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|. Radioactivity theory

» Radioactivity logging

Radioactivity is used in several different types of logging tool.
There are those that measure the natural radiation generated by
the formation (passive method), such as the total and spectral
gamma ray logs, and those that measure the response of the
formation to radiation generated by the tool, such as the
neutron, density and litho-density logs (active method).
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|. Radioactivity theory

» Radioactivity theory

* Radioactivity is a fundamental property of the
structure of all matter.
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|. Radioactivity theory

» Radioactivity theory-lsotopes
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|. Radioactivity theory

» Radioactivity theory-lsotopes

There are five main methods whereby an unstable isotope
can gain stability by losing energy. These are:

- Emission of an a particle, which is a helium nucleus ,He?, ]
and carries two positive charges.

-Emission of a B- particle, which is a negatively charged high
energy electron originating in the nucleus together withan —
anti-neutrino, v.

- Emission of a B+ particle, which is a positively charged high
energy positron originating in the nucleus together with an
neutrino, v.

- Emission of a gamma rays, vy, which are high energy
photons (electro-magnetic waves) and have no mass
and carry no charge.

- Electron capture, which involves an electron being
captured by the nucleus.

Under some circumstances neutrons may also be expelled
from a material, but this is not a spontaneous decay.
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|. Radioactivity theory

» Radioactivity theory-lsotopes
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Gamma rays are the most important in petrophysical logging because they have the
highest penetration of all the radiations except neutrons. Their penetration ability means
that they can be detected through several centimetres of cement casing. Alpha and beta

particles have very limited penetration ability, being stopped immediately by any solid
material.



|. Radioactivity theory

» Radioactivity theory-lsotopes

Most isotopes found naturally in rocks are either stable, present in
insignificant amounts, or generate insignificant amounts of radiation. There
are, however, a few which are significant. These are:

* The Potassium isotope ,K*° (the stable forms are ;K39 and ;4K*1).
 The Thorium series isotopes.
* The Uranium-Radium series isotopes.

1.46 MeV
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|. Radioactivity theory

» Radioactivity theory-lsotopes
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|. Radioactivity theory

» Radioactivity and minerals

Table 10.1 Gamma radiation from common minerals and lithologies (after Pirson. 1963).

Mineral or Lithology Composition Gamma Radiation (API
Units)
Pure Mineral
Calcite CaCO; 0
Dolomite CaMg(CO;); 0
Quartz 810, 0
Lithology
Limestone - 5-10
Dolomite - 10-20
Sandstone - 10-30
Shale - 80-140
Evaporites
Halite NaCl 0
Anhydrite CaSO; 0
Gypsum CaS0,(H,0), 0
Sylvite KCl 500
Carnalite KC1 MgClL,(H,0)4 220
Langbeinite K;SO4(MgSOy); 2900
Polvhalite K;S0O:MgS0,4(CaS0,),(H>0), 200
Kainite MgSO,KCI(H-0); 245
Others
Sulphur S 0
Lignite CHg 40 Noo15 Oo.221 0
Authracite CHy 358 No.gos Op.022 0
Micas - 200-350

Figure 10.2 shows the range of gamma ray values generated by common lithologies. Note the
particularly high values for potash beds. which contain a large amount of potassium-40. and organic
shales. which contain enhanced uranium associated with their organic nature.
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|. Radioactivity theory

» Radioactivity and rocks

Gamma Ray Value (API)
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|. Radioactivity theory

> Scattering and attenuation

Once the gamma rays have been emitted they travel through materials (formation, fluids,
mud cake and drilling mud) and interact with them. There are three processes that occur,
and each is applicable to gamma rays with a given energy range. These are:

Gamma rays with energy >3 MeV. These interact with the nucleus of the materials that
they are travelling through and are converted into an electron and a positron in the
process (pair production). The efficiency of the process is low, so these gamma rays may
be measured by a sensor. However, they contribute only small amounts to the overall
signal.

Gamma rays with energy 0.5 to 3 MeV. These gamma rays undergo compton
scattering, where a gamma ray interacts with the electrons of the atoms through which
they are passing, ejecting the electron from the atom, and losing energy in the process.
A gamma ray in this range may undergo several of these collisions reducing its energy
from its initial value to an energy of less than 0.5 MeV in a stepwise fashion.

Gamma rays with energy <0.5 MeV. These gamma rays collide with electrons of the
atoms through which they are passing, and are adsorbed. The gamma ray energy is
either used to promote the electron to a higher energy level or to eject it from the
atom. This process is called photo-electric adsorption, and is important in the Litho-
Density tool.



|. Radioactivity theory

> Scattering and attenuation

Figure 10.3 shows the processes of scattering and absorption schematically.
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The number of collisions, hence the reduction in gamma ray energy, and the number of gamma

rays adsorbed is directly related to the number of electrons in the materials through which the
gamma rays pass.

* High count rates =low electron densities
* low count rates = high electron densities.

The electron density is, of course, related to the mean atomic number and bulk density of the
material.
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Il. Natural Gamma ray log

» Gamma ray

- The gamma ray log measures the total natural gamma radiation emanating from a
formation. This gamma radiation originates from potassium-40 and the isotopes of the
Uranium-Radium and Thorium series. The gamma ray log is commonly given the
symbol GR.

- Once the gamma rays are emitted from an isotope in the formation, they
progressively reduce in energy as the result of collisions with other atoms in the rock
(compton scattering). Compton scattering occurs until the gamma ray is of such a low
energy that it is completely absorbed by the formation.

14




Il. Natural Gamma ray log

> Total gamma ray

* Theinitial intensity of gamma ray emission, which is a property of the elemental
composition of the rock.

 The amount of compton scattering that the gamma rays encounter, which is
related to the distance between the gamma emission and the detector and the
density of the intervening material.

15



Il. Natural Gamma ray log

> Principles

The tool consists simply of a highly sensitive gamma ray detector in the form of a
scintillation counter.

Y diffusé
| — Scintillation counter
Campton electron | (Thalium activated Soldium lodide crystal)
photon

« Photocathode

photoelectrons —

- Anodes

> Photomultiplier

by El€Ctrical ey, Energy of the
| pulse gamma RAY
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Il. Natural Gamma ray log

> Principles: spectral gamma ray
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Il. Natural Gamma ray log

> Principles
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Il. Natural Gamma ray log

» Principles
Spectre obtenu avec
A% détecteur a cristal
scintillateur (Nal)

3.2 5
‘ENERGIE (MeV)

| Schiumberger

*Total Gamma ray : Th+U+K ...
-Spectral Gamma ray : (Th,U,K) 2 (Th+U+K) 19



Il. Natural Gamma ray log
> Unit

* Unit: API

APl unit is defined empirically by calibration to a reference well
at the University of Houston. This reference well is an artificial
one that is composed of large blocks of rock of accurately known
radioactivity ranging from very low radioactivity to very large
radioactivity.

The API unit is 1/200th of the difference between the highest
activity formation in the reference well, and the lowest.



Il. Natural Gamma ray log
> Calibration
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Il. Natural Gamma ray log

» Factor affecting samma ray logs

* Logging speed
* Borehole quality/diameter
* Mud type
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Natural Gamma ray log

> Uses of gamma ray log

Determination of Lithology

Determination of Shale Content

Depth Matching

Cased Hole Correlations

Recognition of Radioactive Mineral Deposits

Recognition of Non-Radioactive Mineral Deposits

Radio-isotope Tracer Operations

Facies and Depositional Environment Analysis



Il. Natural Gamma ray log

» Determination of Lithology

GR (API)
0 150
Sand
Unites API. 0 100 200 300 400 500 600 700 800 900 1000 1100 Shale Gaving e é—"?a‘"“g
[ N
Anhydrite ... ) i | } ‘
| [
| ‘ | ; | Sandy Shale _I/
Charbon ... N} 1 ' | i
| ! Shaly J
[ Sandstone —
E-1 ] D B | |
| Sandstone
‘ 1 | ! R = Heavy Mineral
Dolomie .| &= ; : Arkose SST |F _ F or Glaucenite
} ' F F F Band
Calcaire .......c....... y e ‘ Riracamus. BN . r
i ; , sST g bl
| I Organic/ Black
Gres... ... - ‘ Shale "
SSRGS : — | around
\ | Gypsum
) l ‘ { I | Coal
Gres argileux _.._...|  AE———— . | ‘ '
i | | | Limestone - I
| ‘ ‘ . { ‘1 ; T .l.l T )I .'l T j
Sable argileux ....... _— ' i § Relomie Kot N
‘ | ! J | Halite
Argile ... # i | ' honnire
| | e
!‘ i | i Shaly | — "—— )
| [ - i
Argile marine..._.._. ‘ ' ‘ ' Fantng-p -
| f ! ! SST
‘ | | | Shale
I | | Sandy T Line
Potasse ... l
SSE . ecemannd } ‘ +
l | ' Shale

24



Il. Natural Gamma ray log

» Determination of Lithology

Nom Formule chimique Teneur en K (en % de poids)
— FELDSPATHS
e Roches alcalines
Microcline KAI Si; Og triclinique 16 (idéale) a 10,9 (a)
Orthose KAI Si; Og monoclinique | 14 (idéale) a 11,8 (a)
Anorthose (Na, K) Al Si® 0®
— MICAS
e Muscovite (1) KAl (Al Siz O40) (OH, F)2 9,8 (idéale) a 7,9 (a)
e Biotite (1) K (Mg Fe)3 (Al Siz O40) (OH, F); 6,2 a 10,1 (moyenne 8,5)
o lllite Ki-15Als Siz_es

¢ Glauconite

¢ Phlogopite

— ROCHES FELDSPATHOIDES

o Métasilicates
Leucite

¢ Orthosilicates
Néphéline
Kaliophilite

A|1_|_5) 020 (OH)A

Kz (Mg, Fe)z Alg (SigO10)3
(OH)y2

KM93 (Al Si3 010) (F, OH):

KAl (SiO3);

(Na, K) Al Si Og
KAl Si O4

3,51 4 8,31 (moyenne 6,7)
3.2 a 5,8 (moyenne 4,5)

6,2 a 10,1 (moyenne 8,5)

17,9 (idéale)

4238

— AUTRES MINERAUX ARGILEUX*

Montmorillonite (1)
Chlorite (1)
Kaolinite (1)

0 a4 4,9 (b) (moyenne 1,6)
0 a 0,35 (moyenne 0,1)
0 40,6 (c) (moyenne 0,35)

25



Il. Natural Gamma ray log

» Determination of Lithology
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Il. Natural Gamma ray log

» Determination of Lithology : sandstones

Radioactive sandstones fall into one of six main groups, which are classified below:
e Clay-Bearing Sandstones. If clay minerals are known to be present in the rock

* Arkose sandstones. These contain feldspars, which have a significant potassium
content, but a low thorium content. The Th/K ratio will therefore be low (<1 ppm/%)

* Micaceous sandstones. These contain mica, which has a potassium composition
that is less than feldspars and a thorium content that is higher. The Th/K ratio is
usually between 1.5 and 2.5 ppm/%.

» Graywackes. These contain both feldspars and micas, and give Th/K ratios
intermediate between 1 and 2.5 ppm/%.

* Greensands. These contain glauconite, which is a mica group mineral containing iron,
magnesium and potassium. It has Th/K ratios between 1 and 1.5 ppm/%.

* Heavy mineral-bearing sandstones. The heavy minerals are often abundant in either
U or Th or both. The U and Th values are usually sufficiently high to ensure high U/K
and Th/K ratios even if thesandstones also contains potassium in the form of
feldspars, micas or glauconite. Typically Th/Kvalues will be above 25 ppm/%, and U/K
values will be above 20 ppm/%.



Il. Natural Gamma ray log

» Determination of Lithology : sandstones
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Il. Natural Gamma ray log

> Determination of Lithology : carbonate

Table 12.1 Interpretation of spectral gamma ray data in carbonates.

K

Th

U

Explanation

Low

Low

Low

Pure carbonate. no organic matter or
oxidizing environment.

Low

Low

High

Pure carbonate. organic matter.
reducing environment.

Low

High

Low

Not a carbonate. or shaly carbonate
with rarer low K high Th clay
minerals, no organic matter or
oxidizing environment.

Low

High

High

Not a carbonate or shaly carbonate
with rarer low K high Th clay
minerals. organic matter. reducing
environment,

Low

Low

Glauconite carbonate. no organic
matter or oxidizing environment.
Also consider K-bearing evaporites.

High

Low

High

Algal carbonate. or glauconite
present, organic matter. reducing
environment,

High

High

Low

Shaly carbonate. no organic matter
or oxidizing environment.

High

High

High

Shaly carbonate. organic matter.
reducing environment.

Note: Stvlolites can locally concentrate U, clays and organic imatter.
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Il. Natural Gamma ray log

» Determination of Lithology : evaporites

Table 12.2 Potassmum-bearing evaporites.

Name Composition K Density Pe Porosity AT

(wt%) [FDC] | [LFDC] [CNL] [Sonic]

(g/em’) | (ble) (%) (Us/ft)
Sylvite K(Cl 52.44 1.86 8.51 -3 74
Langbeinite | K,SO,(MgS0,), 18.84 2.82 3.56 -2 52
Kainite MgSO, KC1(H,0), 15.7 2.12 3.5 =60 -
Glaserite (K Na),S0O, 24.7 2.3 . - -
Carnalite KC1 MgCl,(H,0)s 14.07 1.57 4.09 =60 83
Polyhalite | K5SO4 MgSO,(CaSOy), 13.37 2.79 4.32 25 57.5
(H.0)




Il. Natural Gamma ray log

> Determination of Shale Content

GRlog _ GRmin

GR ~ GRmax — GRmin

courbe C.P.S.

I-p > Gamma ray index
50 150 GR Y

GR;,; » Gamma ray reading at the
depth of interest

GRargile

Fuati (B GR,,i, — the minimum gamma ray reading
I . (usually the mean minimum through a clean
sandstone or carbonate formation)

GR,, 4 — the maximum gamma ray reading
(usually the mean maximum through a shale
or clay formation )

IGR = (120-70)/(155-70) = 0.59 = 59%
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Il. Natural Gamma ray log

» Gamma ray index (IGR) vs Volume of shale (Vsh)
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Il. Natural Gamma ray log

> Facies and Depositional Environment Analysis

Shape Smooth Environments Serrated Environments
Cylinder Aeolian dunes Deltaic distributaries
Tidal sands Turbidite channels
Represents Fluvial Channels Proximal deep-sea
uniform fans
deposition.
Bell Shape Tidal sands Lacustrine sands
Alluvial sands Deltaic distributaries
Fining Braided streams Turbidite channels
upwards Fluvial channels Proximal deep-sea
sequences. Point bars fans
Funnel Barrier bars Dastributary mouth
Shape Beaches bars
Crevasse splays Delta marine fringe
Coarsening Dastal deep-sea fans
upward
sequences.

Floodplain
Shale

Channel

A :
CHANNEL ggradation

POINT BAR in-Channel

Deposit

Erosion w/
Lag Deposit

ShaleShale

Prograding

MARINE Marine Bar

SAND BAR
Lower
Shoreface
Aggradation

Offshore
Marine Shale

Fan
Shift

Prograding
DEEP SEA Fan
FAN
Outer Fan
Deposits

Deep-Sea
Shale

U 1 ™

(D’aprés Rider,
1996) 33



lIl. Density log

» Formation density log

The formation density log measures the bulk density of the formation. Its main use is
to derive a value for the total porosity of the formation. It s also useful in the
detection of gas-bearing formations and in the recognition of evaporites.

* A formation with a high bulk density, has a high number density of electrons. It
attenuates the gamma rays significantly, and hence a low gamma ray count rate is
recorded at the sensors.

 Aformation with a low bulk density, has a low number density of electrons. It
attenuates the gamma rays less than a high density formation, and hence a higher
gamma ray count rate is recorded at the sensors.

electrons ]

ne = number density of electrons in the subtance [ -

N = Avogadro’s number (= 6.02 x 10%3)
NZ

Ne = — Py Z = Atomic number (no unit)

A = Atomic weight [%]

pp = bulk density of the material [#]



lIl. Density log

>

Longueur hars tout 144.5 cm

Principle

The tool consists of:

A radioactive source. This is usually caesium-137 or cobalt-60, and emits gamma
rays of medium energy (in the range 0.2 — 2 MeV). For example, caesium-137
emits gamma rays with a energy of 0.662 MeV.

A short range detector. This detector is very similar to the detectors used in the
natural gamma ray tools, and is placed 7 inches from the source.

A long range detector. This detector is identical to the short range detector, and is
placed 16 inches from the source.

Téle de sonde
Mudcake
(C T S
Q
2 c
L O LS
+ ' n in
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e
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lll. Density log

» Principle
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lIl. Density log
> Factor affecting the log density

* Logging Speed (400 m/h)
=>»vertical resolution = 26 cm

* Borehole quality

 Mud type

 Mud thickness ( correction needed)



lIl. Density log

> Uses of formation density log

 The main use of the formation density log is to determine
porosity.

e |dentification of Lithology

* |dentification of Evaporites

* Shale Compaction, Age, and Unconformities

* Qverpressure

* Recognition of Accessory Mineralogies



lIl. Density log

> Porosity

Determination of porosity: | p, = (1 - @) 0,4 + ¢pf

With : pf= Prmg Sxo * Prcl1-Sxo)

S,o=Saturation of the mud filtrate in the invaded zone
P fluid density

Pma= Matrix density

Pp= rock density

Pms= density of the mud filtrate

Pnc= density of the hydrocarbon or water



lIl. Density log

> Uses of formation density log

Mineral Grain Density (g/ cm’) Mineral Grain Density (g/ cm®)
Quartz 265 Halite* 2.16
Calcite 2.71 Gypsum™ 2.30
Dolomite 2.87 Anhydrite* 2.96
Biotite 2.90 Camalite™ 1.61
Chlorite 2.80 Sylvite* 1.99
Ilite 2.66 Polyhalite* 2.78
Kaolinite 2.594 Glauconite 2.30
Muscovite 2.83 Kainite 2.13

*Evaporites
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lIl. Density log

> Calibration with core porosity
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lIl. Density log

> ldentification of Lithology

> |dentification of Evaporites

Average Sediment
Clays & Shales
Sandstones
Limestones & Chalk
Dolomites
Anhydrite

Halite

Coals
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lIl. Density log

» Shale Compaction, Age, and Unconformities
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V. Neutron log

The neutron log is sensitive mainly to the amount of
hydrogen atoms in a formation. Its main use is in the
determination of the porosity of a formation
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V. Neutron log

> Principle

The neutron tool emits high energy (4.5 MeV) neutrons from a radioactive
source. They move very fast, and their energy is related to their speed. They
are called fast neutrons. The neutron sources used in logging are a mixture of
two elements (i) a source of alpha radiation such as radium, plutonium or
americium, and (ii) beryllium-9. The alpha particles from the radium,
plutonium or americium interact with the beryllium-9 in an atomic reaction
that produces carbon-12, a fast neutron and gamma rays.

2Be+3He = 2C+in+y




V. Neutron log

> Principle: Neutron Scattering

Phase de ralentissement

Neutrons S ‘-. e
rapides '

-» N7

Neutrons
,‘ = thermalisés
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V. Neutron log
> Tools

There are 2 main types of neutron tool, which are:
-Gamma ray-neutron tool (Neutron source, Gamma
ray detector)

=>»run in open and cased hole, sensible to chlorine

-Neutron Neutron tool (neutron source, Neutron

detector)
-> Operate in cased hole. Phase de ralentissement
Z?;f: ’ . ki ‘:' ' o mim'ﬂ:és > Q LOG Neutron-Neutron

Phase de capture

peuons : > Je- P > LOG Neutron-Gamma
thermalises =+ ° ;¢ ~——
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V. Neutron log

> Principle: Neutron Scattering

Fast Neutrons

| T Neutron Tool Release Energy

1000
100

10

Neutron Energy (eV)

0.1

0.01

0.001

i Approx. 1 ms |

Emission >
Time Time

Figure 15.3 The slowing of fast neutrons with time by elastic collision with formation nuclei.
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V. Neutron log

> Principle: Neutron Scattering

Energy loss from the neutron is most efficient when the masses of
the neutron and the nucleus are the same, and becomes much less
efficient when the nuclei of the formation material are more massive
than the neutron.

=>» Detection of Hydrogen

1

1

g \_____________ﬂydrogen

o ——

& 0.1 [~

= O

S

o

o Oxygen

4

E 0.01 \

P Silicon L~

0.001 g ’
0.1 10 1000 10 10

Neutron Energy (eV) 49



V. Neutron log

> Principle: Neutron Scattering

Dégecteur : i v Al T Neutrons
sHe -' R - \ i Therrmques
‘M
e e
;",":,'; o 2 -'.:-;‘:: 7
AL R A
a;v
Ay 48 .Neutrons
Source SRHUNE, P e Rapldes
Am O, Be il Ze " o
SN R
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V. Neutron log

> Hydrogen index

We can define a partial concentration of hydrogens per unit mass (CH), .. of a
material as the mass of hydrogen atoms in the material divided by the mass of all
the atoms of all elements in the material.

nyApy
% niA; + ngAy

(Ch)mass=

Ay = Atomic mass of hydrogen atoms in the material

A; = Atomic mass of non-hydrogen element i

ny = number of hydrogen atoms in a molecule of a material

n; = number of non-hydrogen atoms of element i in a molecule of the material

i is summed over every non-hydrogen element in the material

Thus, for pure water (H20), where the atomic mass of hydrogen is 1.0 and the atomic
mass of oxygen is 16.0, the partial concentration of hydrogen (CH)mass = (2X1.0)/(1X16.0
+2X1.0) = 1/9.



V. Neutron log

> Hydrogen index

the Hydrogen Index of a material is defined as the partial concentration of
hydrogens per unit volume relative to water. So, if the hydrogen index of water
is constrained by the definition to be unity, and water has a partial

concentration of hydrogens per unit volume of 1/9, the hydrogen index of a
material is :

B IngAy
XA + nyAy Pb

HI

Ay = Atomic mass of hydrogen atoms in the material
A; = Atomic mass of non-hydrogen element i
ny = number of hydrogen atoms in a molecule of a material

n; = number of non-hydrogen atoms of element i in a molecule of the material

i is summed over every non-hydrogen element in the material



V. Neutron log

> Hydrogen index

Table 15.1 Hydrogen index calculations for some reservoir minerals and fluids.

Compound Formula A; n; Ny P HI
Pure water H-0O 16 1 2 1.000 1.000
Oil (CH,), 12 1 2 0.780 1.003
Methane CH, 12 1 4 P 2.25%p,,
Gas Cy1Hyo 12 k. 4.2 P 2.17xp,
Quartz S10, 28. 16 1.2 0 2.654 0.000
Calcite CaCO; 40,12, 16 . 0 2.710 0.000
Gypsum CaS0.2H,O | 40.32.16 1 4 2.320 0.4855

The porosity read by the neutron tool is related to the actual

porosity in the formation by :

by = ¢[H1infSX0 + HIp (1 — Sxo)]




V. Neutron log
» Porosity vs Hydrogen index

Borehole-

FAR
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Long "1
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Detector 5

Shont .
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Neutron *
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V. Neutron log

» Factor affecting Neutron log

Neutron logs are affected :

- The Shale Effect. Shale contain clays that have a significant amount of bound
water molecules on their surfaces. This increases the hydrogen index of the
formation. Even very low porosity shales can give erroneously high porosity

readings due to the presence of these bound waters.

- The Chloride Effect. Chlorine is a good absorber of neutrons, and can lead to
overestimations of porosity if present either as formation fluid or mud filtrate.

- Borehole Quality
- Mud Type

- Presence of Gas (underestimate the porosity) ( gas density =0.1)
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V. Neutron log

SHALE

QUARTZITE ¢0
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* Scale: neutron porosity units %
B0 48 36 2 12 =g

SON=-2% |
r_J
#{N = 6.5%) l
)
PpN= 0% !
*(ON=10.0%) !
¢N= 1.0%
#(6N =18.0%) |
i
I
I
B oo e )
| gas
I__l effect
|
+(AN = 16.0%) |

shales very variable
\\ GN=75-25%

b

56



V. Neutron log

> Relation Gamma ray & Neutron

NEUTRON POROSITY \ [45 % (') -15
(limestone matrix) 42 36 30 24 18 12 6 -6 -12
= 4 rds—l 1T T Ty T —19;,?':"] L e S S I e 1—255
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_LITH. ‘
el R<tdensity
shale : } =5 ___’_df,i
1 1 4 L~ i
: T : I : T neutron 0
I I = m
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7_J__I—J I <g
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1 . IJ;IJ <?’:‘
[—:—J_lr[ : '/‘—/ line of
sk r
o e e ‘dﬁ . ze o.
:T ITTT S 52 « POrosity
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V. Neutron log

> Relation Gamma ray & Neutron

45 NEUTRON POROSITY INDEX % _15
42 36 30 24 18 12 - 6 0 -6 -12
. ‘—I"‘—r“l—’I_l_I'"!"F_l_l'—l_l"—l—T—’_l_"l_l_l‘"'
I H95 BULK DENSITY g/cm3 .
E 93 214 22°25 50 289 27 28 3%
- — T T T | T ¥ T 17 T T T 717 T T 1 T
:‘ve separation| | "/”///———’ Volume of shale
shale
SANDSTONE [.-.0.." b__‘: —ve separation
$15% |00 T
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I 1
| { 1
¢15% 1
1 { |
| 1
1 T 1 ; |
A 4 e o
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77 |
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V. Neutron log

> Relation Gamma ray & Neutron
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