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From Drucker-Prager to Breakage Mechanics
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Grain Breakage

Decrease in porosity
Contact Sliding

From Drucker-Prager to Breakage Mechanics
Increase in porosity
Contact Sliding
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From Drucker-Prager to Modern Geomechanics

Grain Breakage
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From Drucker-Prager to Modern Geomechanics
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Imaging
Methods
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X-ray
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X-ray Methods
measuring grain resolved
stress & strain
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X-ray Computed Tomography (Micro-CT)

High resolution imaging of internal structures of any materials
from mm scale down to the sub micron scale

It is three-dimensional and non-destructive
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Examples



Principles of X-ray Imaging



Beer-Labert Law

Path Length

4
I = Igexp K2

Attenuation Coefficient

The attenuation coefficient for x-rays tends to follow the atomic number

Iron : Target Material: |He v
Aluminum 5
Concrete X-Ray Energy [keV]: 100 ->10:
5102 Target length [mm]: 10 |
PMMA 1 |
Tissue-Soft Pressure (only gases) [atm]:

Calculate! ‘

http://web-docs.gsi.de/~stoe exp/web programs/x ray absorption/index.php KeV->Kilo Electron Volts



http://web-docs.gsi.de/~stoe_exp/web_programs/x_ray_absorption/index.php

X-ray to Radiography

A panel detector records the transmitted x-ray and converts it to a 2D matrix of
values (called Radiograph)
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Image quality is controlled by the exposure time and intensity of transmitted x-ray



X-ray Sources

Synchrotron

In-house Facilities
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X-ray Sources

Synchrotron

In-house Facilities




X-ray Imaging Approaches

HP-TACO 2D X-ray
50-MPal T - Detector

/1200
radiographs
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- B el X-ray Imaging at the European
i - N SP®  Synchrotron Radiation Facility?

1Shahin and Hurley, RS/, (2022). 2Meyer et al. (in prep) N (. t




X-ray Beam Configuration

X-ray sources used in CT feature either a Cone Beam configuration or a Parallel Beam
configuration
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Resolution

Image resolution indicates the level of details microstructures are characterized through
imaging and is:

* In cone beams: varies depending on the source-sample-detector distances

* |In parallel beams: geometry independent

i ; 20 micron/voxel
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Resolution
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From Radiography to Tomography

X-ray tomography is acquired through successive scans of a

sample rotating 360 degrees at small increments. Algorithms
are used to reconstruct 3D visualization (tomography) from
the 2D X-ray projections (radiography)

Synchrotron tomography 360-degree
sample rotation
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View of angular quartz on scintillator during
360°sample rotation.
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From Radiography to Tomography
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Applications in Geomechanics



First Applications

-

Roscoe (1970) Geotechnique
Cambridge University




First Applications

Jacques Desrues
Laboratory 3SR
Univ. Grenoble Alpes

Desrues et al (1996) Geotech.



In-situ Imaging with Mechanical Testing
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In-situ Imaging with Mechanical Testing

Johns Hopkins University
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In-situ Imaging with Mechanical Testing

course=10

Experiments up to 150 MPa Confining Pressure o
Shahin & Violay (in prep.)



Example 1: In-situ Imaging with Mechanical Testing

Compression experiments under 15 MPa and 35 MPa on Ottawa sand specimens
with in-situ X-ray Imaging
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In-situ Imaging with Mechanical Testing

Compression experiments under 15 MPa and 35 MPa on Ottawa sand specimens
with in-situ X-ray Imaging
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Example 2: Tracking Saturation of N2 over Time

Core sample Micro-CT Porosity with medical CT
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Example 3: Water Distribution during Soil Wetting and Drying
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Example 3: Water Distribution during Soil Wetting and Drying

G. Khaddour (2015) PhD Thesis



Example 4: Assess Permeability In Deep Earth

Synchrotron X-ray Tomography Images

Meyer, Shahin, et al. (submitted)






Example 4: Assess Permeability In Deep Earth

Local and directional
permeability can be
qguantified

Meyer, Shahin, et al. (submitted)
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Image Analysis



Image Analysis for Quantitative Insights

A tomography image is a 3D structure with shades of gray that should
be processed to extract meaningful quantities:

- What is what shall be identified
- Images may require polishing to remove defects

- Quantify morphological, mechanical, and or hydraulic properties



Image Analysis for Quantitative Insights

To extract quantities, we need to process the tomography images

s0000

50000

40000

Gray Value

30000 |

How can we tell
the computer that
this is solid and

Tomography image

. . 40 60 80
this void? . Distance (pixels)

Gray shades throughout the yellow line



Image Analysis for Quantitative Insights

Beam Hardening may impact imaging quality

X-ray source

With beam hardening artifacts ~ Without beam hardening artifacts

https://imaging.rigaku.com/blog/what-is-beam-hardening-in-ct



Image Analysis for Quantitative Insights
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Image Analysis: Phase and Structure

To extract quantities, we need to process
Tomography Image the tomography images
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Image Analysis: Phase and Structure

Filters may be needed to enhance image quality

Tomography Image . ) .
Mean Filter Median Filter
et Replaces the pixel value by the Replaces the pixel value by the
Enhance Image mean value of the pixel itself and median value of.the plxel |t§elf
° the surrounding pixels within a and the surrounding pixels within
- given range. a given range.
23 |25 |30 |35 |30 23 |25 |30 |35 |30
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Segmentation
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Ando, Univ. Grenoble, (2012). Stamati, et al., JOSS, (2020).



Image Analysis: Phase and Structure

Filters may be needed to enhance the image quality

Tomography Image

Mean Filter Median Filter

Enhance Image

Binarization

Segmentation

Labeling

Ando, Univ. Grenoble, (2012). Stamati, et al., JOSS, (2020).



Image Analysis: Phase and Structure

Phases are separated based on the gray shades histogram
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Image Analysis: Phase and Structure

Phases are separated based on the gray shades histogram
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Image Analysis: Phase and Structure

Watershed Transform

Tomography Image eee

Enhance Image

Binarization

Segmentation

Labeling




Image Analysis: Phase and Structure

Watershed Transform

4
Tomography Image eee
bw Distance Transform (bwdist)
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Image Analysis: Phase and Structure

Watershed Transform
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Quantitative Insights
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2. Specimen Scale Deformation Fields (meso-scale)

Digital Image Correlation allows characterize spatially-resolved deformation field rising and
evolving during deformation
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Subset-based digital volume correlation (DVC)3 is well-suited for
geomaterials. Microstructure provides a “speckle pattern”.

Pan and Wang, Opt. Lasers Eng. (2020)



2. Specimen Scale Deformation Fields (meso-scale)

Digital Image Correlation allows characterize spatially-resolved deformation field rising and

evolving during deformation
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3. Grain Kinematics (micro-scale)

Characterize grain kinematics through Discrete Digital Image Correlation:
3 Displacements + 3 Rotations
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https://www.spam-project.dev/docs/tutorials/tutorial-04-discreteDIC.html



3. Grain Kinematics (micro-scale)

Starting from grain kinematics, contact mechanisms including sliding and twisting can be
guantified
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Image Analysis Exercise



Exercise 1

In this exercise, we will process two tomography scans at the beginning of the
experiment and after deformation
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Exercise 1

1- Get the binarized image of SO and S6
2- Grain size distribution for SO

3- Porosity Map for SO and S6
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Exercise 1

T e e 1. Run Step2 Porosity Map.m

' The computed porosity map will be
_ stored in the folder of the images

- (Por*.tif)

' Upload Por*.tif onto Image)

Zoom in

Adjust color bar LUT and select (fire)
ctrl+shift+c to adjust the color bar
Press (set) and assign minimum and
maximum of (260 | 400) then OK

A porosity value of 324 indicate 0.324
(divide by 1000)
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