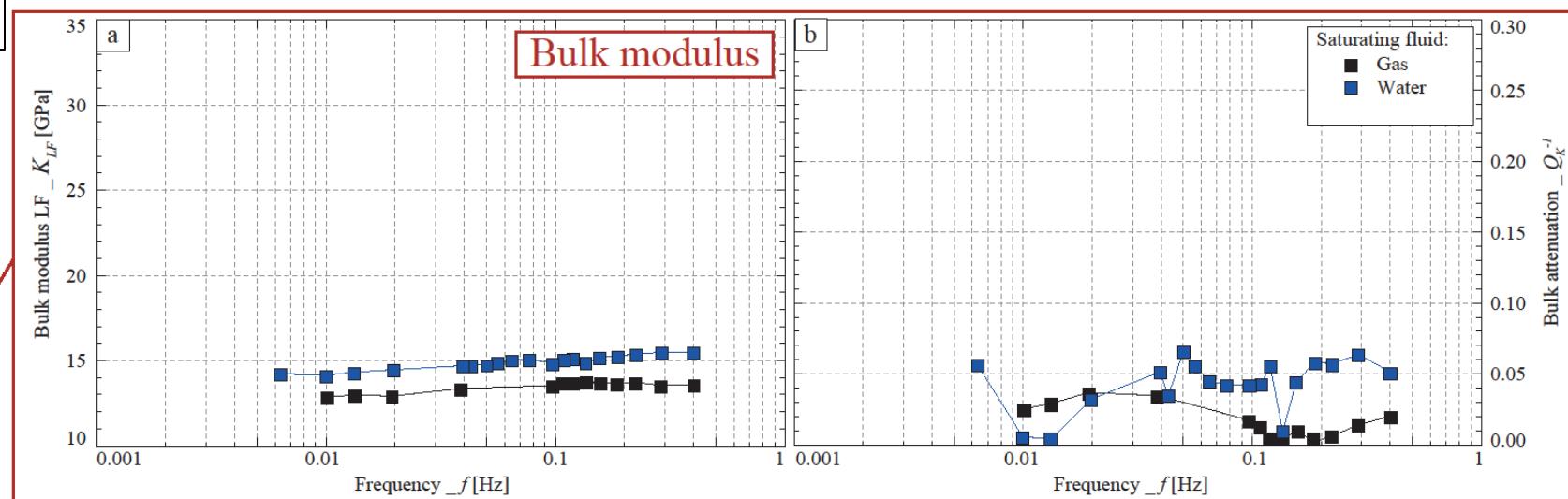
Measurements under:

- (1) Dry
- (2) **Glycerine** saturation
- (3) **Water** saturation

$P_{eff} \sim 1 \text{ MPa}$



$P_{eff} \sim 1 \text{ MPa}$

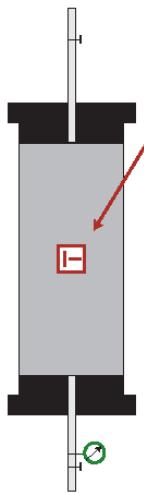
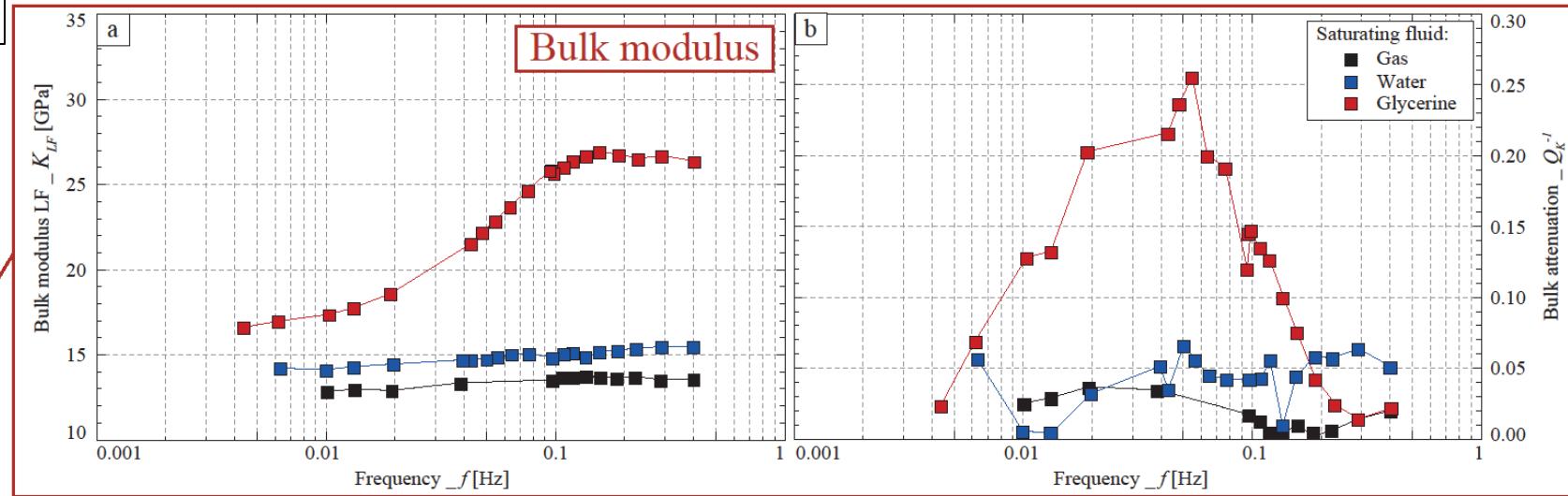


→ Water saturation:

$$\leftrightarrow K^{dry} \sim K^{wat}$$

\leftrightarrow No frequency dependence of K & Q_k^{-1}

$P_{eff} \sim 1 \text{ MPa}$



→ Water saturation:

$$\leftrightarrow K^{dry} \sim K^{wat}$$

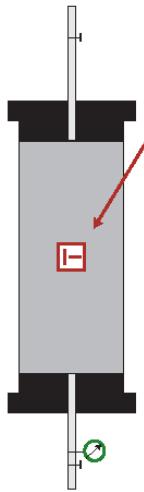
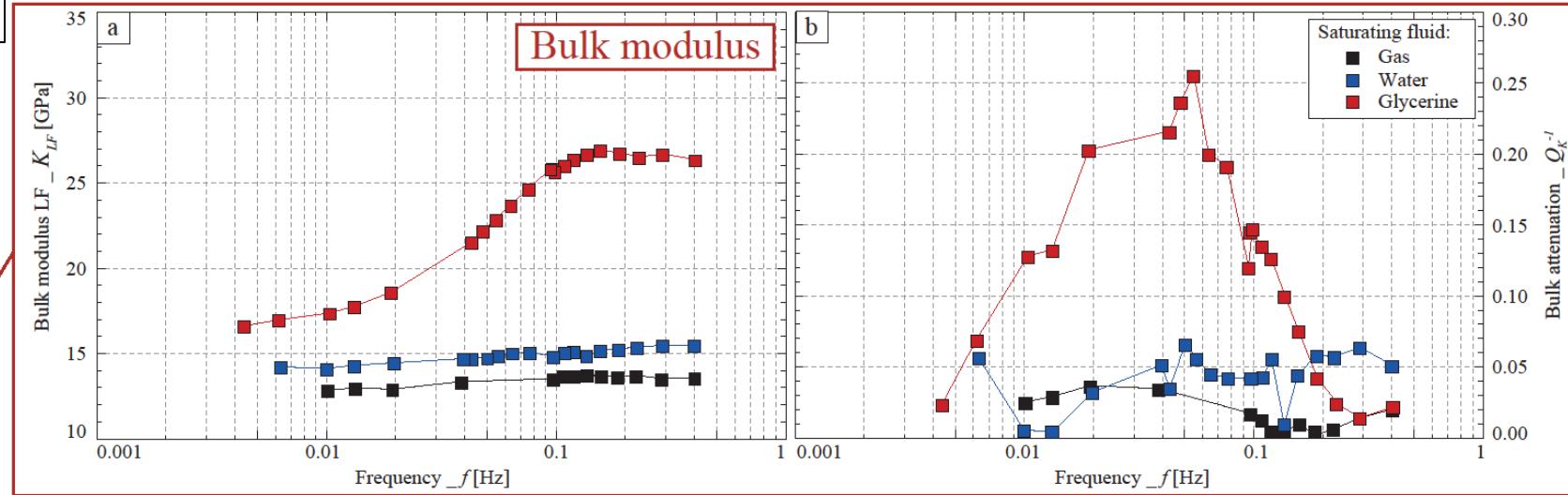
\leftrightarrow No frequency dependence of K & Q_K^{-1}

→ Glycerine saturation:

\leftrightarrow Large frequency dependence of K & Q_K^{-1}

\leftrightarrow Direct correlation between K & Q_K^{-1}

$P_{eff} \sim 1 \text{ MPa}$



→ Water saturation:

$$\leftrightarrow K^{dry} \sim K^{wat}$$

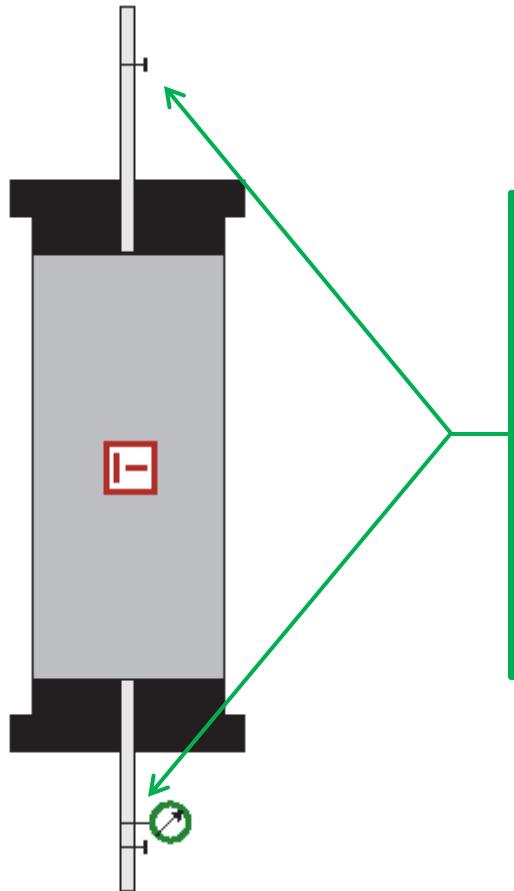
\leftrightarrow No frequency dependence of K & Q_K^{-1}

→ Glycerine saturation:

\leftrightarrow Large frequency dependence of K & Q_K^{-1}

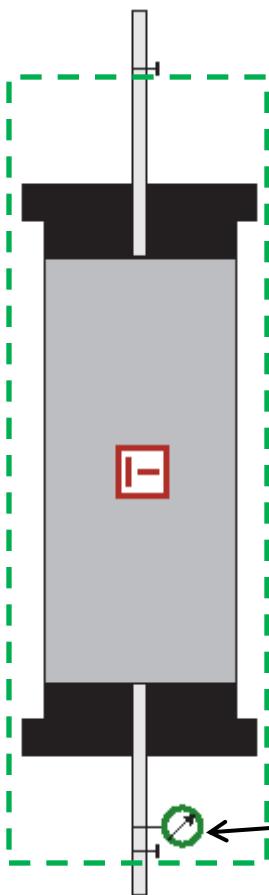
\leftrightarrow Direct correlation between K & Q_K^{-1}

Cause of Dispersion/Attenuation effect ?

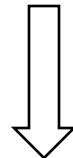


2nd information in porous rocks:

- **Pore fluid pressure** out of the sample
↔ Sample's « **Hydraulic** » response
- Obtained by
 - (1) Closing the pore fluid line & Creating a dead volume at both sample's ends.
 - (2) Measuring the **build-up pressure** in the **dead volume**.



System **experimentally undrained**
 \Leftrightarrow fluid not allowed to flow out of the system
(sample + dead volume).



Build up pore pressure (Δp_f) induced by confining pressure (ΔP_c) for different frequencies
→ Characterised as a **pseudo-Skempton coefficient**:

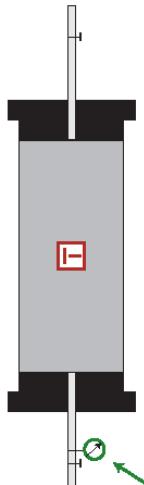
$$B^* = \Delta p_f / \Delta P_c.$$

Dynamic response

$\Delta p_f \sim 0 \rightarrow B^* \sim 0 \rightarrow$ **No fluid flow** out of the sample
 $\Delta p_f > 0 \rightarrow B^* > 0 \rightarrow$ **Fluid flow** out of the sample

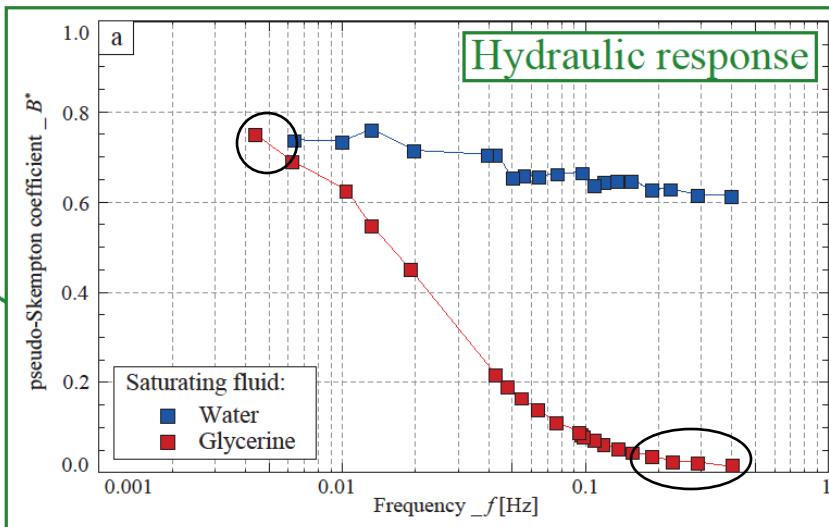
$$P_{eff} \sim 1 \text{ MPa}$$

- Water saturation:
↔ No frequency dependence of B^*
- Glycerine saturation:
↔ Large frequency dependence of B^*

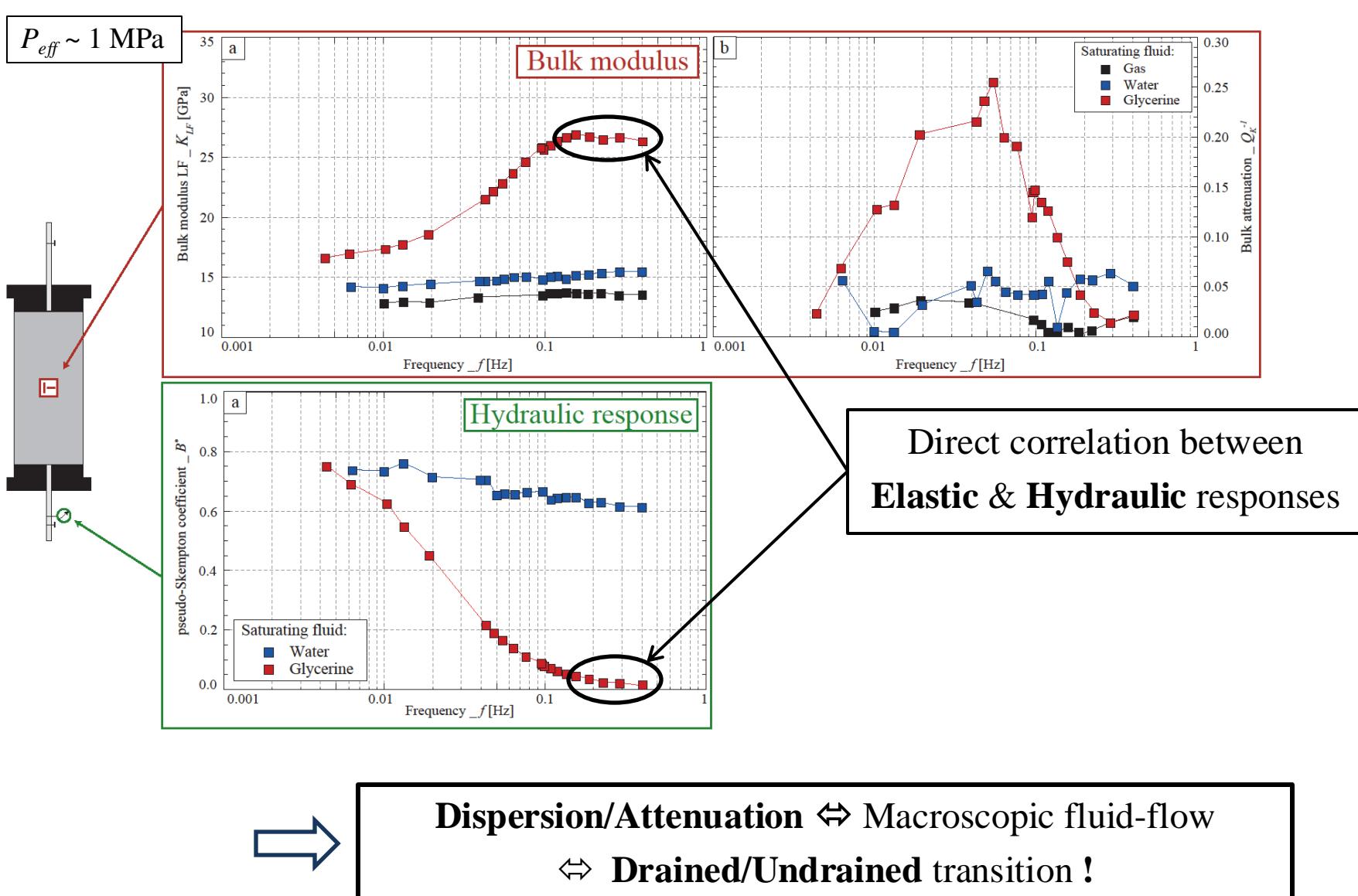


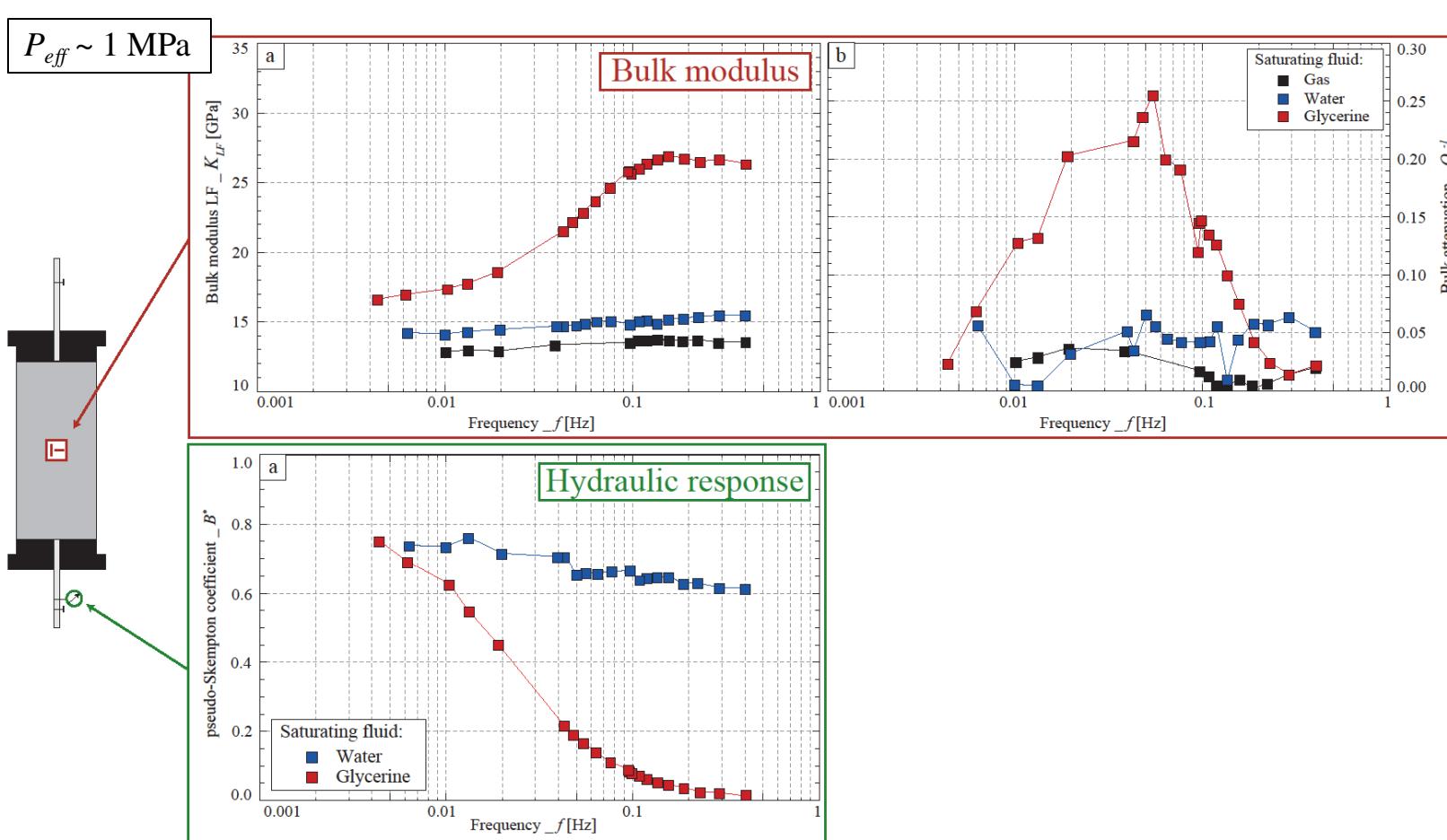
Very low frequency → Large B^*
 → Large fluid flow out of the sample

Higher frequency → $B^* \sim 0$
 → No fluid flow out of the sample



Frequency-dependent
 fluid-flow out of the sample !





Why Water and Glycerine differ ?

Assuming a typical microstructure with:

- ↔ Compliant spheroidal microcracks
- ↔ Equant pores

⇒ Theoretical cut-off frequencies:

Drained/Undrained:

$$f_1 = (4 \cdot \kappa \cdot K_d) / (L^2 \cdot \eta)$$

↔ (Cleary, 1978)

Undrained/Unrelaxed:

$$f_2 = (\xi^3 \cdot K_d) / \eta$$

↔ (e.g. O'Connell & Budiansky, 1977)

L ↔ Characteristic length for fluid diffusion

κ ↔ Permeability

K_d ↔ Drained bulk modulus

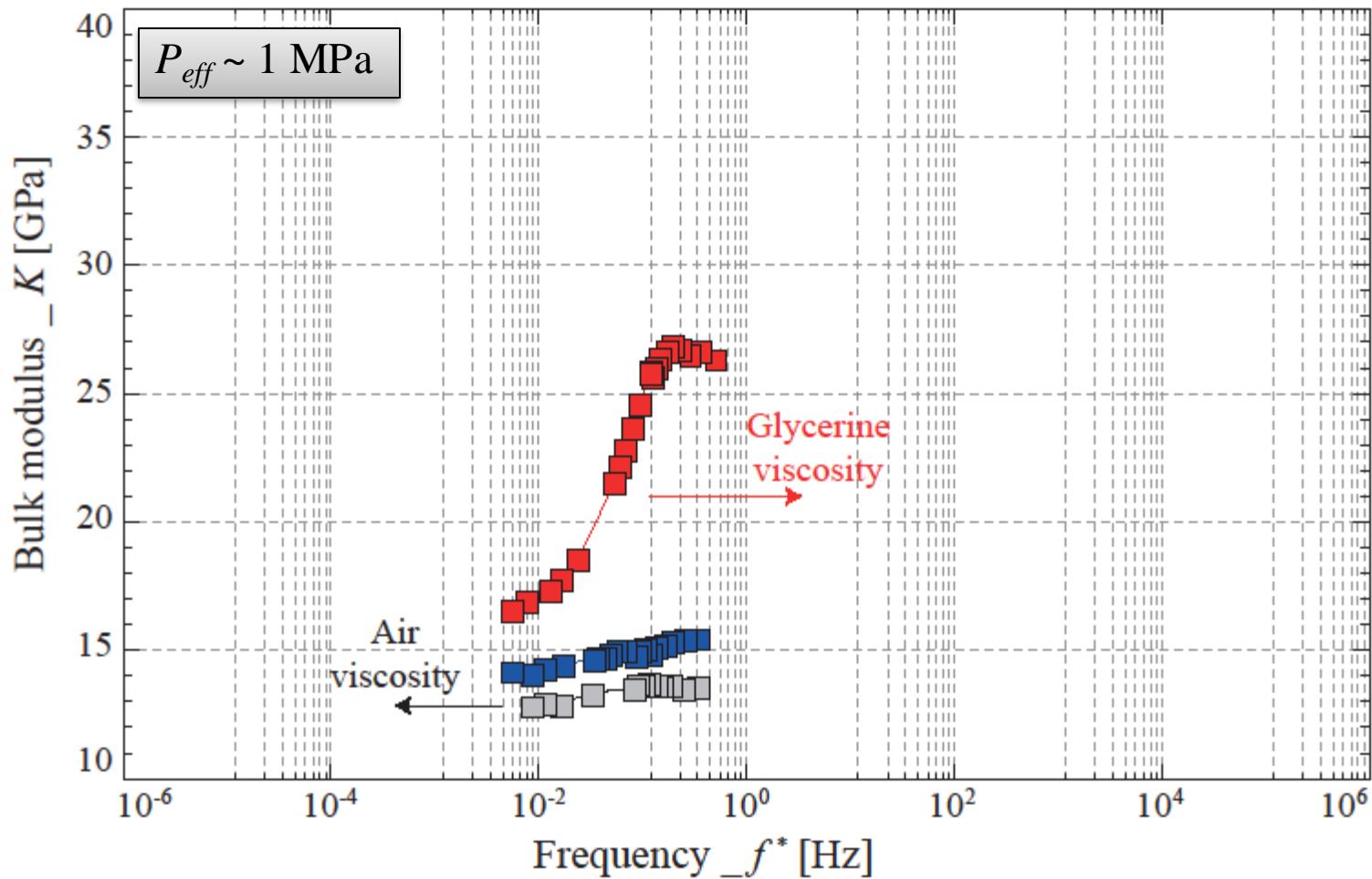
η ↔ Fluid's viscosity

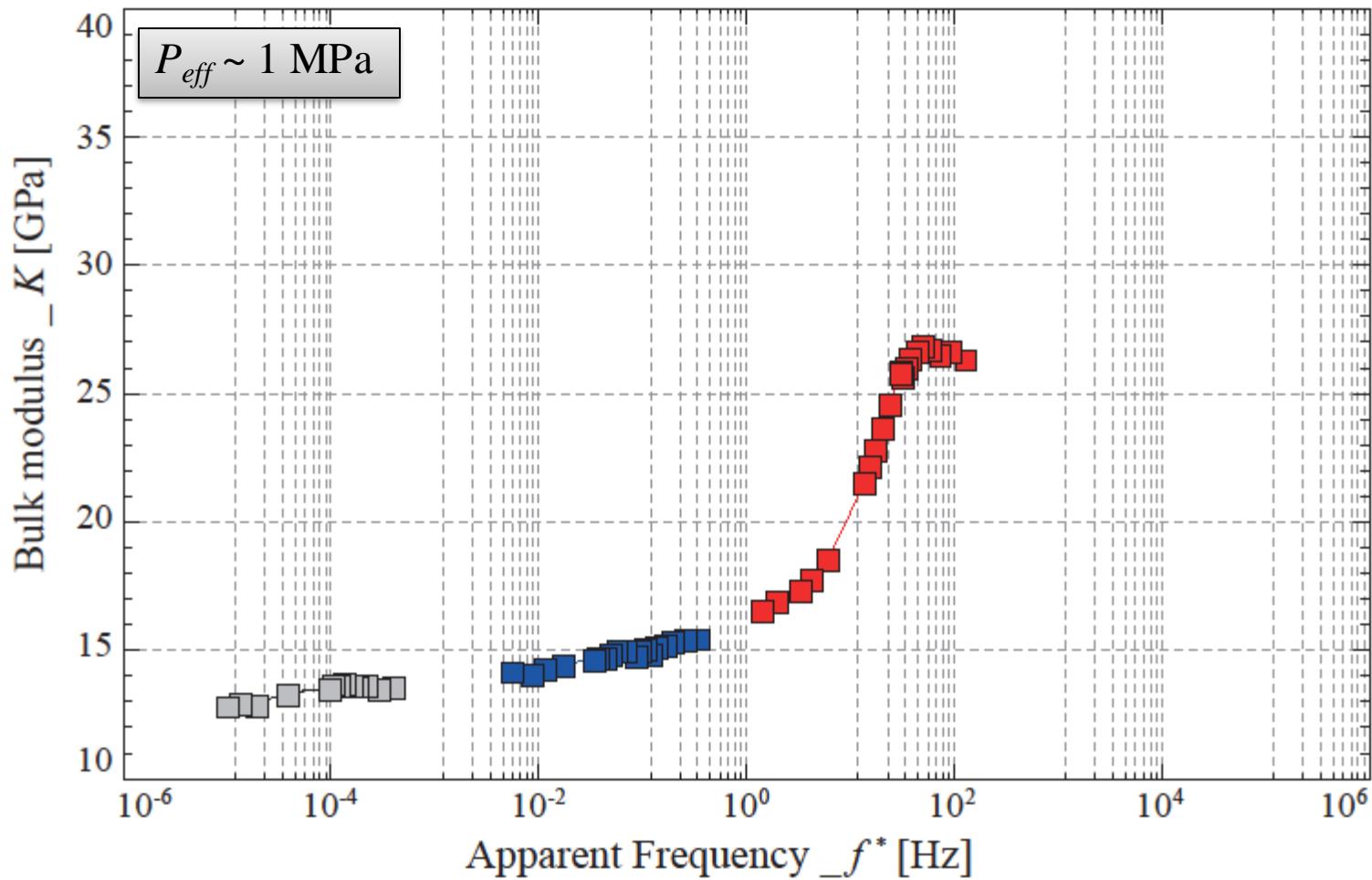
ξ ↔ Aspect ratio of the microcracks

Apparent frequency

$$f^* = f \cdot (\eta / \eta_0)$$

With $\eta_0 = 10^{-3}$ Pa.s⁻¹





Assuming a typical microstructure with:

- ↔ Compliant spheroidal microcracks
- ↔ Equant pores

⇒ Theoretical cut-off frequencies:

Drained/Undrained:

$$f_1 = (4 \cdot \kappa \cdot K_d) / (L^2 \cdot \eta)$$

↔ (Cleary, 1978)

Undrained/Unrelaxed:

$$f_2 = (\xi^3 \cdot K_d) / \eta$$

↔ (e.g. O'Connell & Budiansky, 1977)

⇒ Biot-Gassmann theory:

$$\left\{ \begin{array}{l} K_u = f(K_d, K_s, K_f, \phi) \\ G_u = G_d \end{array} \right.$$

K_u ↔ Undrained bulk modulus

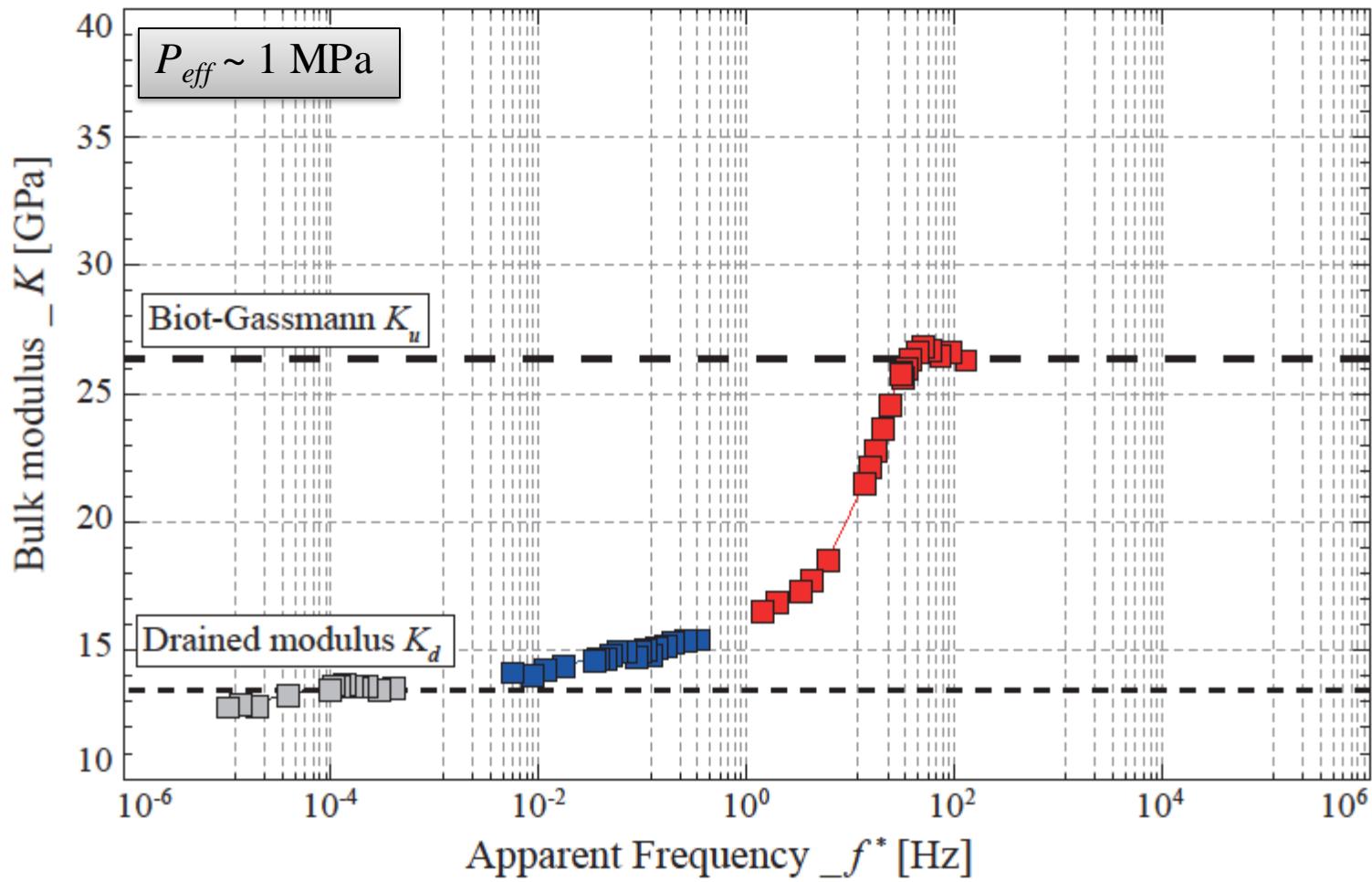
K_d ↔ Drained bulk modulus

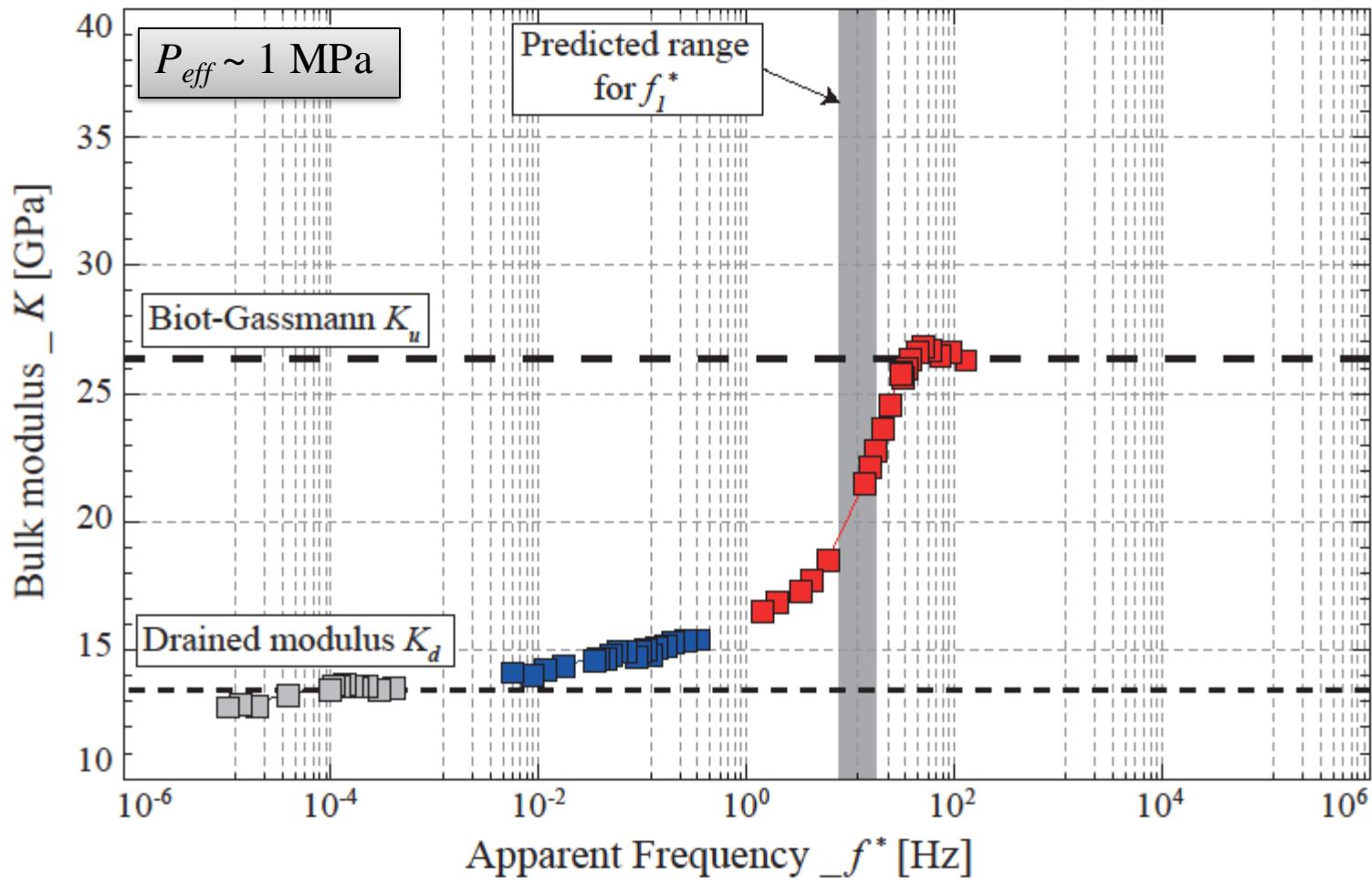
K_s ↔ Skeleton bulk modulus

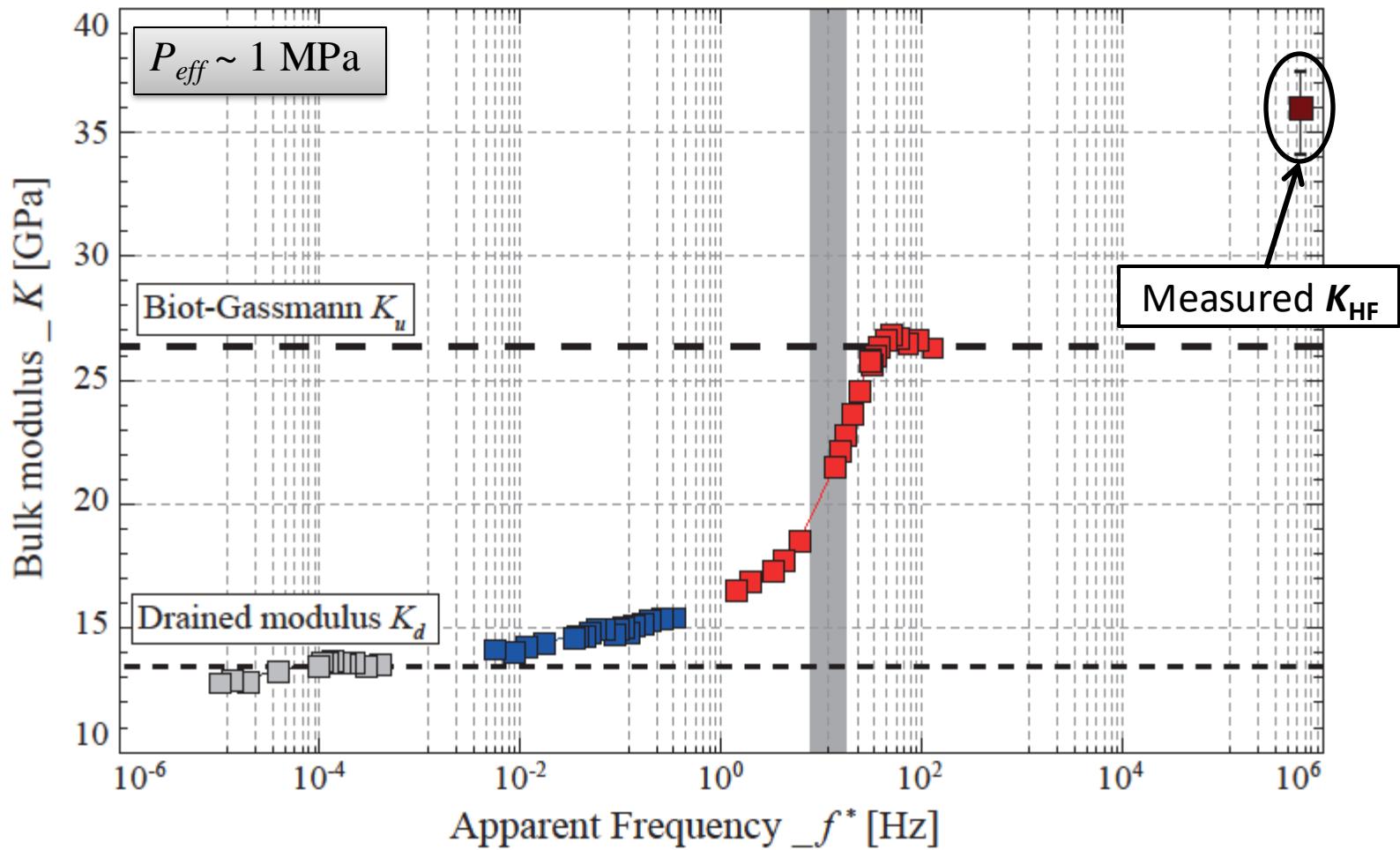
K_f ↔ Fluid bulk modulus

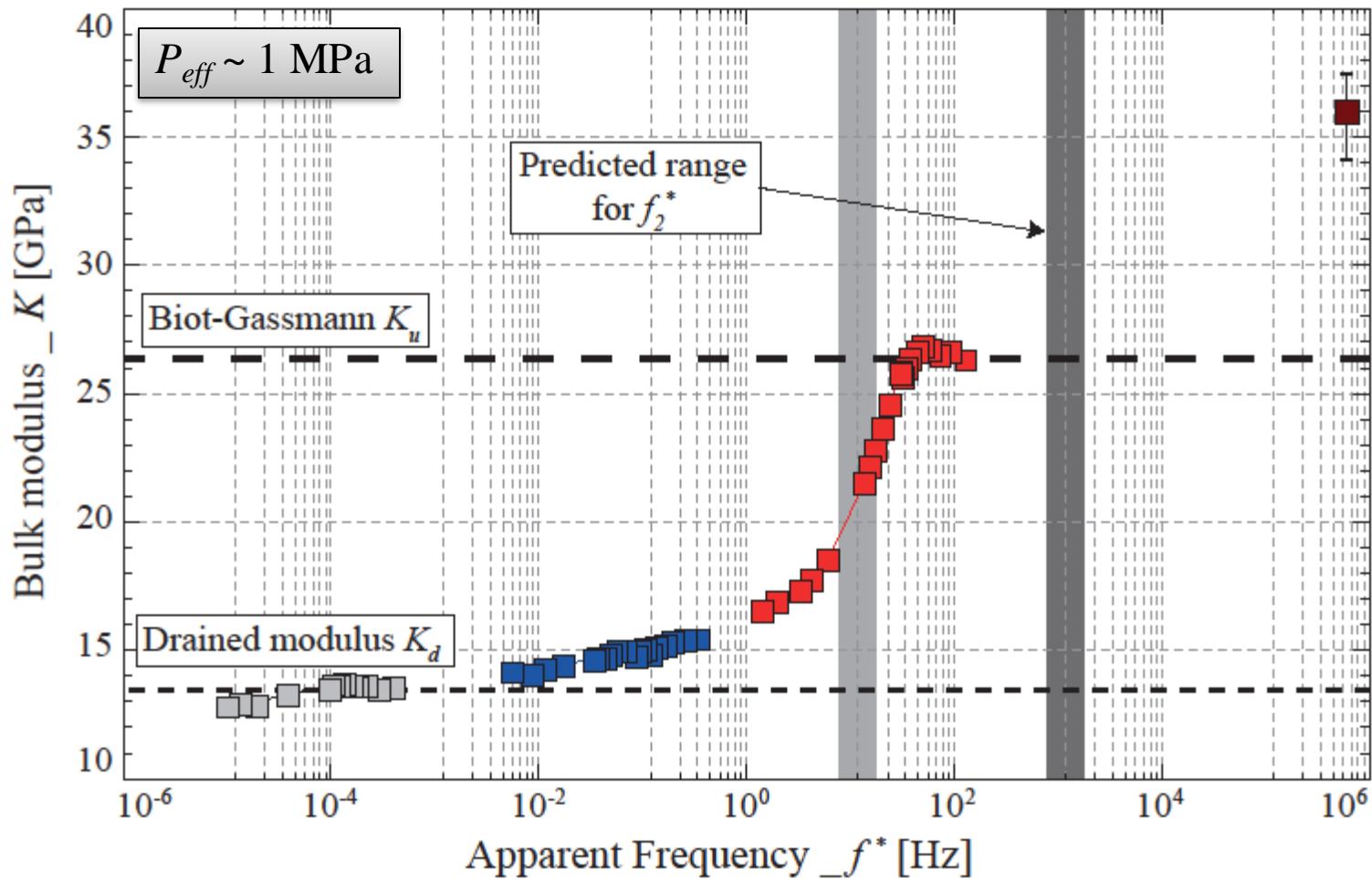
G_u ↔ Undrained shear modulus

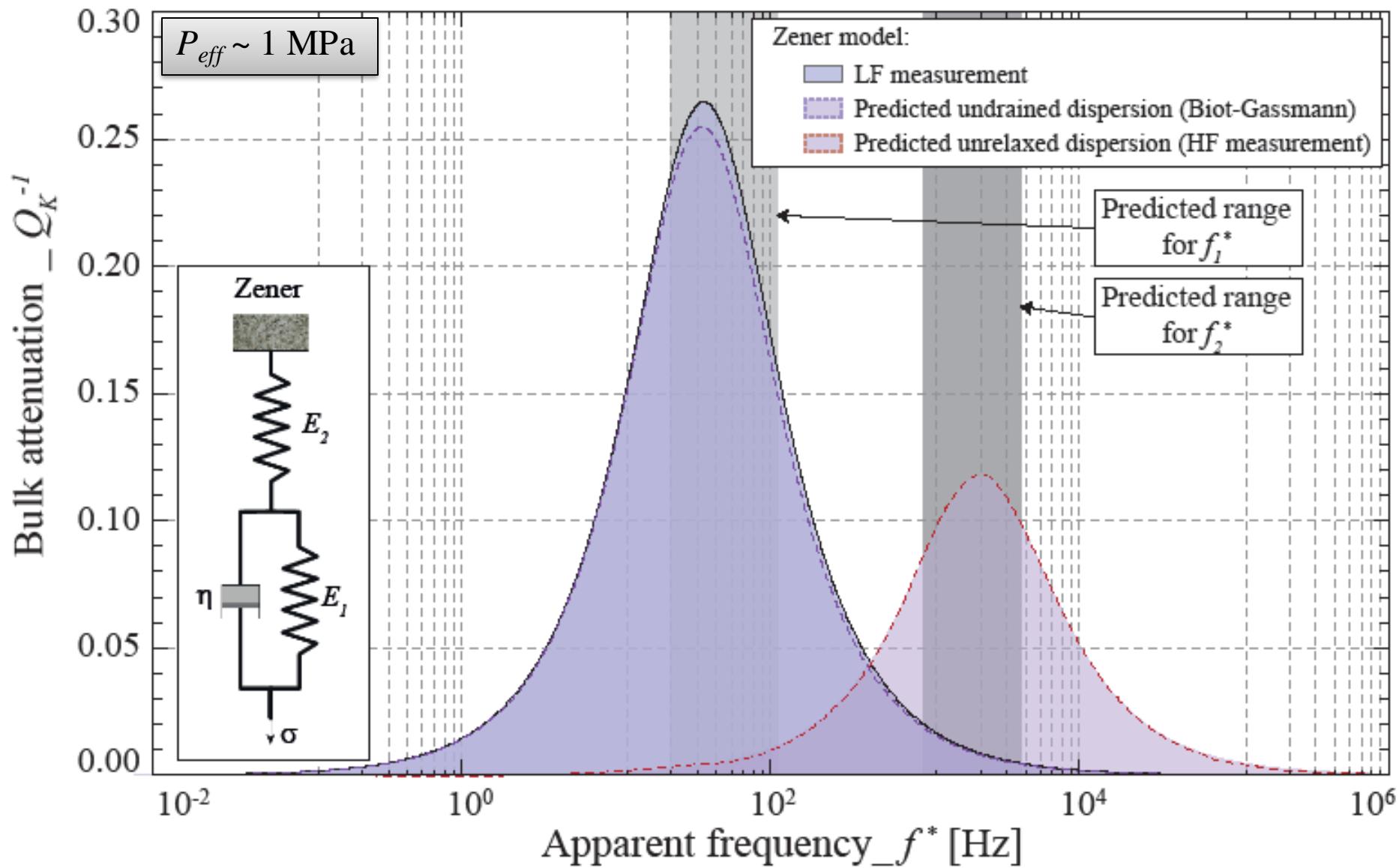
G_d ↔ Drained shear modulus

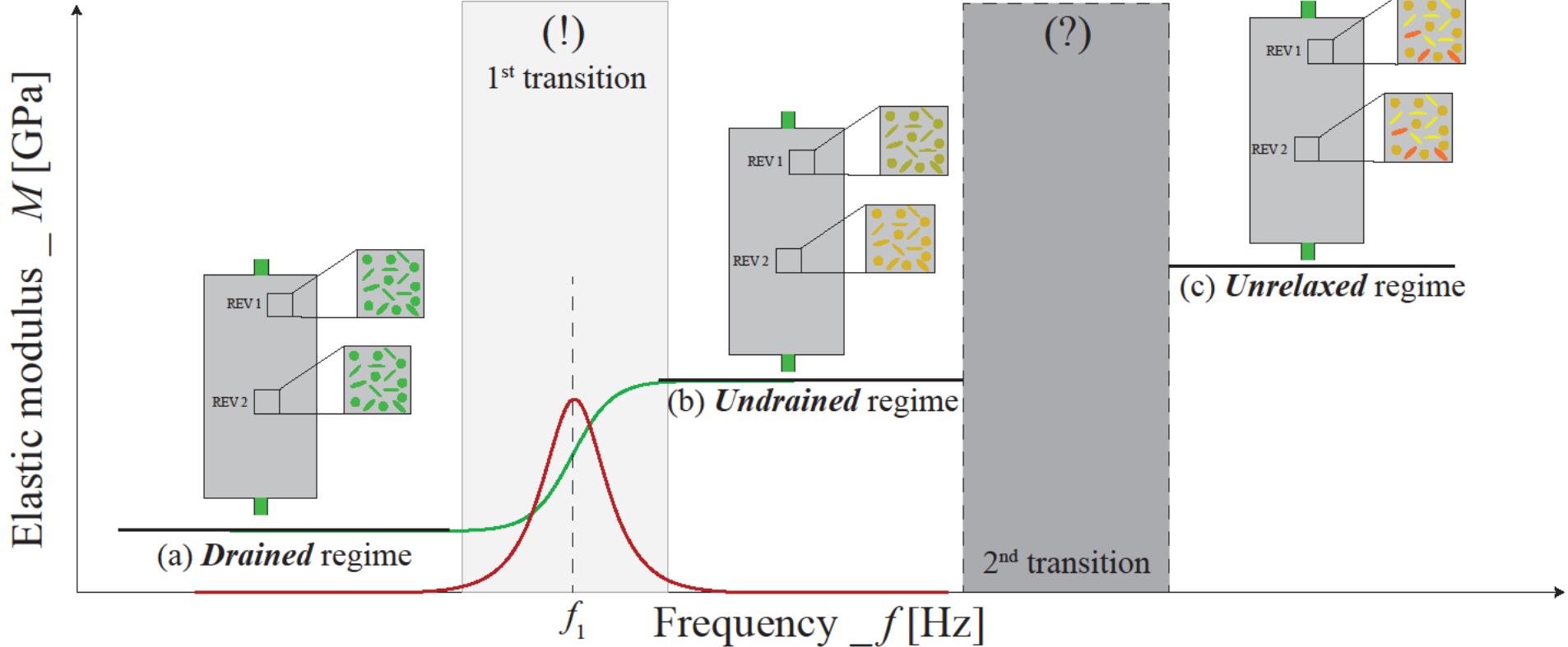










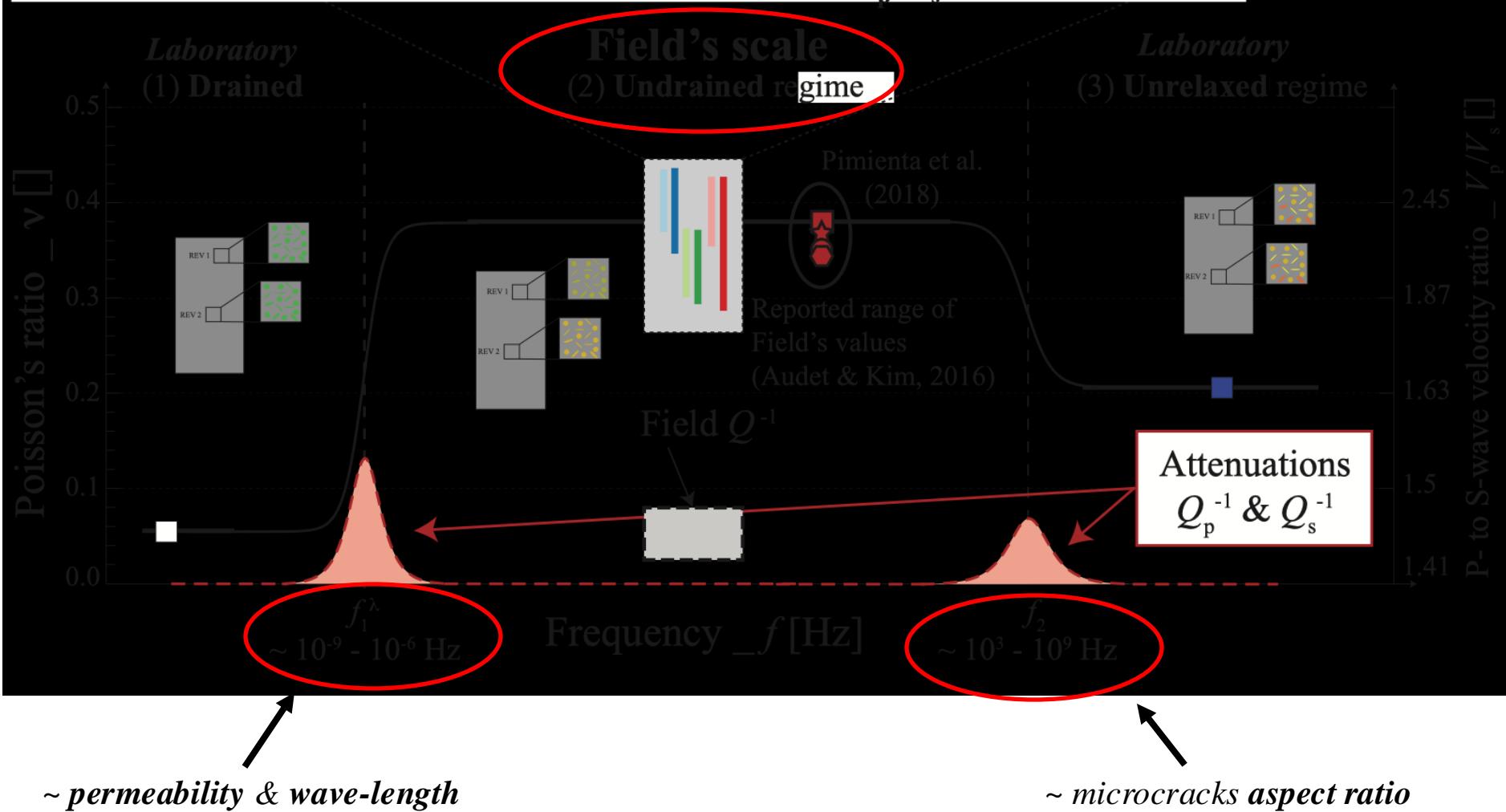


Dispersion/Attenuation
From Drained to Undrained transition

Why does it matter ?

Application to Low Velocity (subduction) Zones (e.g. Audet & Kim, 2016)

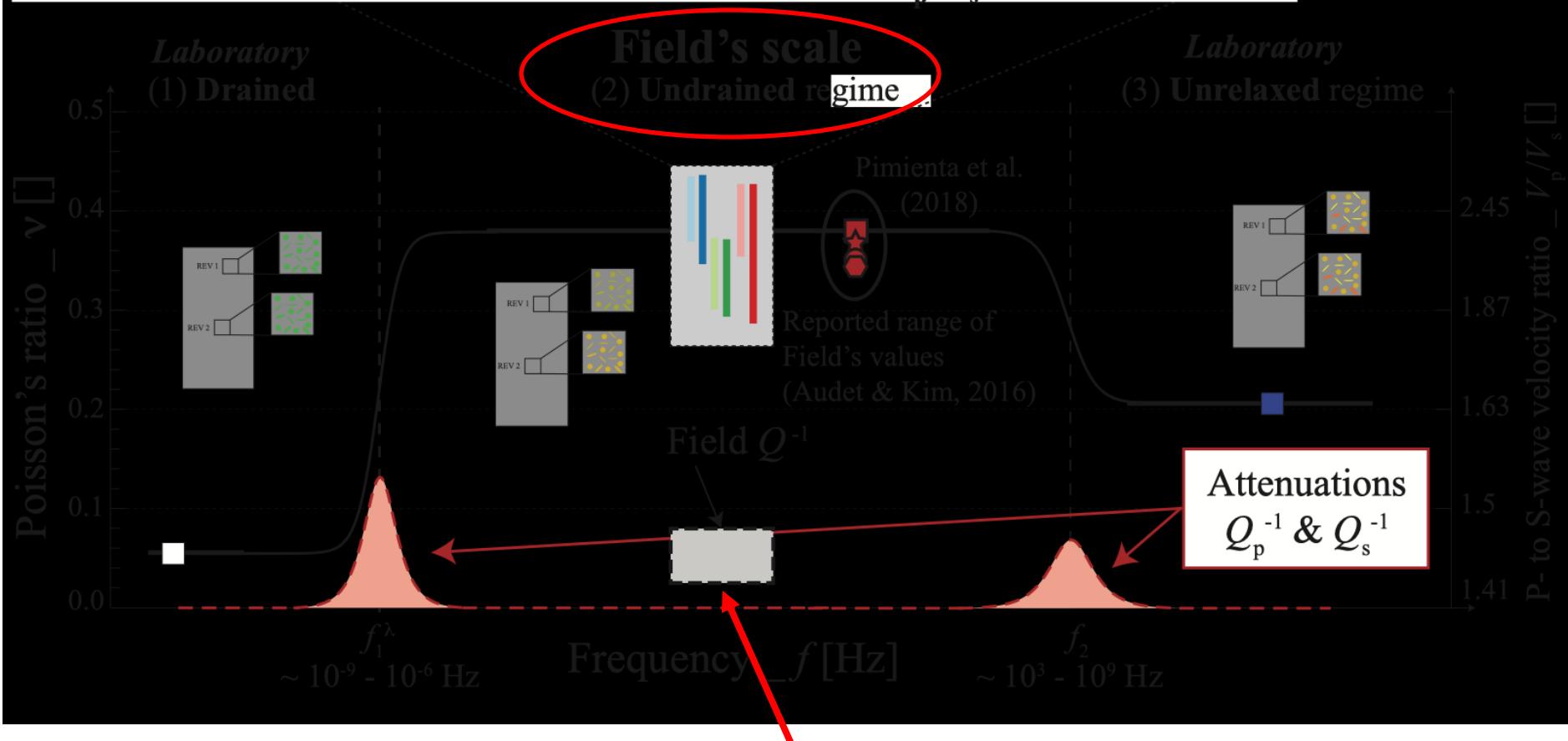
b) Fluid-flow theories : Frequency dependent V_p/V_s & Attenuations



Why does it matter ?

Application to Low Velocity (subduction) Zones (e.g. Audet & Kim, 2016)

b) Fluid-flow theories : Frequency dependent V_p/V_s & Attenuations



Frequency-dependent Fluid flow or viscoelasticity

Cannot explain both V_p/V_s & attenuations @ field scale !?