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Preface

This book is the result of several years of research into the modelling and efficient solution
of problems in transportation planning and related areas. A previous version appeared as
a long survey in my licentiate thesis ([743]) presented at the Department of Mathematics,
Linkoping Institute of Technology, and received a positive response from some leading
researchers in the field of transportation research. Their positive criticism inspired me to
further develop the survey into what has become the present book.

The aim of this book is to provide a unified account of the development of models and
methods for the problem of estimating equilibrium traffic lows in urban areas, from the
early days of transportation planning heuristics to today’s advanced equilibrium models
and methods. Also, the aim is to show the scope and—just as important—the limitations
of present traffic models. The development is described and analyzed using the powerful
instruments of nonlinear optimization and mathematical programming within the field of
operations research. The book includes historical references as well as many recent devel-
opments, and aims to clarify the close relationships between several lines of development
by placing them in a new, unifying framework.

The first part of the book is devoted to mathematical models for the analysis of trans-
portation network equilibria. Chapter 1 describes the traditional transportation planning
process of which traffic assignment is a central part. The development of traffic assign-
ment heuristics is described. Chapter 2 analyzes the basic models of traffic assignment,
based on the principles of Wardrop. Existence, uniqueness and stability results are given.
Extensions of the basic models, including non-deterministic travel cost perceptions and
additional flow relationships modelled through the introduction of side constraints, are
discussed. Chapter 3 analyzes traffic equilibrium models for general travel cost functions
such as variational inequality, nonlinear complementarity, and fixed point problems. The
recent development of optimization reformulations of asymmetric variational inequalities
is accounted for in detail.

The second part of the book is devoted to methods for traffic equilibrium problems.
Chapter 4 gives a uniform description of methods for the basic traffic assignment mod-
els and their extensions discussed in Chapter 2. Important concepts, such as partial
linearization, decomposition, and column generation, are described in detail for general
convex programs, and are subsequently used to describe and interrelate traffic assignment
methods. Chapter 5 gives the corresponding treatment of the general traffic equilibrium
models described in Chapter 3, based on the concepts of cost approximation, decompo-
sition, and column generation. Optimization reformulations of general traffic equilibrium
problems are utilized to derive a new class of traffic equilibrium methods which requires
mild assumptions on the models.

An appendix summarizes the definitions of the concepts most frequently used.

The scope of the material is limited to static models of traffic equilibrium; neither
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dynamic nor combined traffic models are dealt with in detail. The results obtained in this
book can, however, be applied to the analysis and solution of such models also.

In order to economize with the space available, the reader is often directed to other
works for more details. The resulting reference list is extensive—it contains more than
1,000 entries—and serves the additional purpose of being a source for anyone interested
in acquiring deeper knowledge in the field.

I can envisage two main uses for this book. The first is by researchers in transporta-
tion, operations research, and quantitative economics—and those entering these areas of
research—who wish to extend their knowledge of equilibrium modelling and analysis, and
of the foundations of efficient optimization methods adapted for the solution of large-scale
models. The second use is in advanced graduate courses in the areas just mentioned. This
book could provide the basic material for a course in transportation research. A course in
structured mathematical programming, with application to traffic equilibrium problems,
is defined by Chapters 2 and 4, or by Chapters 2-5, the latter including the foundations of
variational inequality models and methods. A course in equilibrium modelling is defined
by Chapters 2 and 3.

The text assumes some familiarity with nonlinear programming theory and techniques.
It would therefore be preferable to combine material from this book with that of a modern
textbook in nonlinear programming; I personally recommend using Bazaraa et al. [43].

A work of this type would be impossible without the help of many people. 1 espe-
cially thank my former tutor Prof. T. Larsson for guiding me through the optimization
landscape, and for his collaboration in research upon which parts of this book is based,
and Prof. A. Migdalas for introducing me to the area of transportation research. The
assistance given by the library staff over the years in gathering many of the references has
been invaluable. Pamela Vang helped in improving the English of the text. The book was
sponsored in part by grants from the Swedish Transport and Communications Research
Board (KFB), Swedish Institute, and the Royal Swedish Academy of Sciences.

Linkoping, June 1994

Michael Patriksson
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Chapter 1

Urban traffic planning

1.1 Introduction

A significant amount of the activity in an urban area concerns the movement of people and
goods between different locations in the transportation infrastructure, and a smooth and
efficient transportation system is essential for the economic health and the quality of life
within the urban region. When analyzing the present infrastructure for future investments
and operating policies, a careful study of the transportation system is therefore among
the most important components of the planning process.

The decades following World War II have seen an enormous increase in the demand
for transportation. A vast majority of this increase is accounted for by the development
of personal transport, which has its roots in the urbanization and the rising standards
of living.! The increase of mobility has, however, also brought many serious problems
into urban regions, such as pollution, increased accident rates, unwanted social effects on
urban life due to highway expansion, and an inefficient use of the transportation system
because of high congestion.

In transportation planning studies alterations of the existing transportation systems
are evaluated with the objective of alleviating the above mentioned problems (among
others), while also utilizing the full range of transport modes available.

Urban transportation planning has been an evolutionary process. Its beginnings may
be traced to the home-interview studies conducted in more than 100 cities in the United
States during the decade following the end of World War II. The concept of small sample
interviews was then combined with cordon line surveys in order to derive patterns of
urban travel. Future traffic usage of urban highway projects was predicted by manually
assigning selected origin-destination (O-D) movements to the routes being planned. In
the early 1950s there were studies investigating land use and traffic relationships because
better estimating methods were needed in order to forecast the travel in the design year.
Methods of forecasting future population and its distribution, trip generation analysis
relating travel to underlying household characteristics (car ownerships, etc.), and planning
for networks instead of single routes were introduced at this time. Improved procedures
were facilitated by the growing use of punch card data processing systems and later by the
increasing capabilities of electronic computers. The latter permitted greater sophistication
in transportation planning because they permitted the examination of more alternatives.
The “modelling” of future land-use plans and future highway and transit systems was
combined with more elegant methods of evaluation. Criteria for determining if plans

!Foulds [371, 372] claims that the growth of vehicle fleets on a world-wide basis is of the order of 15
percent per annum.
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met community objectives (a concept itself not generally introduced until the mid-1960s)
could be increasingly quantified.

The first transportation studies made concerned only highway traffic, and saw the
problem as being that of providing enough capacity for the estimated future demand for
personal transport. Since the 1950s, however, it has been realized that transportation is
not an isolated activity; indeed, the demand for travel facilities is a function of human
land use activity and, conversely, the provision of transport facilities stimulates land use
activity. This development can also be seen in the Federal-Aid Highway Act of 1962,
which states that federally assisted highway projects must be “... based on a contin-
uing comprehensive transportation planning process carried on cooperatively by states
and local communities ...”. As a result of these findings, recent transportation studies
form integrated parts of the overall planning process, and the so called 3C philosophy of
continuing, comprehensive, and cooperative urban transportation planning characterizes
the current status of the process. Transport planners focus more on improving public
transport, as an alternative to the auto mode, in order to reduce highway congestion.

The transportation system is very complex, and its performance depends on decisions
made on many levels of society (the goals and purposes of which may be in conflict
with each other). The process of evaluating, designing and managing such a system can
therefore not be carried out without the aid of properly formulated models.

Depending on the purpose of the transportation study, models may concern differ-
ent components of the transportation system (land use patterns, control policies, trip
generation and distribution, etc.), different levels of aggregation of the physical reality
(macroscopic or microscopic models), different planning horizons (from the use in real-
time traffic management systems up to 20 year forecasts), and be based on different
modelling principles (statistical models, optimization models, simulation models).

As the understanding of the transportation system has grown, together with the in-
crease in availability of computational tools for its analysis, the planning problem has
become more complex. The costs have also increased, due partly to the increase in costs
for the inventory stage, and also because several more alternatives are tested.? However,
viewing these costs against the scale of the plans they produce, the planning costs are less
than one percent of the total ([37]).

1.2 The transportation planning process

The basis of the modelling of transportation problems is a set of assumptions, the most
important ones being that travel patterns are tangible, stable, and predictable, and that
the demand for transportation is directly related to the distribution and intensity of land
uses, which are capable of being accurately determined for some future date ([130]).
Domencich and McFadden [264, Chap. 1] provide one list of criteria which a demand-
based transportation planning model should meet in order to be a practical tool for
policy analysis: it should be sensitive to transportation policy, so that the effects of policy
alternatives can be forecast; it should be causal, establishing the behavioural link between
the attributes of the transportation system and the decisions of the individual. This leads
to the investigation of behavioural models of individual travel demand. Further, it should

2Creighton [187] reports that the costs for obtaining data, prepare and test plans, and produce a final
report for a three-year transportation study, amount to a cost of $1.00-$1.50 per capita, with larger
studies costing less (per capita) than smaller studies. Boyce et al. [106] report that the annual cost of
seven very large studies totalled about $750,000 each per year.
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be flexible, allowing application to a wide variety of planning problems without major

data collection and calibration costs; it should be transferable from one urban setting
to another, allowing reuse without expensive reestimation in each new setting; finally, it
should be efficient, in terms of providing maximum forecasting accuracy per monetary
unit spent on data collection.

The traditional approach to transportation planning is to identify a number of simple
submodels of the whole system, which are then analyzed separately, and most often in
sequence. This transportation planning process can be divided into the following steps:

Step 1

Step 2

Step 3

(Organization and goal definition) The first stage of the process includes obtaining
agreement on the funding, participation, and organizational form, setting up the
committee structure, and arranging for staffing the study. Statements of goals
and objectives of the study are also made.

(Base year inventory) At this stage the data that may be relevant to the analysis
of the transportation system is collected. It includes an inventory of existing
transportation facilities and their characteristics, existing travel patterns deter-
mined through origin-destination surveys and traffic measurements, and planning
factors, such as land use, income distribution, neighbourhood structure, and types
of employment. It also includes the collection of historical data for trend analyses,
such as population growth and car ownership.

(Model analysis) The purpose of this phase is to establish relations among various
quantities measured in Step 2, and to calibrate these relations for the base
year. The relations are usually determined through the use of the following
mathematical models, which are considered in sequence, and where the output
from one model is input to the next.

(a) (Trip generation) This model is used to determine the number of trips origi-
nating and terminating in different zones of the study area. These numbers,
which are sometimes called production and attraction numbers, are usually
defined as functions of socio-economic, locational and land use characteristics
of the zone in question, and are divided into different categories of purpose,
such as work and recreational trips.

(b) (Trip distribution) At this step, formulas are derived to describe the alloca-
tion of trips from a point of origin to the destination zones. These formulas
are typically defined as functions of the production and attraction numbers
of the different zones, produced in step (a), and of the travel costs between
them. In some models, traffic counts are used when determining the trip
matrix.

(c) (Modal split) This model determines the portion of the total number of trips
made between an origin and destination using different transport modes, the
two most commonly considered being cars and public transit. The portions
of trips in an origin-destination relation is normally derived from relative
travel times and costs between modes, and also, in some cases, from the
socio-economic and land use characteristics of the origin and destination,
respectively.

(d) (Traffic assignment) In this model, the origin-destination trips are allocated
to routes in the transportation network, in order to estimate the traffic vol-
umes and travel times on the roads as functions of the network characteristics.
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The underlying behavioural principle in the choice of route is normally that
travellers try to minimize their own travel costs.

Step 4 (Travel forecast) Based on the data collected in Step 1 and trend analyses, future
land use, population distribution, etc., are predicted for a design year. The models
developed and calibrated in Step 3 are then used to estimate the generation and
distribution of trips on the future transportation network.

Step 5 (Network evaluation) If alternative future transportation networks and facilities
are proposed, in this step costs and benefits are compared between their pre-
dicted flow patterns, in order to provide a basis for an economic evaluation of the
proposed new facilities.

In order to achieve a consistent output the steps of the planning process must be
repeated. Indeed, the travel costs of the future transportation network given by Step 4
influence the trip distribution, and even the projected land use and trip generation! This
inconsistency problem can (at least partially) be alleviated by considering parts of the
process simultaneously. Recent research efforts are being made in this direction.

In the sequel, we shall study the different parts of the transportation planning process
in more detail, and outline the most common methods employed for their solution. We will
here concentrate on the models and methods developed within transportation planning
studies, and describe those developed through academic research in subsequent parts of

the book.

1.3 Organization and goal definition

It is important for the result of the transportation study to establish goals and objectives
early in the process, since these will guide the evaluations towards conformity with the
desire of the community ([893, 130]). Traditionally, as already mentioned, the main ob-
jective of the transportation study has been to evaluate alternative highway constructions
for increased personal transport capacity ([862]). Other goals considered have also mainly
been orientated toward traffic functional aspects, such as an increased safety, a saving of
travel time, a reduction of operating costs, and an increase in efficiency and mobility. It is
only during the last 25 years that environmental aspects and the transit alternative have
been considered essential elements of the transportation study. See [984, 37] for a more
detailed description of the goal setting.

The topology of the study area, the population distribution and many other socio-
economic factors vary from study to study. The form of the study may therefore differ
significantly among different countries and regions.

Studies may be of long-range type, in which case the most important questions to be
answered deals with the density and configuration of the future transportation system:.
Short-term plans may include immediate-action programs for arterial improvements. The
scale of the study may also differ; some plans include proposals for new facilities, such as
parking, terminals, and transit lines, while others may describe highway locations with
ramp connections pinpointed, or only deal with single corridors.

The personnel organization of the study can also have several different forms. The
Transportation and Traffic Engineering Handbook [37, pp. 517-518] lists the following
alternatives: A centralized state staff may be an existing agency or a new department
incorporating the necessary multidisciplinary talents. The Chicago Area Transportation
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Study [170], established as an ad hoc joint effort and responsive to a multiagency board,
illustrates the use of a semi-independent organization. A council of governments is a study
organization which may be created under a council made up of elected representatives of
communities within the region. FEstablished planning bodies for metropolitan regions
are sometimes the organizations housing the transportation planning staff. In a contract
study organization consultants under the supervision and monitoring of either a state
representative or local study director perform all or some of the stages in the planning
process. The procedure has been used extensively in the U.S. ([882]).

Regardless of the organization structure, an additional organization must be appointed
to ensure that the activity of the planning staff agrees with the goals and objectives set up
([489]). This organization could comprise of the following committees ([37, pp. 518-520]):

The policy committee includes representatives of agencies participating financially in
the study, as well as officials and executives of local and regional planning organiza-
tions. The function of this committee is to provide budget control, establish regulations
for study personnel, supervise technical matters, establish objectives, assist in the plan
development, and recommend a final plan ([692]). The technical committee includes tech-
nical personnel from agencies represented on the policy committee, and sometimes also
from other local agencies. The function of this committee is to review and evaluate study
methods, assist in developing alternative plans, perform technical evaluations, coordinate
technical service contributions of participating agencies, and enlist the interest of local
agencies in the planning process. The composition and function of the citizens advisory
committee vary with the size of the study area, and the interest in the study objectives
of the communications media. The committee provides the policy committee with infor-
mation on public thinking, and can thus assist in the definition of planning goals and
objectives, improve public understanding of the planning process, and build support for
plan implementation.

1.4 Base year inventory
The inventory stage can be divided into four categories:

(1) (Transportation facilities) Here, the study area is defined, and divided into sectors,
districts and zones. The physical network is represented by a graph, with streets and
road sections represented by links (or arcs), and intersections and trip origins and
destinations by nodes. The boundary of the study area, referred to as the external
cordon, is chosen to approximate the commuter-shed associated with the urban centre.
The zones represent aggregates of trips and socio-economic conditions; the choice of
zones is very important, since the number of zones determines the complexity of
the study, and the wrong choice of zone size and distribution would obscure a lot
of the information in the data collected ([130, 264, 805]).> The number of zones
ranges typically from 10 to 1000, and their sizes from a few blocks to several square
kilometers. Whenever zones are small, their locations may be defined by single points
in the network description, the so called zone centroid nodes.

Next, the characteristics of the existing transportation network are colleted; data
includes measurements of traffic flows, speeds, travel times (or delays), link lengths,
capacities, and the quality of transit service. There are many techniques for measuring
these performance characteristics; some of the data required is recorded automatically
by many traffic control systems, other information can be obtained from census data

([130]).
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(3)

(4)
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(Travel patterns) Data relating to the present-day movement between zones is col-
lected at this stage. Traffic pattern data is required for all combinations of external
and internal movements. The data may be divided into trip mode and purpose. The
goal of this data collecting is to estimate the number of trips made between zones
within the study area, and the number of trips passing through, into or out of the
area.

Movements through the area and external-internal movements are surveyed at the
external cordon, and possibly at an internal cordon or screen line; this is done by
manual or automatic counts. Internal-external movements are surveyed in the home-
interview study and at the external cordon, while internal movements are surveyed
by home-interview studies and, sometimes in addition to check, by an internal cordon
or screen line survey.

The size of the sample to be interviewed depends on the total population of the
area, the degree of accuracy required, and sometimes on the density of the population.
The recommended sample sizes for home interviews are between 4 and 25 percent of
the total population ([130]). For roadside interviews, the sample can be based on
time or volume clustering, or could vary among classes of vehicles ([52, Chap. 4]).

In home-interviews, the information gathered includes address and size of house-
hold, job information, income, number of vehicles, and information about all journeys
made in a previous time period, usually 24 hours. The interview procedure is outlined
in Behr [52, Chap. 4]. Additional information is collected by interviews at commercial
premises. For further reading, see, e.g., [467].

Roadside interviews are made on the external cordon to cover trips passing through
or into the area. The questions asked depend on the purpose of the study, and the
type of vehicle. Alternatives to direct interviews which delay travellers, are to ask
drivers to complete and return prepaid postcards, to record registration numbers, or
to place coded tags on the vehicles; see [52, Chap. 4] for further details.

More economical methods for estimating the existing origin-destination flow pat-
tern are made possible by the automatic counts provided by many traffic control
and signal setting systems, and by optimization models, with which possible origin-
destination flow matrices may be derived from the counts (see, e.g., [999] and the
references cited therein).

(Economic activity and population) This information, together with that of land use,
form the basis for developing relationships between the movements of goods and peo-
ple and the distribution and intensity of land use. Data typically collected includes:
historic population patterns (past distribution, migrations, density, and trends in
growth), present population (distribution by area, density, average income, car own-
ership), employment trends and present employment, economic activity (patterns of
investments in manufacturing, services, redevelopment, and other real estate), and
transportation resources (outlays for regional transportation facilities).

(Land use) The inclusion of land use studies into the transportation planning process
was made during the 1950s; prior to this, the future demand for transportation was
extrapolated, using simple growth factors, from counts on existing flows. Mitchell
and Rapkin [681], however, demonstrated the close relationship between traffic flows
and land use, and subsequent U.S. studies were orientated more towards the influence
of land use activity on the generation of flows. While much of the attention still was
focused on the traffic functional aspects, the consideration of future land uses was
gradually incorporated during the 1960s. In Great Britain, a similar development
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can be traced, following the Traffic in Towns Report [133].

Typical data collected include: historic development trends such as patterns of
urbanization, topography and physical constraints on development, classified mea-
sures of acres of land vacant or in urban use, location of major travel generators,
identification of social neighbourhood and community boundaries, nature of existing
land use controls, and identification of redevelopment areas ([650, 93]).

This part of the planning process has historically been the most costly one; as much
as 49 percent of the total cost has been reported ([496]). With more advanced techniques
for forecasting, and as knowledge of the urban transportation system improves, the avail-
ability of data from external sources or from automatic measurements increases and more
alternatives are evaluated, and thus, the portion of the total cost decreases ([37, p. 521]).

1.5 Model analysis

In this step, relationships are sought between the land use and traffic characteristics
of the present-day situation. These relationships are then used to estimate the future
traffic situation, given the future estimated land use and proposed network facilities. An
underlying assumption in this process is, of course, that these relationships will not alter
significantly in the future.

These relationships are usually derived and calibrated through considering a sequence
of models, rather than by a single analysis. The basic qualities of these models and their
solution are outlined below.

1.5.1 Trip generation

The purpose of the trip generation step is to estimate the number of trips (typically per
day) that originates or terminates in each of the zones previously defined, as a function of
land use, socio-economic and locational characteristics of the zones. The most important
dependent variables used are trip purpose, family income, vehicle ownership, land use
activity at the zones defining the trip origin and destination, length and mode of trip,
and time of day (see, e.g., [650, 837, 130, 805]).

The first transportation studies employed simple growth rates to estimate future trip
generation ([249]). Subsequent studies analyzed the correlation between the above men-
tioned variables, using multiple regression analysis ([668, 265, 266, 130, 805]).

If it is assumed that trip generation characteristics remain stable with time, then
future estimates can be made using the regression equations obtained. However, some
modifications are usually necessary to reflect the estimated future conditions.

There are several sources of error in this use of regression analysis ([130, 264, 805]),
and the underlying assumptions of independence and continuity among the variables in
the regression analysis are not entirely correct. Because of the difficulties associated with
the regression technique, household based disaggregate models, usually referred to as cat-
egory analyses ([993, 754]), have been developed and used. The underlying assumption
here is that the household is the fundamental unit in the trip generation process, and
that the journeys generated depend on household characteristics and location. The main
advantage of this method of analysis is that household categories may be estimated from

31t has been reported ([344]) that as much as 80 percent of the activity occurred within the zones
defined in one instance of a traffic study.
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census data using known relationships, such as distributions of income, car ownership
and family structure; large scale home interviews can thus be avoided, resulting in a large
saving compared to the regression approach. Furthermore, the analysis is computation-
ally cheaper, and the disaggregated information may reflect individual behaviour more
realistically than the zonal aggregated information. A disadvantage of this technique is
that the distributions used may not be valid in the future planning period.

Domencich and McFadden [264, Chap. 2] argue that since transportation facilities
do not enter the trip generation step trip frequency is independent of changes in the
transportation system, making the trip generation both non-behavioural and non-causal,
and also non-policy orientated.

For further reading on trip generation models and methods, see [922, 265, 93, 266).

1.5.2 Trip distribution

The purpose of this model is to estimate the number of trips performed from an origin
zone to a destination zone, given aggregated trip numbers from the previous step.

The traditional techniques used for estimating the future origin-destination (O-D) flows
can be divided into two categories: growth factor (or analogy) methods, and inter-area
travel (or synthetic) methods.

Growth factor methods

The philosophy behind growth factor methods is that present travel patterns may be
projected into the future on the basis of zonal growth rates, which may be obtained from
the productions and attractions assessed in the previous stage; the future O-D flows are
calculated by simply multiplying the present-day pattern by the growth rates.

In other words, the future number of trips, d7¢%, from zone p € P to zone ¢ € Q, is

calculated from the present number of trips, d;’}]d, (p,q) € C, through the general formula

d;sw — gpq(clolcl7 dest) . dold (11)

pq ?

where d®" is the vector of the estimated number of trips, d;“, generated by zone p, and
d;“, attracted by zone ¢, given by the trip generation part of the process. The function
g: %E' X ?R'J_JH'Q' — %E' defines the growth factors for the O-D pairs. This factor may be a
single factor, or a combination of several factors, and it may be the same for all O-D pairs,
or vary with the zone. The above formula may give results that are inconsistent with the
estimated trip totals, d®'; in this case, an iterative procedure must be adopted, whereby
the growth factors are modified so as to achieve balanced equations. (As a result, growth
factor methods produce a new trip matrix from the old one by multiplying the rows and
columns with factors that satisfy row and column total constraints. The methods here
described have therefore become known as balancing methods.)

In chronological order, the following methods have been developed. In the following,
let B, = d®'/ 3 c0 d;}zd denote the ratio of the estimated number of trips generated in
zone p € P to the present number of trips originating in zone p, and £, the corresponding
ratio for attracted trips. Also, let E = (3 ep d2™)/(X(,0)ec d5) denote the ratio of the

total number of estimated trips generated to the total number of present trips.

(1) (Uniform factor) A single factor is calculated for the urban area, and multiplied to
the existing flows. Using (1.1), the factor may be written as

9pg = E, V(p,q)EC.
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This technique fails to recognize any differential rates of development in different
parts of the study area.

(2) (Average factor) This is the first attempt to take into account differential growth
rates; the growth rate is an average of the growth rates defined for the origin and
destination zones, i.e.,

1
Ypqg = §(Ep + E,), V(p,q) €C.

The values calculated by this formula will probably not give results that are consistent
with the estimated number of trips, i.e., for some p € P, Y codi®™ # d*'. An
iterative process is then utilized, in which the zonal growth rates are adjusted until a
balance is achieved. Such a procedure is outlined in [650]. Neither in this procedure
is the differences in growth in different areas well accounted for ([726]).

(3) (Fratar [378]) In this method, the distribution of future vehicle trips is proportional
to the present trip distribution, modified by the growth factor of the zone to which
the trips are attracted. Mathematically, the distribution can be written as:

Bydes

S o Bl V(p,q) €C.
1 ¥

Ypg =

(Other similar formulas have been given.) Also in this case, an iterative balancing
procedure is applied to obtain consistent output. From this method, many simplified
schemes and extensions have been proposed and used (e.g., [87, 121, 395]).

The advantages of growth factor methods are that they are easy to apply, they are
flexible, and they can be used to distribute trips by purpose, mode and time of day, by
defining different growth factors for each zone. Furthermore, when applied to areas where
conditions are stable over the study period, the results haven been found to be quite
satisfactory. However, when applied to a study with significant changes in land use, such
as proposals of new transportation facilities, and where travel costs change with time, this
technique gives unreliable estimates of future trips.

Synthetic methods

When the shortcomings of the growth factor methods were identified, work concentrated
on the development of alternative methods. The most successful alternatives, the synthetic
methods, were based on the assumptions that before travel patterns can be predicted, the
underlying causes of movement must be understood, and that the causal relationship
giving rise to movement patterns can best be understood if they are considered to be
similar to laws of physics.

Three different synthetic methods can be identified: the gravity model, the opportuni-
ties models, and the electrostatic model.

(1) (Gravity model) The gravity model is the most widely used synthetic model; it is
simple to understand and use, and is well documented. The term gravity stems
from the assumption that the number of trips performed between an origin and a
destination zone are directly proportional to the relative attraction of each zone and
inversely proportional to some function of the spatial separation between the two
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zones ([954]). The origin of gravity models can therefore be said to be the works on
gravity by Newton [712].
The gravity based distribution formula can be written as

dpg = ApOququ(qu)a \V/(Pa Q) eC, (1-2)

where O, and D, denote the total number of trips originating in zone p and terminat-
ing in zone ¢, respectively, f is a deterrence function, monotonically decreasing with
a generalized travel cost 7,, between the zones, and where A, and B, denote propor-
tionality constants, which are determined such that the marginal total constraints of
flow,

Z dpy = Oy, Vpe P (1.3a)
9€Q
Z dpy = Dy, Vg e Q, (1.3b)
pEP

are satisfied.

The doubly constrained negative exponential gravity model is given by letting
f(mpy) = €774 where ~ is a positive parameter, reflecting the influence of cost on
the number of trips made. If we also let r, = A,0, and s, = B,D, denote the
balancing factors, then the trip matrix can be written as

dpg = rps,e” e, Y(p,q) € C. (1.4)

The application of the gravity model in science has a very long history. The
Model (1.4) has a sound theoretical basis, and may be derived from gravity ([712,
143, 613]), maximum likelihood ([980]), entropy maximization ([694, 867, 977, 979]),
maximum utility ([51, 660]), minimum discrimination information ([826, 574, 861]),
cost minimization ([298, 299]), minimum Minkowski norm ([302]), or efficiency ([853,
854]) arguments. For further reading and applications, see [518, 982, 920, 907, 437,
304, 753, 130, 805, 509, 299, 624, 302].

Methods employed for the solution of the gravity models are based on iterative re-
finements of the proportionality constants A, and B,, with the objective of balancing
the Equations (1.3). Balancing methods include those of Kruithof [569], Fratar [378],
Furness [395], and Bregman [116, 117, 118], but also Newton-type methods ([775, 21]);
for overviews of balancing methods, see [36, 157, 578, 817]. The advanced methods for
growth factor models may be seen as special cases, derived from the class of balancing
methods.

The gravity model has been criticized for its behavioural implications; the analogue
with physical systems can not be taken for granted when dealing with human systems

([967, 433, 49, 459, 460]).

(The opportunities models) The opportunities models introduce the theory of prob-
ability as the foundation of the distribution ([880]), and were developed within the
Chicago, Pittsburgh and Penn-Jersey studies ([170, 982, 903]). The assumption basic
to the opportunities models is that all trips will want to remain as short as possible,
lengthening only if they fail to find an acceptable destination at a shorter distance.
The model may be derived from kinetic gas theory, or from the theory of radioactive
decay. Letting Dypg = > 1egir <, Di denote the total number of trips that are shorter
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in distance from zone p than zone ¢, and L, the probability density of destination
acceptability, then

dyy = Op(e LrPra _ o= Lo(DpatDa)y V(p,q) €C.

The models are simple to use, and need less input data than the gravity models. This
accuracy is, however, reported to be slightly lower ([471, 597]). For further reading
on the opportunities models, see [130].

(3) (The electrostatic model) Howe [506, 507] developed this model from Coulomb’s law
of electrostatic force; considering tripmakers as electrons, the attraction to the (pos-
itively charged) destination zones is assumed to be proportional to the number of
persons employed in the respective zone.

The simplicity of the model is its major merit; it is similar to the early developed
gravity models, and the solution principles proposed are balancing methods of the
same type as those used for the gravity models. Included in its disadvantages is
however its inability to model external flows. Lawson and Dearinger [597] evaluate
it against other trip distribution models; although it was found inexpensive to apply
(existing movement data is unnecessary), it was found to be less accurate than the
gravity model.

Other models of trip distribution include multiple regression ([729]) and linear pro-
gramming ([93]).

The trip distribution models have been criticized for their simplicity ([114]), which, for
instance, means that the model is non-policy orientated ([264, Chap. 2]).

1.5.3 Modal split

Modal split divides the total number of person trips into different modes of travel, based
on relative measures of competitiveness.

Modal split models can be classified into two categories, trip end models, which are
applied before the trip distribution stage, and trip interchange models, which are applied
after trip distribution. (The above description of the transportation planning process is
based on the use of trip interchange models.)

The diversity of modes is usually ignored or dealt with by combining all the available
modes into two dichotomous modes, transit and auto.

The competitiveness measures are derived from an analysis of three basic sets of factors:

(1) (Journey characteristics) Factors included are trip length and journey cost, purpose
of the trip, and time of day of tripmaking. The two most important factors in this
category are journey length and trip purpose.

Journey length can be measured in many ways, the most simple being the bee-
line distance between the origin and destination. A more accurate measure may
be derived from the travel time on the route most heavily used, for the different
modes of transport. It is important to include all parts of the journey (defining a
door-to-door journey), i.e., even the parts that do not include the use of a vehicle.
(This excess travel time includes walking to and from the vehicle, waiting for a
vehicle, and changing from one vehicle to another.) The travel-time ratio between
competing modes can also be used as a measure of journey length. This measurement
used in isolation may, however, obscure large absolute differences in journey time by
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competing modes ([130, p. 171]), and should therefore be used in conjunction with
some other measure.

Experience has shown that there is a relationship between the numbers using
public transport and the purpose of the journey. Home-based journeys often give
rise to more public transport journeys than non-home based journeys, whilst home-
based school and work journeys have a higher rate of public transport usage than
home-based shopping journeys.

(Traveller characteristics) The most significant factors in this category are concerned
with the socio-economic characteristics of the households making the journeys, and
include variables such as income, car ownership, family size and structure, density of
residential development, the type of job undertaken, and the location of workplace.
These factors are certainly highly interrelated [e.g., car ownership is a function of
income ([977, pp. 119-170])], and can therefore not be analyzed in isolation.

It is very difficult to accurately measure the total income at the zones, and substi-
tutes such as car ownership, density of residential development and type of dwelling
unit are instead used to indicate the level of income.

It has been found that as net residential density increases, the demand for public
transport decreases. Schwartz [820] found in the Pittsburgh Area Transportation
Study that school journeys by public transport are inversely related to net residential
density, whilst other journeys by public transport are directly related to it. (The
inverse relationship between school journeys by public transport and net residential
density was attributed to the greater numbers walking to school in the more densely
developed areas.) This relationship may be explained by the fact that it is difficult
to provide an adequate and economic public transport service in low density areas.
In addition, low density areas tend to be occupied by the middle and higher income
groups with the result that levels of car ownership are higher, and consequently the
demand for public transport lower. In contrast, high density areas can be economi-
cally and adequately served by public transport, largely because they were developed
in conjunction with the public transport system.

Other socio-economic factors that are used for determining the modal split include
family size, the age-sex structure of the family, the proportion of married women in
the labour force, the type of property occupied and the type of employment of the
head of the household. For examples of the correlation between public transport use
and socio-economic variables, see [650, 495, 446].

(Transportation system characteristics) The most significant factors in this category
are concerned with the travel time and out-of-the-pocket expenses for the journeys,
and qualitative measures of the level of service of the competing modes. These
measures of competitiveness are usually given as ratios of measures of competing
mode alternatives.

Travel times most often express a time ratio of door-to-door travel time by public
transport divided by the door-to-door travel time by private vehicle. Absolute dif-
ferences have also been used, and have been found to sometimes yield more reliable
measures ([771]).

Travel cost measures include out-of-pocket expenses (fares for public transport,
and fuel and parking costs for private vehicles) only; private vehicle costs such as
road tax and insurance are ignored since studies have found that these costs do not
influence the journeys made ([130, p. 177]).

Relative levels of service are affected by a large number of factors, the majority
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of which are subjective and difficult to quantify, such as comfort, convenience, and
ease of changing between modes. Quantifiable measures include time spent outside
the vehicle during a journey, e.g., walking, waiting, and parking delay.

In some trip end modal split models accessibility indices have been used as a
measurement of the quality of service provided by the different modes. These indices
measure the ease with which activity in one area can be reached from a particular
zone; one possible definition of an accessibility index for a given zone is the sum of
the trip attractions times the friction factor for the zonal interchange, where the
friction factor is calculated as the reciprocal of the door-to-door travel time raised to
some power which varies with the travel time ([961]). Other accessibility indices are
defined by the number of routes serving the zone, the frequence of service, and the
area of the zone (see [130, Chapter 6]).

The earliest form of modal split models used public transport diversion curves to relate
public transport use to relative travel times. The drawback of the simple diversion curve
is that it completely ignores the characteristics of the person making the journey.

In trip end modal split models, the total person trip productions are allocated to public
transport for each journey purpose considered in the model (typically, home-based work,
shopping, social/recreational, and miscellaneous trips), by considering the attractiveness
of the public transport system as measured by the variables considered to influence the
modal split in the area under examination. The technique most often used is multiple
linear regression (e.g., [7, 977]).

Journeys made by private vehicles are derived by subtracting the estimated public
transport trip productions from the total person trip production estimate.

Future trip attractions by public transport are usually estimated by multiple linear
regression techniques, using, for example, variables such as the location of the destination
zone, the employment level in the zone, and the characteristics associated with the use of
public transport in that zone. Category analyses have also been used in some studies.

Private vehicle person productions and attractions are converted to vehicle productions
and attractions by introducing vehicle occupancy rates. The distribution of the estimated
public and private transport is then calculated using, for instance, a gravity model.

More recently generalized costs have been introduced in the modal split models. Gen-
eralized costs were originally developed by Wilson [978] for use in gravity models, and
are linear functions of travel time, distance, excess travel time, and terminal cost. See
Quarmby [771] for an empirical justification of the use of generalized costs in modal split
models.

Trip interchange modal split models allocate journeys to different modes after the to-
tal person movements between pairs of zones have been distributed. A standard trip
interchange model uses multiple linear regression techniques to determine zone to zone
public transport travels and private trip interchanges, often in conjunction with a gravity
model. Variables used represent zone to zone based characteristics of the persons making
the journey, the destination of the journey, and the transportation system, and include
the relative door-to-door travel time, the income, the net residential density, and the em-
ployment density at the destination. The private vehicle trips are derived by subtracting
the public transport trips, and the vehicle interchanges between zones are determined
by dividing the total number of personal trips between two zones by appropriate car
occupancy factors.

A statistical technique, discriminant analysis, has been used to predict modal split
([787]). An underlying assumption of this model is that individuals choose a mode of
travel based on the (conscious or subconscious) evaluation and weighting of advantages
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and disadvantages of the different modes, the factors being related to aspects such as
travel time, cost, comfort, and reliability. In the discriminant analysis, an estimate of the
most probable values of the weights of the importance of different factors are derived.

The advantages of the trip end approach when compared with the trip exchange ap-
proach, is that the former is capable of making separate distributions between the zones;
this is considered desirable because of the frequently differing lengths of journey by car
and public transport. In this way, more properties of the transportation system can be
taken into account when making the trip distribution. Another important difference be-
tween the two approaches is the different level of detail present in the models. In the trip
end models, characteristics of the transportation system are area wide averages, while
they are more precise in the trip interchange models. The higher precision of the latter
models should, however, be weighed against the computational burden associated with
the much larger number of splits required to determine modal choice for the area under
study.

Both approaches to modal split have been criticized on the grounds that present-day
levels of service are used, which have often meant that the private vehicle is favoured to the
public transport alternative. They have also been criticized for the primitive estimation
techniques used, and the way in which the components of the travel time and cost are
aggregated ([264, Chap. 2]).

For further reading on modal split models and methods, see [327, 921, 961, 922, 130].

1.5.4 Traffic assignment

Traffic assignment is the part of the process which allocates a given set of trip interchanges
to a specific transport network or system. As input the traffic assignment process requires
a complete description of the proposed or existing transportation system and a matrix
of interzonal trip movements. The output of the process differs with the sophistication
of the assignment procedure, but always includes an estimate of the traffic volumes and
the corresponding travel times or costs on each link of the transportation system; some
assignment techniques also include directional turning movements at intersections and
route flows.

The purposes of traffic assignment as part of the transportation planning process are to
assess the deficiencies in the existing transportation system by assigning estimated future
trips to the existing system, to evaluate the effects of limited improvements and extensions
to the existing transportation system by assigning estimated future trips to the network
which includes these improvements, to develop construction priorities by assigning esti-
mated future trips for intermediate years to the transportation system proposed for those
years, to test alternative transportation system proposals by systematic and readily re-
peatable procedures, and to provide design hour volumes and turning movements ([130,
pp. 145-146]). Modern uses of traffic assignment extend this list with purposes of much
shorter time horizons, even real-time use. Here, however, we shall concentrate on the
assignment techniques adopted and developed in transportation studies.

Early heuristics

The basic concepts of traffic assignment evolved in the early and middle 1940s ([863]),
and in conjunction with the first origin-destination surveys conducted in over 100 cities
in the United States shortly after the end of World War II. (With the development of
origin-destination studies, vehicular movements between zones became available for use in
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determining traffic loads on proposed new routes.) The early work in assignment consisted
primarily of estimating the diversion of traffic from existing roads to new, improved,
high-speed arterials or freeways, and was based on travel time and cost savings. The first
assignments made assumed that the travel time and cost were independent of the flows on
the links (a highly unnatural assumption), and, consequently, the results amounted to the
proposed road being used either by all vehicles between a pair of origin and destination (in
the case where the travel time or cost between the origin and destination was found to be
less than that of any alternative route between the origin and destination on the existing
transportation system), or by no vehicle in the origin-destination pair (e.g., [138]). This
technique is commonly known as the all-or-nothing technique. At a very early date it was
found to give unrealistic results, not only because it fails to recognize that travel times
and costs increase with the flows on the links, but mainly because of the fact that all
travellers are allocated to routes based on a single average characteristic ([250, p. 80]).
Empirical studies were later undertaken in the U.S. in an attempt to relate the choice
of route to time and distance factors, and as a result the American Association of State
Highway Officials developed a standard traffic diversion curve (e.g., [250, 691]) as the
recommended policy for determining the future use of urban highways.

The curves employed were based on data obtained from observations at some other
location with two similar facilities, and estimated the portion of the flow on the traditional
route to be transferred to the hypothetical one. Different parameters have been employed
in these curve formulas, such as time and distance saved by using the proposed expressway
and the ratio of travel times for the two available routes. The assignment was then usually
made in such a way that the proposed freeways and the existing routes were assigned flows
in proportion to their travel times. However, this technique was only capable of dealing
with a single expressway with existing parallel routes (corridor studies). The reason for
this is that if more than one expressway-type facility is present then the travel time on
these alternatives is highly interdependent. Also, the travel time on a link is assumed to be
independent of the volume of traffic on the link, and therefore does not take congestion
into account. For further reading on this technique, which is also known as two-route
assignment and proportional assignment, and the early development of traffic assignment
techniques, see [127, 908, 250, 691, 170, 667, 650, 983, 919, 649, 663, 733].

At the 31st Annual Meeting of the Highway Research Board, Washington, D. C. in
1952, Campbell [139] summarized the techniques of traffic assignment as follows:

Traffic assignment is fundamental to the justification of a proposed highway facility and
to its structural and geometrical design, to spotting points for access, and for advance
planning of traffic regulation and control measures. As yet, traffic assignment is considered
to be more of an art than a science...

Accordingly, he stressed the need to place traffic assignment on a scientific foundation.

Consequently, in the early 1950s considerable difficulty was experienced in assessing
the driver’s choice of route to complete his/her interzonal trip, and route-choice deci-
sions were often made manually and arbitrarily based on the engineer’s knowledge and
judgement and an assessment of travel time, distance and user cost. Since the detailed
analysis of present and future urban area transportation, to be performed by the studies,
required more logical and accurate assignment procedures and as the very large number
of operations to be performed in the assignment phase necessitated the use of automatic
data processing machines, the transportation planning community were in desperate need
of a more efficient method for assigning traffic to an urban network.

Around 1957 a major (or possibly the) breakthrough occurred in network assignment.
In the operations research community efficient algorithms for the shortest route problem,



18 The Traffic Assignment Problem

i.e., the problem of finding a route of minimal travel time (or cost or distance) through
a network with fixed travel times (or costs or distances) on the links, were discovered
(e.g., [367, 223, 685, 56, 258, 224]). (This problem obviously is a main ingredient in
an assignment program.) Simultaneously, the staff of the Chicago Area Transportation
Study was looking for a computer program to assign traffic to a large urban road network,
and contracted the Armour Research Foundation to develop it. Their investigation led
to the development of a computer program for finding the minimum time routes through
a network, based on Moore’s [685] algorithm and average travel times and speeds on the
links, and consequently to the first reported fully computer aided assignment ([170]). In
1960, further research (by the General Electric Computer Department in collaboration
with the District of Columbia) led to the development of an assignment program capable
of prohibiting selected turns in the calculation of the minimum path.

The resulting assignment is an all-or-nothing, or desire assignment ([128, 137, 151]),
since all travellers are assigned to the routes which are the cheapest (and hence the desired
ones), and the more expensive routes receive a zero flow. The main advantage of this
approach is that the calculation is made in one single step, i.e., no iterative assignment
is made. Therefore, the assignment procedure is economical, and the result is easy to
analyze. There are, however, serious drawbacks to this methodology. Since all traffic
between two zones is assigned to a single route, the assignment leads to unrealistic traffic
volumes on streets with limited capacities, as was noticed already in the results of the first
assignment made ([170]). Furthermore, the technique is unstable in the sense that small
changes in travel times used may cause a significant change in the resulting flows. As a
consequence of these drawbacks, the all-or-nothing assignment method has been rejected
by the analysts.

Accidentally (or maybe not!) some other events which enabled a rapid progress of
assignment modelling and methodology [or, in some cases, would have, had they been
recognized at the time ([102, 104])] took place around this time. In 1952, J. G. Wardrop
of the Road Research Laboratory published a paper ([958]) on two principles of flow
distribution in a road network: the user equilibrium principle, which is based on the as-
sumption that all travellers are minimizing their own travel cost, and the system optimum
principle, of which the underlying assumption is that the travellers choose their routes
so as to minimize the total travel time in the transportation system. These two princi-
ples are by far the most popular behavioural principles in assignment models. Although
these two principles had been known and used within the academic theoretical economics
community for at least 30 years, these principles are often attributed to Wardrop, and
therefore referred to as the two Wardrop principles; see Section 2.1 for further discussions.

In 1956, M. J. Beckmann and colleagues published the seminal book “Studies in the
Economics of Transportation” ([47]), in which mathematical models for the traffic assign-
ment problem were analyzed. By using nonlinear optimization theory, the two Wardrop
principles were shown to correspond to the solution of convex nonlinear optimization
problems with linear (network) constraints. (See Section 2.2.) Similar optimization for-
mulations had, however, been developed earlier for closely related problems in the analysis
of electrical networks (e.g., [275]); see Section 2.6.3.

Another important event in 1956 was that M. Frank and P. Wolfe published a paper
([377]) on an iterative algorithm for the solution of convex, quadratic optimization prob-
lems. When applied to the traffic assignment models of Beckmann et al., the method
alternates between an all-or-nothing assignment, based on the travel times at the present
flow, and the minimization of the objective function of the optimization problem on the
line segment between the vector of the present flow and the all-or-nothing solution. Today
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this algorithm is a standard code in transportation planning packages for the solution of
traffic assignment problems, but it was not applied to this use until in the late 1960s.

In December 1959, the First Symposium on the Theory of Traffic Flow was held at
the General Motors Research Laboratories, Warren, MI. This symposium was set up
with the objective of bringing together active researchers from different fields of science
and technology to enable cross-fertilization and stimulate new ideas for future research
activities.

A few years later (in 1962), due to the increased academic interest and importance of
the transportation research field, the Transportation Science Section of the Operations
Research Society of America (ORSA) was formed, and academic journals were soon issued.

After these very important steps had been taken, improved assignment techniques
were developed in many transportation studies. The unrealistic results of all-or-nothing
assignments naturally lead to algorithms, where travel times were modified within the
procedure, thereby taking more account of congestion effects. The need for relating travel
times and speeds to traffic volumes when assigning traffic to networks resulted in the
development of link performance functions (also known as volume delay formulas and
travel time functions).

Link performance functions

As aresult of growing traffic volumes, the speed on a link tends to decrease, first slowly but
as the queueing effects become more significant, the average speed on the link decreases
more rapidly, until the queueing has developed into a jamming situation, where very little
flow can be observed on the link. In the analysis of traffic systems, average travel times
are therefore usually modelled as positive, nonlinear, and strictly increasing functions
of flow. Parameters in the formulas often include practical traffic volume capacities,
and sometimes also aggregate measures of factors, other than travel time, that influence
tripmakers in the route selection process.

Different transportation studies developed their own travel time formulas. The ap-
proaches used to define these functions were of two kinds: in the first approach, mathe-
matical functions were proposed in advance, for the sake of simplicity. Various parameters
were then calculated through different measurements of traffic and road conditions and
speed-to-volume ratios developed by traffic engineers. In the other approach, the formulas
were developed from studies of speed and travel times related to network characteristics,
such as queueing at intersections, based on queueing theory. The basic parameters of a
link performance function, relating travel time, ¢,, on link a, to the flow, f,, on the link,
is the free-flow travel time, t9, which is a measure of the travel time at zero flow, and the
practical capacity of the link, ¢,, which is a measure of the flow from which the travel
time will increase very rapidly if the flow is further increased. Although these formulas
were developed for studies of highway systems, they are still often used today for studies
of city streets in urban areas. For a survey of the various link performance functions used
in transportation studies, we refer to Branston [115]. In Table 1.1 we give a list of link
performance functions developed during the 1960s. In Figure 1.1 a graphical example of
a typical link performance function is given. Here, 3, and m, are positive parameters.

Other formulas are found in [230, 889, 15, 16, 890, 866]. Some empirical and exper-
imental work on the subject is found in [996, 109]. Boyce et al. [109] found that travel
time functions with asymptotes, such as the last formula of Table 1.1, empirically lead to
unrealistically high travel times and devious rerouting of trips; the resulting assignments
should therefore be used with extreme caution in any planning application.
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Travel time formula Reference
10 . e(fa/ca=T) [858]
tg . 9(fafca=1) 815
tg (14 0.15(fq/eq)™) 919

[815]

[919]
10 +log(ca) — log(ea — fu)  [690]
Ba = caltd = Ba)/(fa—ca)  [690]

Table 1.1: Travel time formulas
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Figure 1.1: A typical link performance function

Many factors other than travel time influence the choice of route for different trip
purposes; the use of travel time functions such as those given in Figure 1.1 can therefore
only give very rough estimates of the true route choice behaviour of travellers. In empirical
studies (e.g., [908, 672, 673, 60, 568, 773, 883, 27, 510, 730, 731, 625, 992, 99, 875]), factors
such as distance, frequency of traffic signals, strain, use of petrol, presence of tolls, safety,
presence of pleasant scenery, etc., have been reported to have an effect on the drivers’
attitudes to the type of route sought. A rather interesting work in this context is that of
Jansen [521], whose study of a small area of the San Fransisco urban network shows the
remarkable result that the most popular route is the second most expensive one.

Capacity-restraint heuristics

Through the use of the volume-delay formulas, it now became possible to introduce it-
erative procedures, in which new assignments could be made based on adjusted travel
times according to the traffic volumes calculated in an earlier assignment, thereby taking
congestion effects and capacities of traffic into account. In a general capacity-restraint
method, travel times are calculated based on the flow assigned to the network at iteration
k. An all-or-nothing assignment is then made based on the fixed costs, and the next
assignment is calculated by combining the current flows with the all-or-nothing solution.
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The stopping criteria used vary with the different techniques of this kind.

The first capacity-restraint technique to be applied in transportation studies was the
quantal loading procedure, developed in the Chicago Area Transportation Study [170,
p. 108] (see also [151, 815]). The method operates on a zonal basis. One origin is selected
randomly, and the shortest routes are calculated to all destinations. All trips originated
at the node of current interest are assigned to the routes defined by the shortest route
tree, after which the current travel times are updated according to the accumulated flows,
and the travel time formulas used. (The Chicago Area Transportation Study applied a
simple volume/capacity ratio to adjust travel times.) The process is then repeated with
the selection of one of the remaining origins, and the algorithm is terminated when all
trips have been assigned to the network. The algorithm differs from the all-or-nothing
assignment technique only in the difference in the travel costs used for the assignment
of different zonal flows, and therefore requires essentially the same computing time and
yields comparable results, i.e., all trips are assigned to a single route for each O-D pair,
and the method is subject to the same sensitivity of travel times. Furthermore, the result
of the assignment procedure is sensitive to the order in which the origins are chosen, since
the last minimum cost routes to be calculated are based on much more congested flows
then the first ones ([863]). The fact that the shortest route calculations in the quantal
loading technique takes some account of congestion effects has resulted in its use in place
of all-or-nothing assignments in subproblems of convergent algorithms based on shortest
route calculations ([941, 24]), and in generating starting solutions for use in convergent
methods ([24]).

The most simple extension of this technique is the iterated all-or-nothing assignment
procedure. The first known application of this method is in the Bureau of Public Roads
program package ([919]; see also [490, 869, 607]), and it is implemented in the Federal
Highway Administration program package PLANPAC/BACKPAC ([318, 319, 320]). The
method proceeds as follows: starting with a feasible flow (for instance the flow obtained
from an all-or-nothing assignment based on free-flow travel times), link costs are calculated
for the flow observed by applying the volume-delay formulas. The whole flow is reassigned
to the new routes, and the whole process continues iteratively, until either a specified
number of steps have been performed, or the travel times at the beginning of an assignment
approximately equal the travel times obtained from the volume-delay formulas. The use
of this technique in the search for an equilibrium flow pattern assumes, in effect, that,
based on the current travel times, all tripmakers choose the same minimum-cost route to
their destination.

Reports on the performance of this method indicate that the flows do not converge.
This is not surprising, since the requirement that only one route is used for the interzonal
trip volume is unrealistic in congested networks. The shortest route problem is sensitive to
input, as discussed above, and the consecutive assignments are therefore subject to wide
oscillations ([932, 935]), making it difficult to decide when the process should be stopped.
Furthermore, the assumption that the tripmakers all use the same route between two
zones makes this method unrealistic in reflecting human behaviour correctly.

To remedy the oscillating behaviour of the repeated all-or-nothing assignment tech-
nique, and to allow more than one route to be used in each O-D pair, procedures were
next developed in which only (fixed) portions of the total demand are transferred to the
new all-or-nothing solutions; given a feasible flow, f*, in iteration k, and an all-or-nothing
solution, y*, the assignment in iteration k 4 1 is given by

5 = (1 = 1)f" + Ly”, (1.5)
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where [, > 0 denotes the portion of the current solution being reassigned. This process
may seem natural from a behavioural viewpoint; when the tripmakers reconsider their
route choices according to the prevailing traffic conditions, not all of them will adjust
their route choice.

In the first such method presented, the number of iterations (i.e., the number of shortest
route calculations) to be performed were fixed a priori, and instead of using current travel
times, the old travel times were combined using the same weights [; as for the flows
(a process known as smoothing). In the PLANPAC/BACKPAC procedure CAPRES
([318, 319, 320]; see also [919, Chapter V]), the number of steps is specified to four, and
[ = 1/4, for all k. (The consequence of this choice of weights is, of course, that four
routes at most will receive any flow in each O-D pair, and if, in an O-D pair, the four
routes are different, the demand will be divided evenly among them.)

Compared to the iterated all-or-nothing assignment, the resulting flow is more accurate
since several routes are used between each origin and destination. However, that the travel
times are calculated at flows that cannot be observed in the network seems unnatural,
and making the proper choice of weighted mean travel times is difficult. Furthermore, the
specification in advance of the number of steps to perform makes it impossible to know
how good the final solution is.

To yield more reasonable results, the above algorithm was implemented without pre-
specifying the number of iterations and using actual travel times in the calculations of
the all-or-nothing solutions (see Smock [858, 859] and Almond [17, 18, 19]). It was then
found that when the number of iterations grew, a fixed weight [, would yield oscillations
in the flows; that is to say, the same phenomenon as in the iterated all-or-nothing assign-
ment technique would occur, although on a smaller scale. This fact had actually been
recognized already by Beckmann et al. [47, Sec. 3.3], when discussing the stability of an
equilibrium state. They analyze the method through a small numerical example, and
conclude that the portion of flow transterred to the new routes, termed the responsive
fraction, should decrease in order to avoid oscillations.

Smock [858, 859] does not present the method mathematically, but refers to the flow
adjustment as a process, where the flows are divided evenly among the routes hitherto
computed, i.e., he uses the responsive fraction [, = 1/k in iteration k. In his tests
(performed on a projected trip table for the proposed 1980 network of Flint, MI) he
observes that the number of iterations needed is relatively small for networks with high
capacities, and larger for more congested networks. Smock’s iterative scheme is also tested
by Overgaard [732, 733]. (A similar algorithm, operating in the space of route flows, is
given by Fisk [336].)

The basic algorithm of Almond [17, 18, 19] is similar to the one presented by Beckmann
et al. However, his work can be seen as a development from their method in several
respects. Almond demonstrates graphically for a few small examples how oscillation effects
evolve when the basic method is employed, and that they tend to be more significant for
more congested networks. The natural conclusion is the same as stated in [47, Sec. 3.3.2],
namely that the shifting percentage must decrease as the number of iterations increase.

In general, heuristic methods employed for traffic assignment are defined by predeter-
mined steps. What Almond concludes, after studying various congestion levels in con-
nection with the basic method’s performance, is that there is a need for flexibility within
the algorithmic scheme, i.e., the value of the weighting factor [; should be determined
by the problem being solved, and by the present network condition at each iteration.
Almond also presents an extension to the method, where the flow is assigned gradually
onto the network (i.e., the weighting Formula (1.5) is replaced by f**! = m;f* + [,y*,
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where my, + [, < 1 for the first few iterations). His motives for this modification is that in
practice, the amount of traffic grows with time. The process simulates this, in the sense
that it corresponds to some new traffic entering the network and a portion of the original
traffic redistributing itself. Almond finds that the extended version is more efficient. He
fails, however, to present a systematic scheme for the choices of [, and my, in either of the
two methods, without which convergence properties can be established.

Remark 1.1 It is interesting to note the similarity between these latter heuristic ap-
proaches and one of the most popular convergent methods for traffic assignment in use
today; the Frank—Wolfe algorithm (see Section 4.1 for a detailed description) is obtained
by, in (1.5), letting the responsive fraction [ be chosen so as to minimize a certain ob-
jective function. The algorithm of Smock [858, 859] and Overgaard [732, 733] (in which
the responsive fraction [, = 1/k is used) is actually equivalent to the convergent method
of successive averages (MSA) (see [764]), and thus predates this algorithm by nearly 20
years. Smock is therefore most probably unknowingly responsible for what probably is
the first adaptation of a convergent traffic assignment algorithm.

An extension of the previously discussed methods was developed in the Metropolitan
Toronto Regional Transportation Study, and presented in [518, 650, 667, 519]. The pro-
gram package developed was possibly the first attempt to incorporate trip distribution
and modal split into a single algorithm. Based on the prevailing traffic conditions, shortest
routes are calculated and retained in the memory, with a maximum number of four routes
within each O-D pair. (If a fifth route is found that is cheaper than the most expensive
one stored to date, then the cheaper route replaces the more expensive one.) Each route
is treated separately and trips are assigned to the routes in inverse proportion to their
travel times based on a prespecified formula. This approach may be seen as a heuristic
column generation algorithm, and is in this sense reminiscent to state-of-the-art codes
such as RSD and DSD (see Sections 4.3.4 and 4.3.5). The advantage of this approach is
that, since each route is independent, the weighting phase has a greater striving for an
equilibrium solution. The convergence of the algorithm can, however, not be guaranteed,
since the maximum number of routes is very limited and the weighting process is non-
convergent. The work by Nishikawa and Nakahori [723, 724], and Nakahori et al. [703] is
also similar to this approach. Their trip assignment method is also based on a heuristic
choice of route-flow proportion, but no restriction is made a priori on the number of
routes maintained in the algorithmic process.

A different line of development in assignment methods is the family of incremental
assignment methods. The common approach is that the trips are gradually entered onto
shortest routes based on the prevailing traffic situations, until all the trips have been
assigned to the network. Different methods evolve from different choices of increments,
and the order in which the trips are assigned. The methods simulate the way in which
congestion emerges with growing traffic, and the natural behaviour of tripmakers to make
use of different routes when congestion becomes significant.

The first incremental method presented was the quantal loading procedure, discussed
above. In this algorithm, the increments of flow correspond to total demands from origins,
and thus all the flow in an O-D pair utilizes only one route.

One incremental loading scheme that does not suffer from this drawback is implemented
in the TRANSET, DODOTRANS I ([797, 639]; see also [932, 936]) and SALMOF ([870,
871]) packages, and is a popular method for creating a starting solution for convergent
assignment methods (e.g., [24]). The technique has also been applied to single-commodity
network flow problems, such as nonlinear electrical networks (e.g., [508]). The total
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number of iterations is fixed a priori to, say, K. The corresponding fraction of the
demand is loaded onto the shortest route in all O-D pairs given the current flows, and
the process is repeated the specified number of steps. The resemblance of the actual
situation is clear: as a road gets more congested, people tend to choose different roads.
The resulting flow is divided between several routes for each O-D pair (the maximum
number of routes used in an OD-pair is, of course, K'), making the solution resemble the
equilibrium situation better than a single-route assignment. The number of iterations
needed is, however, not easy to determine, and the result is sensitive to the choice of
increments. Some researchers have reported that the algorithm does not converge to an
equilibrium solution (e.g., [708, 325, 288]); others claim that the resulting flows are good
enough for practical purposes ([932, 871, 935, 933]).

Extensions of the procedure are presented by Martin and Manheim [649]. Their basic
algorithm is based on origin-destination trip increments, where an O-D pair is selected
at random, and a fraction of the total trip volume is loaded onto the shortest route.
After the travel times on the links defining the route have been adjusted, the process is
repeated. The fraction to be loaded is determined by a travel-time dependent function
(the generation rate characteristic). A consequence is that the number of iterations is not
determined in advance. A variant of the basic method constitutes an extension of quantal
loading, where a fraction of the demand flows from a subset of the origins is loaded onto
the network at each stage. A disadvantage of incremental assignment methods is that,
once a route has been assigned a flow, it can never be removed ([359]); Van Vliet [935, 933]
presents a heuristic procedure for eliminating the worst routes after the completion of the
assignment.

The above heuristics may be given a unified description. Below, we give a general
algorithm for traffic assignment, based on the iterative solution of shortest route problems.

Given is a network G = (AN, A) of nodes and directed links, a set (p,q) € C of O-D
pairs with fixed demands d,,, travel time functions ¢, : £, — ., and a linear function
v of the iterates.

The general algorithm is as follows.

Step 0 (Starting flow) Calculate an all-or-nothing solution, y°, based on free-flow travel
times. Assign a portion a < 1 of the total demand to the corresponding routes
to give the link flow vector f'. Set k = 1.

Step 1 (Shortest route calculation) Calculate an all-or-nothing solution, y* = (y;fq)(p,q)ec,
based on travel times at the flow v(f¥, f¥=1 .. f1).

Step 2 (Flow update) Determine nonnegative weights m’;q and l;fq to yield the new flow
k1 _ ok £k koonk ,
fort =mi f5 + 1 ay,,, for all (p,q) € C.
Step 3 (Convergence check) If k£ + 1 > kpax or if some convergence criterion holds —
terminate. Otherwise, go to Step 1 with k:=k + 1.

In Table 1.2, we describe the methods outlined above within this framework.

In Figure 1.2, some relations between heuristic schemes are given. An arrow pointing
between two boxes indicates a development from one method to another, either historically
or conceptually.

4In the case of single-commodity flows, incremental assignment methods can be made convergent

([325)).
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Method  kmax mk, Ik, o v
A-O-N 1 0 1 1 F
IA-O-N +o 0 1 1 £k
CAPRES 4 % % 1 %fk + %yk
F-wW 400 1— 1k minT(f’“+1) 1 £k
QL 1 1,Vp<k,¥g 1, V¥(pgp=k 1 £F
1A K 1 1 1 £k

Table 1.2: Heuristic methods: comparisons
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Figure 1.2: Some relations between heuristic schemes

Discussion

The development of heuristic traffic assignment schemes shows that the assignment prob-
lem was not clearly defined or understood by the transportation planning staffs. The
techniques utilized were based on ad hoc rules, and even if one may trace a growing un-
derstanding of the problem to be solved, the development that is outlined above may be
described as one of trial-and-error.

Simultaneous to the development of heuristic techniques, the traffic assignment problem
was given precise mathematical modelling formulations by Beckmann et al. [47] and others
(see Section 2.2). The heuristic methods employed for traffic assignment could thus have
been evaluated against this model, and their deficiences revealed. The convex optimization
algorithms that were available at that time (such as the Frank—Wolfe method) could
then have replaced these heuristics, had they been known to the transportation planners.
These possibilities were, however, not exploited for more than ten years, and the first
convergent algorithms for traffic assignment (excluding that of Smock and Overgaard),
were developed around 1968 by operations researchers, and not within transportation
planning studies.

Boyce [104] examines the history of assignment modelling and methodology, and states
the reason for the above mentioned (unfortunate) lost opportunities as the transportation
planners’ lack of a rigorous scientific approach to problem formulation, derivation of
conditions governing the solution of the problem, and design and testing of convergent
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algorithms for computing the solution, and also states ([102]):

It is a useful example of the maxim that the key to the solution of a problem lies in its
well-formulated statement.

In the mid-70s, several studies were made to validate the models and convergent al-
gorithms developed in the academic community (e.g., [360, 974, 941, 288]), and planning
agencies were beginning to employ them in their activities; by the end of the 70s, sev-
eral program packages, developed at transportation study groups at North American and
European universities and based on scientifically well founded models and methods, were
available for practical use.

For further reading on heuristic algorithms for traffic assignment, see [650, 667, 315,

511, 662, 171, 319, 798, 512, 799, 972, 370, 655].

1.6 Travel forecast

At this point in the long-range study the interactions of land use and transportation are
explicitly recognized.

Selecting a design (or horizon) year is usually a compromise. It must be far enough
in the future for major programs to be initiated and construction staged according to
funding availability, yet the design year can not be so far in the future that forecasts of
future development and traffic will have a doubtful reliability. Thus, forecasts in the 15 to
25 year range are most common. In certain situations it will however be easier for laymen
to understand projected levels of anticipated transportation demand which may actually
occur prior to, during, or after the design.

Transportation studies may develop several land use alternatives instead of preparing a
single forecast or plan of land use. Alternatives may be developed to challenge or confirm
existing recommended plans, discover whether or not one land use form offers particular
advantages over another, probe community values and provoke public discussion on key
issues, and also to educate the public in the values of planning, and to identify the need for
change in financing or government organization to facilitate plan implementation ([106,
p. 30]).

To a large extent, the growth in population determines the growth in economic activity,
the requirements for additional or new land uses and also the future level of transportation
demand. The total amount of population growth expected in an urban area is important
since it is basic to the estimation of future trip generation and interzonal travel. Equally
important is knowledge of the location of this growth. Population forecasting techniques
are described, for instance, in [923, 650].

A forecast of future urban area economic activity, along with the population forecast,
provides the basis for estimates of future non-residential land requirements and future
trip generation. The depth and scope of an analysis of urban economic activity will vary,
depending on the accuracy and detail of the results desired, time and money available,
etc. It is essential that reliable and accurate estimates are obtained for pattern changes
and productivity in industrial and commercial employment and per capita income ([650,
p. 65]).

Based on the above two forecasts, estimates of automobile ownership, future land use,

accessibility and the other parameters necessary in the trip forecasting are then projected
for the design year ([456, 461, 706, 650, 579]).
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1.7 Network evaluation

Proposals to improve or extend existing transportation systems can range from limited
improvements, such as the widening of a section of road, or the improvement of a junction,
to comprehensive proposals which involve the construction of significant sections of urban
motorway, the development of new forms of public transport and the close integration
of different transport systems. Before decisions are taken to proceed with any propos-
als, either small or large, an attempt is normally made to evaluate the efficiency of the
proposed investments. There are several grounds on which the proposals must be evalu-
ated: the realism of the numerical results must be judged, the proposed transportation
system must be evaluated against the predicted future transportation requirements, the
environmental effects of the operation of the proposed system must be considered and the
economic consequences of the provision and operation of the system must be estimated.
The economic consequences of carrying out transportation schemes have received increas-
ing attention during the last 30 years; the environmental effects, on the other hand, have
received increased attention only recently.

Large-scale transportation proposals are normally assessed by means of a cost-benefit
analysis, which aims to compare the costs and benefits associated with alternative schemes.
For detailed accounts and examples of evaluations of proposed transportation systems,
see, e.g., [984, 130, 805, 638].

The transportation planning process emerged during the 1960s, when transportation
planners expected private automobiles to continue to be the primary transport mode.
The travel forecasts made in the process reflected this bias, and the evaluations in this
step were hence orientated toward the expansion of highway capacity. During the 1970s,
however, the goals of the planning shifted toward an expansion of the public transportation
network.

1.8 Discussion

In this chapter we have presented the classical approach to transportation planning. His-
torically the transportation planning process has developed using a series of submodels;
these models were outlined, together with classical methods for their analysis. The ob-
vious drawback of the sequential planning approach is that it may obscure the fact that
the models are integral parts of the whole. The most immediate consequence of the sep-
aration into submodels is that some feedback should be introduced into the process, to
allow, for instance, the travel times estimated in the traffic assignment part to influence
the trip generation and distribution ([981, 106, 264]). This iteration is, however, seldom
applied in practical studies; it has also been recognized that even with such a feedback,
the process would not necessarily converge to a consistent solution. The conclusion one
must draw is that the transportation planning process should recognize the intimate re-
lationships between the different parts of the transportation system, and subsequently
develop combined models.

The criticism against the planning studies’ assignment models and methods may be
extended to the other parts of the process as well; not until in the 1960s did the trip
generation and distribution models used become well founded. The different parts of
the planning process are also very different in their sophistication. Compared to the
development of modal split and assignment models, the land use prediction is a very
underdeveloped part of the process ([767]).
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Domencich and McFadden [264, Chap. 1] summarize the drawbacks of the prevailing
transportation planning study methodologies, particularly with respect to their criteria
list:

(1) The models are basically non-behavioural. They replicate the results of conditions
existing at the time of the survey and provide little or no guidance to the effects on
travel decisions of changes in travellers’ circumstances or in terms upon which they
are offered competing alternatives in the transportation environment.

(2) Except for the modal split, the models are basically non-policy orientated. The effects
of the variables which policy-makers are able to control are excluded from the trip
generation and attraction functions and applied mechanically, and to a limited extent
at best, in the trip distribution There is essentially no interaction between system
performance and the choices of trip frequency or trip destination.

(3) The decision of time of day to travel is seldom, if ever, modelled.

4) FEquilibration is essentially ignored, except to the limited extent that auto route
q y 18 ) p
assignment models take account of capacity constraints in assigning routes.

(5) Models are based on data representing zonal aggregates of trips and socio-economic
conditions which obscures much of the information in the data and, together with
the lack of a behavioural structure, makes the models difficult to generalize from city
to city.

One may add here that the process should be a continuing one rather than a once-and-
for-all study; the information gathered during the inventory and forecasting stages could
be effectively used together with a continuing monitoring of the developments of the plan
to correct future estimates; compared with the actual land use and traffic developments,
divergences could be recognized, and the models subsequently adjusted. This was recog-
nized at an early stage of the development of planning models (e.g., [650]), but follow-up
studies are not always made.

For further discussions on the shortcomings of the conventional transportation planning
methods, see, e.g., [878, 465, 114, 130, 264, 711]. As responses to these shortcomings, new
approaches to transportation planning have developed from the 1970s. For an account of
the latest developments, see [740, pp. 564-574].

The transportation planning process is described in detail in many text books and
articles; see, e.g., [814, 152, 650, 726, 467, 52, 670, 93, 762, 130, 879, 37, 805, 638, 255].



Chapter 2

The basic equilibrium model and
extensions

In this and the next chapter we introduce and analyze mathematical models for the
perhaps most central part of the traffic planning process: the assignment of traffic onto the
routes of an existing or proposed transportation network. We also briefly discuss models
presented for related network problems (such as electrical networks) and extensions to
more complex problems. In this chapter we concentrate on optimization models; in the
next chapter, non-optimization models are discussed.

2.1 The Wardrop conditions

Any well founded traffic model must recognize the individual travellers’” decision-making
with regards to when, where and how to travel. A traffic assignment model, in which one
aims at providing a macroscopic description or prediction of the traffic volume resulting
from route choices made in the traffic network, must therefore be based on a route-choice
behavioural principle. Alternative assumptions about route-choice behaviour naturally
lead to alternative model formulations.

In the analysis of traffic assignment models, congestion is a fundamental notion. As
a result of growing traffic volumes, the average speed on a link tends to decrease, first
slowly, but as the interaction among the vehicles and the queueing effects become more
and more significant, the average speed decreases more rapidly, until the queueing has
developed into a jamming situation in which very little flow can be observed on the link.
In the analysis of traffic systems, average travel times are modelled as link performance
functions (see Section 1.5.4, and Figure 1.1 in particular), relating travel time to the
volume of traffic on the link. To account for the congestion effects, these functions are
typically nonlinear, positive, and strictly increasing with flow. Parameters in the formulas
often include practical capacities, which measure the breakpoint at which the travel time
starts to grow rapidly with additional flows.

Kohl [564, p. 76] recognized that the routes chosen by the travellers were those that
were individually perceived as being the shortest under the prevailing traffic conditions,
i.e., travellers minimize their individual travel times. Although it has been observed that
many factors other than travel time influence the drivers in their route-choice process (see
Section 1.6), travel time is still the main component in the travel cost. (Recognizing this
fact, we shall use the terms travel cost and travel time interchangeably.)

The result from such decisions made by all travellers individually is a situation in
which no driver can reduce his/her journey time by unilaterally choosing another route,
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and it is therefore known as the user optimal situation. The user optimal situation is
characterized by the fact that all routes actually used between an origin and destination
have the same average travel time. This is realized by considering the situation where
two utilized routes give rise to different travel times. Then, users on the longer route
have an incentive to change to the shorter one, and the present flow is hence not a user
optimum flow. The term user equilibrium, which is also frequently used, stems from this
characterization. The first to use the term equilibrium to describe the traffic pattern is
perhaps the economist F. H. Knight [562].

The reader should note that the principle here described, assumes implicitly both that
each traveller has complete and accurate information about all the paths available and
about their characteristics, and that the pattern of network flows is so stable over time that
past experience (such as the times over particular routes no longer used by the traveller)
is still valid. (Models in which travellers are assumed to have incomplete information
are known as stochastic models, as opposed to the above deterministic model; these are
described in Section 2.8.1. Models in which flow is assumed to vary with time are known
as dynamic models, as opposed to the static model above.)

By influencing the travellers’ choices of routes society may guide tripmakers towards
an optimal utilization of the traffic network, i.e., to minimize the total journey time.
The resulting travel pattern from these prescriptive route choices is known as the system
optimal flow. The system optimal situation is characterized by the fact that all routes
used between an origin and destination have equal marginal travel times. Indeed, if the
marginal travel times were different for two used routes, then it would be possible to shift
a portion of the flow from the route with the higher marginal cost to the route with the
lower marginal cost, and thereby decrease the total travel time.

The total travel time is generally not minimized by the user optimal travel pattern,
as already observed by Pigou [756]. The only situation in which the user and system
optimal flows are equal, is in the idealized case when no congestion exists ([533]).! In the
real urban traffic system, observed flows are likely to be closer to a user than a system
optimum ([268]).2

There are essentially two alternative means to obtaining a system optimal flow. In
the first, route choices are imposed upon the users of the traffic network (involuntary
system optimum [871, 413]). There are some transportation systems, particularly those
in which there is a centralized control over tripmaking decisions, for which this will seem
reasonable. For example, in an industrial logistics system, goods shipments from factories
to warehouses and distribution centres may well be made in such a way as to minimize
total distribution cost or simply total transportation cost, or to maximize profit; a similar
situation is to be found in rail and computer communication networks ([637, 871, 413]).
Such a preseriptive solution is also applicable in certain traffic management systems (see

[413, 415], and [740, pp. 413-422]).

T Actually, it can be shown that the user and system optimal principles coincide precisely when the
travel time functions are given by

ta(fa):kaff: VCLEA:

where k, is a positive constant which may differ among the links, and # is a nonnegative universal
constant of the network ([209]). For a positive value of &, marginal costs do not equal user cost, but they
differ only with a universal multiplicative constant (1 4+ #), which does not affect the flow distribution.
See also [59].

2Some report, however, that system optimal flows are observed ([92, 891]), or that the observed flow
lies somewhere in between the two principles ([996]). Theoretical work on the difference between user
and system optimal flows may be found in [50, 683].
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The second alternative is to try to persuade drivers to choose their routes efficiently, by
charging them tolls equal to their contribution to the total cost. This voluntary system
optimal strategy is known as the congestion pricing strategy; see Section 2.4.

Given functions describing the relationships between traffic volume, travel cost, and de-
mand for transportation, traffic may be assigned onto a transportation network according
to either of two main principles: the principle of equal journey times, also called descrip-
tive assignmentas it is the most likely one to be observed, or the principle of minimal
total cost, which is also called normative assignment.

The demand for transportation is usually considered as being average trip rates, i.e.,
average frequencies of trips entering the network during a time period (for instance part
of the morning peak-hour). The notion of an equilibrium should then be thought of as
the steady-state evolving after a number of time periods have passed, and the travellers
have adjusted their route choices according to the prevailing conditions.

The two behavioural principles described above are usually attributed to J. G. Wardrop
of the Road Research Laboratory, and are therefore referred to as the two Wardrop con-
ditions. We state below the two principles as cited from Wardrop [958].

Wardrop’s first principle:®

The journey times on all the routes actually used are equal, and less than those which would
be experienced by a single vehicle on any unused route.

Wardrop’s second principle:

The average journey time is a minimum.

The notion of user and system optimality, which are the other common terms, was
coined by Dafermos [210, 209], based on the works of Jorgensen [533].

This work of Wardrop is not original however; the two principles were discussed, in the
following terms, as early as 1920 ([756, p. 194]):

Suppose there are two roads ABD and ACD both leading from A to D. If left to itself, traffic
would be so distributed that the trouble involved in driving a “representative” cart along
each of the two roads would be equal. But, in some circumstances, it would be possible,
by shifting a few carts from route B to route C, greatly to lessen the trouble of driving
those still left on B, while only slightly increasing the trouble of driving along C. In these
circumstances a rightly chosen measure of differential taxation against road B would create
an “artificial” situation superior to the “natural” one. But the measure must be rightly
chosen.

The purpose of this statement, which was made by the economist A. C. Pigou, is to give
an example of the consequences of total freedom of companies’ factory investments. He
concludes that they would choose to invest in factories with higher marginal investment
costs, and that society, by a correctly chosen taxation, can direct the companies to invest
more wisely, from the society’s point of view. In this, he has in fact both stated the two
above mentioned route-choice principles and also introduced the principle of congestion
pricing; see Section 2.4 for further discussions on this topic.

Transportation networks where a system optimal flow pattern is imposed, can be repre-
sented in economical terms as the economy of the firm, i.e., a system where the utilization
of the production facilities are centrally controlled. In this context, the principle of equal

3This is the correct ordering of the two Wardrop principles.
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marginal cost is well known, and states that the market price for a product should be
equal to the marginal cost of the item last produced. For more detailed discussions on
these relationships, we refer to Beckmann et al. [47] and Gartner [413].

The traffic assignment problem may also be interpreted in game theoretical terms.
Wardrop [958] describes the properties of a user equilibrium state as follows:

The first criterion is quite a likely one in practice, since it might be assumed that traffic will
tend to settle down into an equilibrium situation in which no driver can reduce his journey
time by choosing a new route.

From the above, it is natural to believe that the traffic pattern satisfying Wardrop’s
first principle is a Nash [705] equilibrium of a network game among the tripmakers. To
our knowledge, the first to recognize this fact are Charnes and Cooper [160, 162], who
identified the players as the different origin-destination pairs. The game theoretical inter-
pretation is further discussed in Section 2.6.1.

2.1.1 The fixed demand case

To formulate the user equilibrium conditions mathematically, we consider a feasible flow
pattern and an arbitrary origin-destination pair (p, ¢) € C. Let ¢, denote the travel time
on a route r from the origin node p to the destination node ¢ resulting from the given
flow, and assume, without any loss of generality, that the routes between p and ¢ are
so ordered, that the first [ are actually used, i.e., carry a positive route flow. Then, the
network flow is a user equilibrium if and only if it is true that

cpql = Cpqg =...= cpql;

and the unused routes in the O-D pair (routes [+ 1,...) have travel times that are at
least as large as that of the used routes.

Letting R,, denote the index set of simple routes* in origin-destination pair (p, q) € C,
hpee the flow on route r, and m,, the travel time on the shortest route from p to ¢,
given the flow h = (%pyr )rer,, (p.g)ec, the above Wardrop user equilibrium conditions may
equivalently be stated as

hpgr >0 = Cpgr = Ty, Vr € Ry, (2.1a)
hpgr =0 == Cpgr > Tpg, Vr € Ry, (2.1b)

to hold for all pairs (p,q) € C. Including the feasibility restrictions for the flow h, the
conditions for user equilibrium may be summarized as

Ppgr(Cpgr — Tpg) = 0, Vr € Ry, Y(p,q) €C, (2.2a)
Cpgr —Tpg = 0, Vr € Rpy, Y(p,q) €C, (2.2b)
D g = dyy, V(p,q) €C, (2.2c)
T€Rpq
hqu Z 07 \V/T S RPQ7 \V/(p, q) € Ca (22d)
7qu Z 07 \V/(p, Q) € C7 (226)

where (2.2a)—(2.2b) is a restatement of (2.1), (2.2¢) ensures the feasibility with respect
to the (fixed) demands, and (2.2d)—(2.2¢) ensure the nonnegativity of the route flows and
corresponding travel costs.

4A simple route is a route without cycles, i.e., a route that does not utilize the same link twice.
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2.1.2 The variable demand case

Frequently, the traffic assignment problem is formulated as a problem with variable (or
elastic) demands, where the trip rates in the origin-destination pair are modelled as func-
tions of the least travel cost between the origin and destination. The basic premise behind
such a model is that a traveller has a number of choices available and is motivated by
economical considerations in his/her decisions; the minimum travel cost is a measure of
the perceived benefit to the travellers in an O-D pair, and the incentive to make a trip
decreases with an increasing disutility.

Because the demand function influences both the number of trips generated at the
zones and the distribution of trips among the destinations, the elastic demand model may
be viewed as a simple combined trip generation, distribution and assignment model.

In the case of elastic demands, the interpretation of the traffic assignment problem
in economical terms is more natural than in the fixed demand case. Viewing the trans-
portation network system as an economic market, the demand side corresponds to the
potential travellers, or consumers, of the network, who, in their decisions, are governed by
the travel demand functions. The supply side corresponds to the network itself, offering
transportation facilities to the consumers, at prices corresponding to travel times. The
commodity traded at the market is tripmaking. The market equilibrium situation is one,
where the number of trips between an origin and destination equals the travel demand
given by the market price, i.e., the travel time, for the tripmaking.

To extend the user equilibrium conditions to the case of elastic demands, let the demand
for transportation between the nodes p and ¢ be a function of the cheapest route costs r,
ie., let

def
dpg = Gpg(m), V(p,q) € C.
(Demand functions are discussed, for instance, in [573, 971].)
Then the Wardrop conditions for route flows and demands state that

hpgr >0 = Cpgr = Tpgs Vr € Ry,
hpor =0 = Cpgr 2> Tpgs Vr € Ryq,
dpg >0 = dyg = gpq(7),

dpg =0 = gpy(m) <0,

to hold for all pairs (p,q) € C.

The Conditions (2.3a)—(2.3b) correspond to the fixed demand Condition (2.1); the
Conditions (2.3¢)—(2.3d) state that the demand for transportation in an O-D pair equals
the value of the demand function at the shortest route cost, and that the demand is zero
if the travel cost is too high to induce any O-D flows.

We further assume that the demand function g,, is nonnegative on %El, for all (p,q) €
C. Including the feasibility restrictions for the flow h and demand d, the conditions for a
variable demand user equilibrium may be described as

hpq?"(cpqr - qu) = 0, Vr € Ry, V(P, Q) e, (2.4a)
Cpgr — Tpg > 0, Vr € Ryy, Y(p,q) €C, (2.4b)
Z hpgr = Gpa(T0), V(p,q) €C, (2.4c)
r€Rpq
hpgr =0, Vr € Ry, Y(p,q) €C, (2.4d)
Tpg = 0, V(p.q) €C, (2.4e)
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which is equivalent to (2.2) with the exception that the demands are given by the demand
functions at the shortest route costs.

2.1.3 Discussion

The Systems (2.2) and (2.4) do not include integrality restrictions on the route flows, and
thus define a continuous relazation of the actual Wardrop conditions. This approxima-
tion is made for the sake of simplicity, and should be quite accurate for any realistically
sized network. Discrete formulations of traffic assignment problems are discussed in Sec-
tion 2.6.2.

The Wardrop conditions given above are very general, since they do not assume any
particular properties of the travel costs and demand functions other than nonnegativity.
When studying optimization formulations in this chapter we shall, however, consider the
classical, simple form of travel cost, in which the travel cost on a route is defined as the
sum of the costs of the links defining the route (i.e., the travel costs are assumed additive),
and the travel cost on a link is assumed to be independent of the flows on any other link
in the network (i.e., the travel costs are assumed separable). A separability assumption is
made also on the demand functions. (These assumptions will subsequently be relaxed in
Chapter 3.)

In the next section, we shall derive optimization problems, with (2.2) and (2.4) as re-
spective optimality conditions, through which we investigate the properties of equilibrium
solutions. These formulations also enable the development of efficient optimization-based
procedures for computing equilibrium solutions.

2.2 The mathematical program for user equilibrium

To our knowledge, the first optimization formulation of a traffic assignment problem,
based on the Wardrop principles as the optimality conditions, is due to Prager [765].
His optimization formulation is based on an analogy between flows of traffic and electric
currents (see further Section 2.6.3); this optimization problem includes, however, too
restrictive assumptions to be useful for studying traffic flows.

The objective functions of the mathematical programs to be derived in this section are
based on total link flows. The route and link flows, and their associated travel times, are
related according to the following. The commodity link flows, f,, = (fup), given the
route flows h, are given by

fapq d:ef Z 5pq’r‘ahpq’r'7 V(p, q) (& C, Ya € A, (253,)
acA
where
1, it route r € Ry, uses link a,

Spara =
para 0, otherwise,

defines the link-route incidence matriz, AT = (8,4,4), for the network G. The total link
flows, f = (f,), are then given by

fa d:ef Z fapqa \V/CL S -/4; (25C)

(p7)€C

Va € A, Vr € Ry, Y(p,q) € C(2.5b)

or, in compact notation, summarizing (2.5a)—(2.5¢),

f = Ah. (2.5d)
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Due to the additivity assumption on the route costs, the travel costs on the links are
related to the route costs by

cpor(h) = D Spgrata(fa), Vr € Ryy, Y(p,q) €C, (2.5¢)
a€A

or, compactly,
c(h) = ATt(f). (2.5f)

Note that (2.5) defines the sequence in which the travel times on the routes in the
networks are calculated from given route flows.

2.2.1 The fixed demand case
When deriving the optimization problem corresponding to the Wardrop Conditions (2.1),

we shall assume the following properties of the network and the functions associated with
it.
Assumption 2.A (Properties of the traffic network)

(1) The network is strongly connected, i.e., at least one route joins each origin-destination
pair (p,q) € C (|Ryg| = 1).

(2) The demand d,, is nonnegative for each (p,q) € C.

(3) The travel time function t, : Ry — Riy is positive and continuous for each a € A.

The following theorem relates the user equilibrium Conditions (2.2) to the optimization
problem

[TAP]
fa
min T(f) % Z/ ta(s)ds, (2.6a)
acA’0
subject to
E thT = dPQ7 \V/(P,q> EC, (26b)
TE€Rpq
hqu = 0’ vr € RPQ? \V/(p,Q) € Ca (26C)
Z Z bpgralipgr = fa, Va € A. (2.6d)

(p,q)€C TERpq

Theorem 2.1 (Equivalent optimization formulation) Let Assumption 2.A hold. The
first-order optimality conditions of [TAP] is equivalent to the user equilibrium Condi-
tions (2.2).

Proof We associate a set of multipliers # = (w,,) with the Constraints (2.6b), and formulate the
Lagrangean function

L(h, ) = T(f(h)) + Z Tpq (dpq - Z hpqr) ) (2.7)

(p,9)€C r€R pq
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where the definitional Constraints (2.6d) are used to formulate 7" as a function of route flows.
The only remaining constraints are the nonnegativity Restrictions (2.6¢) on the route flows, so the
stationary point conditions for the Lagrangean (2.7) state that

dL(h
hpq,M = 0, Vr € Rpq, Y(p,q) €C, (2.8a)
Ohpqr
L(h
OL(h, ) > 0, Vr € Rpy, Y(p,q) €C, (2.8b)
Ohpgr
OL(h, ) = 0, Y(p,q) €C, (2.8¢)
O0Tpq
hoer > 0, Vre Ry, Y(pq)eC. (2.8d)
In order to further develop (2.8), we first note that, from (2.6d),
oT(f aT 6fa
) rata(fa) = r ha .
ahpq,« Z = . Bhgar ; parata(fa) = cpr(h) (2

i.e., the partial derivative of 7" with respect to the route flow variable hp,- at a given flow equals the cost
of travel along route r in O-D pair (p, q).
Using the Expression (2.9), we obtain from (2.8) that

hpqr (cpgr(h) —mpg) = 0, Vr € Rpq, V(p,q) €C, (2.10a)
Cpqr(h) - “pq 2 0) VT’ € qu) V(p: Q) € C: (210b)
Z hper = dpq, Y(p.q) €C, (2.10¢)
T€ER pq
hpgr > 0, Vr € Rpq, Y(p,q) €C. (2.10d)

From (2.10a)—(2.10b), we may interpret the multiplier mp, as being the minimum route cost between p
and ¢; from the positiveness assumptions on the travel time functions,

Tpq Z 0; V(p,q) € Ca (2106)

and (2.10) and (2.2) are identical. The stationary point Conditions (2.10) are necessary for the optimality
of h in [TAP], since the Constraints (2.6b)—(2.6d) of [TAP] are linear, in which case the Abadie constraint
qualification always holds ([43, Lemma 5.1.4]; see also [436, 42, 752, 44]). a

The problem [TAP] was first formulated by Dafermos and Sparrow [210, 209]. We will
refer to this formulation as the link-route formulation, and the set of link flow solutions
to the System (2.6b)—(2.6d), by F"; the sets of feasible commodity route flow solutions
will be denoted by H,,, and the product set by H.

2.2.2 Network representations

Since the equilibrium conditions are given in terms of route flows and costs, it follows
naturally that the optimization problem [TAP] is based on route flows. The link-route
representation of the network, G is, however, not the only one possible. The physical
network may also be represented by a set N of nodes, corresponding to intersections and
origin-destination zones, and a set A of directed links, corresponding to roads joining the
intersections.

To simplify the discussion in this section, we redefine the link flow variables as f;;,
denoting the flow on the directed link, (z,7), from node 7 to j. Further, we let fi = (fi;x)
denote the vector of flows for commodity &k € C.

Assuming that demands are fixed, a feasible flow for commodity & then is a vector fj
satisfying

Yo fip =D fiiw = dn,  ViEN, (2.11a)
JEW; JEV;

fijk

Y,

0, V(i,j) €A, (2.11b)
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where
dy, if node ¢ is the origin of commodity k,
dy & { —dy, if node 7 is the destination of commodity &, Vie N
0, otherwise,

defines the demand vector, dj, for commodity &, and
Wi = i 0) € A},
Vi € (i1 €A

denotes, respectively, the set of links initiated and terminating at node z.

A compact form of (2.11) is obtained by introducing the node-link incidence matrix,
A = (ay), a matrix in {—1,0, 1YW with

1, if ¢ is the origin node of link b,
ap { —1, if 7 is the destination node of link b, Voe A, Vie N. (2.12)
0, otherwise,

With the node-link incidence matrix at hand, (2.11), for all O-D pairs, may be com-
pactly summarized as

Af, = dk, VkEC, (213&)
f, > 0, VkeC, (2.13b)

and the total link flows are given by
o S far,  Vae A (2.13¢)

keC
We let F'" denote the feasible set of total link flows defined by (2.13).

The System (2.13) yields an alternative to (2.6b)—(2.6d) for representing feasible link
flows. The problem [TAP], with (2.6b)—(2.6d) replaced by (2.13), is referred to as the
link-node formulation. The two problems are not equivalent, however, as the following
theorem will establish.

Theorem 2.2 [14, Th. 3.5] (Flow decomposition theorem) FEvery route and cycle flow
has a unique representation as nonnegative link flows. Conversely, every nonnegative link
flow may be represented as a route and cycle flow (though not necessarily uniquely).

Since cycle flows are not included in the link-route formulation, we may conclude from
the above theorem that

FrC Fm,

and that the difference of the two sets corresponds to the commodity cycle flows which
are included in F™.5

This difference between the two sets may be explained by making use of the connec-
tions between polyhedral theory and multicommodity network flows. The representation
theorem (e.g., [590, Th. 3.2] or [43, Th. 2.6.7]) states that any point x in a polyhedral set
X may be written as a convex combination of the extreme points of X plus a nonnegative
linear combination of the extreme rays of X. In other words, letting {y’ | j € X } and

3 Although the set F7 is included in F*, Aashtiani and Magnanti [4] consider the link-route formulation
more general, since it allows for more flexibility in modelling users’ perception of available routes.
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{d' |7 € D} be the sets of extreme points and extreme rays of X, respectively, x € X if
and only if

x = Y Ny +Y pd, (2.14a)
JEX i€D
SN =1, (2.14D)
JEX
Mot >0, Vj € X, Vi€ D. (2.14¢)

It is well known that in the polyhedral feasible set corresponding to an uncapacitated
multicommodity network (such as F" and F"), there is a one-to-one correspondence be-
tween extreme points and simple routes (or spanning trees), while extreme rays correspond
to cycles. Using the representation theorem we may conclude that the polyhedral set F”
is obtained from F" by letting D = {).

The fact that the two feasible sets are not equal does, however, not imply that using
either the link-node or the link-route formulation results in different sets of equilibria;
if travel costs are positive, no traveller would choose to travel in a cycle, since it would
increase his/her travel cost, and therefore the set of equilibria coincide. (In the case of
separable costs, the fact that cycle flows can not be present in an equilibrium solution
with positive travel costs is discussed by Newell [711, p. 154-155].)

The link-route formulation is advantageous, since the constraint structure is very sim-
ple; disregarding the link-flow defining constraints, the set H,,, defining the feasible flows
for commodity (p, q), is a simplex, that is, a set defined by nonnegativity restrictions on
the variables and one additional constraint stating that the sum of the variables should
equal a constant. Furthermore, the number of equality constraints in the link-route and
link-node formulations is |A| + |C| and |A| + |N| - |C|, respectively.

The advantage of the link-route formulation in terms of the number of constraints is,
however, paid for by the enormous number of route flow variables, a number that generally
grows exponentially in the size of the network. The number of route variables that are
positive at a solution is, on the other hand, very few; if we knew the optimal set of routes,
the equilibrium solution would be (relatively) easily obtained. The idea behind column
generation algorithms for traffic equilibrium problems is to generate route flow variables
as needed, i.e., routes that potentially will carry a positive flow in an equilibrium solution
are generated algorithmically. Column generation algorithms are described in more detail
in Sections 4.2.3 and 4.3.5, as well as the two representations of feasible flows.

To further illustrate the relationship between the two formulations, we shall below
show that under Assumption 2.A, the optimality conditions of the link-node formulation
is equivalent to the user equilibrium Conditions (2.2).

Alternative proof of Theorem 2.1 Consider the problem of minimizing 7', as given in (2.6a), subject
to the Constraints (2.13).

Similarly to the proof of Theorem 2.1, we introduce multipliers for the flow conservation constraints, in
this case the Constraints (2.13a). In other words, let m;; be the multiplier (or node price) corresponding
to Constraint (2.11a), and consider the Lagrangean

L, m T (Efk) YD (Z Fiik = Y Fiie — dilc) ; (2.15)

keC keCieN JEW; JEV;

where the definitional Constraints (2.13c) are used to formulate T as a function of commodity link flows.
The only remaining constraints are the nonnegativity Restrictions (2.13b) on the link flows, so the
stationary point conditions for the Lagrangean (2.15) state that

L f
ijk
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OL (2 £y m) 0, Y(i,j)EA VkeC, (2.16b)
Ofijn

oL (Zk £y, ) = 0, Vk e C, (2.16¢)
(‘37%

fi;p > 0, Y(i,j) € A. Yk € C. (2.16d)

While (2.16¢), (2.16d) are equivalent to the primal feasibility Constraints (2.13), (2.16a)—(2.16b) yields

Jijie (i (fij) + mip — m) = 0, V(i,j) €A, Yk eC, (2.17a)
tij(fij) + Tk — e > 0, V(i,j) € A, Yk eC. (2.17b)

Let r be any utilized route in O-D pair k, and let the origin and destination node be p and g,
respectively. Summing the Equation (2.17a) over the links defining route r, we obtain, by also noting
that f;;z > 0 on these links, that

D0t i) +min — mad = 7o —me + Y tij(fij) =0, (2.18)

(4,4)€r (i4)er
i.e., the travel cost of route r equals the difference in potential between the origin and destination node.
Since this cost is independent of the choice of route in the commodity, we may conclude that the travel

cost is equal for any utilized route between p and ¢. An analogous argument using (2.17b) establishes
that no unused route in the O-D pair can have a travel cost less than

Ck = Mgk — Tpk, (2.19)

which thus is the minimum travel cost. Tt is also clear from (2.18) and the positiveness of the link costs
that the travel cost is nonnegative. We have thus shown that the link-node formulation of [TAP] is
equivalent to the Wardrop conditions of user equilibrium. m]

Remark 2.1 From (2.19), it follows that the optimal node potentials are unique only up
to an additive constant. This is a well-known property of network flow problems, due to
the redundancy present in the System (2.13a). We may, for instance, define the origin
potential as zero, m,, = 0, whence it follows that the travel cost between the origin and
destination, at equilibrium, equals the potential at the destination node.

2.2.3 The elastic demand case

When deriving the optimization problem corresponding to the variable demand user equi-
librium Conditions (2.3), we shall assume that each demand function g¢,, is nonnegative
on £, and further strictly decreasing in shortest route cost, i.e.,

1 2 1 2 1 2
Tpg = Tpg = gpq(ﬂ-pq) < gP‘I(ﬂ-pq)7 Vﬂ-pwﬂ-pq 2 0.

(This is a one-dimensional version of strict negative monotonicity, see Definition A.2.c.)
Under this assumption, the demand function is invertible, in which case

dpg = Gpq(Tpg) = Tpy = gp_ql (dpq) (2.20)

whenever d,, > 0.
We summarize the properties assumed below.

Assumption 2.B (Properties of the traffic network)

(1) The network is strongly connected.
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(2) The demand function g,, : Ry — Ry is nonnegative, continuous and strictly decreas-
ing for each (p,q) € C.

(8) The travel time function t, : Ry — Riy is positive and continuous for each a € A.

The following problem will be shown below to yield optimality conditions corresponding
to the variable-demand user equilibrium conditions.

[TAP-E]
. def fa dpq 1
min T(f,d) = Z/ to(s)ds — > / 9pa (8)ds, (2.21a)
acA”0 (p,q)€C 0
subject to
Z hqu = dPQ7 \V/(p,Q) € Ca (221b)
T€Rpg
hpq'r > 0) Vr e qua v(paq) € ca (221C)
S0 Y Sprahpy = far  Va€ A (2.21d)
(p,q)EC rERpq
dpg = 0, (p,q) €C. (2.21e)

Remark 2.2 The Constraints (2.21e) are redundant because of the Constraints (2.21b)-
(2.21c), and are included in the formulation of [TAP-E] only to highlight the fact that
the demand is variable.

Theorem 2.3 (Equivalent optimization formulation) Let Assumption 2.B hold. The
first-order optimality conditions of [TAP-E] is equivalent to the elastic demand user equi-
librium Conditions (2.4).

Proof The proof is similar to that of Theorem 2.1. Introducing multipliers (mp,) corresponding to the
Constraints (2.21b), and substituting links flows, the Lagrangean function becomes

L(h,d,7) € T(f(h).d)+ Y (dpq— 3 h,,q,), (2.22)

(p,9)€C r€R pq

The Lagrangean is subject to nonnegativity restrictions on the route flows and demands. The stationary
point conditions yield (2.8), from differentiating with respect to the h,, and m,, variables, and

L(h,d
dqu 05 V(p;Q) € C: (223&)
Odp,
L(h,d
orhdm o, V(p,q) €C, (2.23b)
Odp,
dpq Z 05 V(p, Q) € C’ (223C)

from differentiating with respect to the d,, variables.

As for the fixed demand case, (2.8) yields the System (2.10), while (2.23) yields

dpq (Tpg = 95y (dpg)) = 0, V(p,q) €C, (2.24a)
Tps = 0pg (dpg) > 0, Y(p,q) €C, (2.24b)
dpq 2 O: V(p: Q) € C; (224C)

By virtue of the strictly decreasing property of the demand functions [see (2.20)], the System (2.24) states
that if, in an O-D pair, the demand is positive, it is given by the value of the demand function, while, if
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it is zero, the travel cost is too large to induce a positive demand [see (2.24b)]. But this is precisely the
elastic demand equilibrium condition for the origin-destination demand flows. a

The problem [TAP-E| was first formulated by Beckmann et al. [47, Sec. 3.1.2], us-
ing a link-node formulation, and the then relatively new results on necessary conditions
of optimality in nonlinear programming from Kuhn and Tucker [572]. The first to for-
mulate the problem of transportation market equilibrium as a mathematical program is
Samuelson [806]. However, the first to formulate the problem taking congestion effects
into consideration are Beckmann et al.; see Section 2.6.4 for a brief description of market
equilibrium problems. We let H; denote the set of feasible demand and route flows of
[TAP-E], and F the corresponding set of demand and link flow solutions.

2.2.4 Equivalent fixed demand reformulations

It is possible to transform the elastic demand problem to a problem with fixed demands,
by a suitable augmentation of the network. By performing such a transformation, it is
thus possible to utilize the many efficient algorithms available to [TAP] for the solution
of [TAP-E]. The basic idea is to interpret the inverse O-D demand function as the cost
function for an auxiliary link, joining the O-D pairs.

The first known transformation is due to Murchland [697]. He transforms [TAP-E] to a
problem of finding a minimum-cost circulation flow, by introducing fictitious links (return
generating links) from the destinations to the origins, with costs equal to the negative of
the respective inverse demand function.

Murchland’s transformation is further developed by Dantzig et al. [226] and Gart-
ner [414]. By slightly modifying the minimum-cost circulation flow problem, a fixed
demand problem is obtained. In this transformation, the network is augmented by a
dummy destination node for each origin, which are connected by a zero-cost overflow
branch. Generating links are added between the destinations, corresponding to the origin
in question, and the dummy node, with a cost function equal to the negative of the inverse
demand function. By defining an overestimate of the optimal demands to be the fixed
demands between the origin and the corresponding dummy destination node, all excess
demands are transferred to the zero-cost links. This reformulation then is equivalent to a
fixed demand assignment problem.

Gartner [414] gives an excess-demand transformation, based on the addition, for each
O-D pair, of a forward generating link between the origin and destination. An overestimate
of the demand is defined as the fixed demand of the O-D pair, and the excess demand is
carried on the artificial link, whose cost function is the inverse demand function. Since
this transformation involves the least amount of additional data of the ones given, it is
probably the most efficient computationally, and from some computational experience
([414]) one might expect that, through this transformation, elastic demand problems are
solved within 1.25-1.75 times the time needed for solving a fixed demand problem on the
same original network and using the same algorithm.

2.2.5 Discussion

After the transformation has been made, there is no distinction between the original
(supply) links and the fictitious (demand) ones. The conclusion is thus that the elastic
demand problem [TAP-E] is a special case of [TAP], and, since the fixed demand problem
corresponds to a special case of [TAP-E] where the demand function is constant, [TAP]
and [TAP-E| can be said to be equivalent.



42 The Traffic Assignment Problem

In the case of fixed demands, the Objective (2.6a) has no satisfying physical or eco-
nomic interpretation ([533, 209, 413]), although artificial interpretations exist in terms of
incremental (or cumulative) travel costs (e.g., Newell [T11, Sec. 6.3], and Erlander and
Stewart [302, Sec. 8.6-7]). More natural interpretations exist in assignment models, where
the flow is assumed to be integer valued (see Section 2.6.2).

Beckmann et al. [47] considered the Objective (2.21a) of [TAP-E] as a mathematical
construction for obtaining the user equilibrium conditions as the optimality conditions;
this fact led some researchers ([101, 7T11]) to argue that there is no economic significance
in the objective of [TAP-E]. Some others (e.g., [359, 601, 661]) incorrectly (according
to Gartner [413]) assert that the solution of [TAP-E| amounts to maximizing consumer
surplus; Beckmann et al. warn against this interpretation, which is valid only when the
travel times are independent of flow ([413]). The Objective (2.21a) is however related to
social welfare functions ([417, 640, 413]).

Extensions of the elastic demand model arise in the development of cost versus time
models; the objective of [TAP-E] is then augmented by terms related to the monetary
expenses associated with a trip; see Laurent [592].

So far, we have not established the ezistence of an equilibrium solution. This is the
topic of the next section.

2.3 Properties of equilibrium solutions

2.3.1 Existence of equilibrium solutions

Through the equivalence Theorems 2.1 and 2.3, the existence of an equilibrium may be
established by ensuring the existence of solutions to [TAP] and [TAP-E] (for both the
link-route and link-node formulations). This is the case, since from the above theorems,
any flow satisfying the corresponding necessary optimality conditions is a fixed and elastic
demand equilibrium flow, respectively.

In the case of elastic demands, the demand functions are required to be strictly decreas-
ing in order to formulate the problem [TAP-E]; this property of the demand functions is,
however, not necessary for ensuring the existence of an elastic demand equilibrium solu-
tion, see Theorem 3.17. When analyzing the existence and uniqueness of elastic demand
equilibria, we will therefore not use the formulation [TAP-E].

Theorem 2.4 (Existence of equilibrium solutions) Let Assumption 2.A hold.

(a) There exists an optimal solution to both the link-route and link-node formulations of
[TAP], which hence is a fized demand user equilibrium flow.

(b) Assume that each demand function g,, is nonnegative, continuous and bounded from
above. Then there exists an elastic demand user equilibrium demand and flow.

Proof

(a) According to Weierstrass’ Theorem, a continuous function attains its minimum on a nonempty,
closed and bounded set. From the assumptions, in order to be able to apply this theorem to
[TAP], the only thing left to prove is that the feasible set may, without affecting the solution set,
be restricted to a bounded set. In the link-route case, by virtue of the absence of cycles in the
formulation, the feasible set is itself bounded. In the case of the link-node formulation, the feasible
set 1s unbounded, but from the positiveness of the travel cost functions, one may add the constraints

fijr < dp, V(i,j) € A Yk el (2.25)
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without affecting the equilibrium solution. By Weierstrass’ Theorem, there exists a solution to
[TAP], and from Theorem 2.1 this is a user equilibrium flow.

(b) The proof is rather involved algebraically, and we therefore refer the interested reader to Aashtiani
and Magnanti [4] for a detailed analysis. We only mention here that the proof involves the refor-
mulation of the equilibrium Conditions (2.4) as a fized point problem (see Section 3.1.4), and the
restriction of the commodity flows to a bounded set through the additional constraints [cf. (2.25)]

Jijr < sup gpe(m), Yk € C. O
>0

For further discussions on the existence of traffic equilibria, see Section 3.3.

We denote the set of equilibrium route flows by H*.

With the above assumptions, there may be more than one equilibrium solution, and
the travel costs of different flows i H*, as well as the demands, may differ. (This follows
from the possible non-monotonicity of the travel and demand costs.) To alleviate this
unwanted property, we impose further conditions on the travel time and demand functions
to ensure that the equilibrium travel times and demands are unique. We also establish
the uniqueness of the total link flows.

2.3.2 TUniqueness of equilibrium solutions
Assumption 2.C (Properties of the traffic network)

(1) The network is strongly connected.
(2) The demand d,, is positive for each (p,q) € C (fired demand case).

(8) The demand function g¢,, @ Ry — Ry is positive, continuous, upper bounded and
non-increasing for each (p,q) € C (elastic demand case).

(4) The travel time function t, : Ry — Ry is positive, continuous and non-decreasing

for each a € A.

Theorem 2.5 (Uniqueness of equilibria) Let Assumption 2.C hold.
(a) The equilibrium travel times are unique.

(b) Assume that each demand function is strictly decreasing. Then the equilibrium de-
mands are unique.

(c) Assume that each travel time function is strictly increasing. Then the equilibrium
link flows are unique.

Proof

(a) In the fixed demand case, we will show the result by establishing the convexity of the objective of
[TAP] in terms of route flows, and using the result of Mangasarian [636] that the gradient mapping
of a convex program is constant on its solution set (H*). From (2.9), it then follows that all routes
have an invariant cost on the set H* of equilibrium solutions.

We first have that

[e(h") —c(b®)]"(h! —h?) = [AT4(f") - ATH(f)]"(h' — b?) ( )
= [t(f") - t(f")]"(ARh' — AR?) ( )
= [t(f}) — t(fH)] (£ - £2) (2.26¢)

0, Vil f2 e FT, ( )

vV
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where (2.26a) follows from (2.5f), (2.26¢) from (2.5d), and (2.26d) from the monotonicity property
of the link costs [cf. (A.14)].

The development (2.26) shows that if the link costs are monotone, then so are the route costs.
It hence follows that the objective of [TAP] is convex, both in terms of the total link flow variables,
f, and in the route flow variables, h (see also [43, Th. 3.3.4]). The result follows.

The result for the elastic demand case follows from similar arguments, but for details we refer to
Aashtiani and Magnanti [4].

(b) From the strictly decreasing property of the demand functions, it follows that the Objective (2.21a)
of [TAP-E] is well defined, and also strictly convez in the demands. It is a well known property of
a strictly convex function that its minimum is unique (see, e.g., [43, Th. 3.4.2]). The result follows.

(¢) Analogous to the proof of (b), using the strict convexity of the objective with respect to f. O

Under the assumptions of Theorem 2.5.c the problem [TAP] is strictly convex, and
hence the total link flow in equilibrium is unique. We denote this flow vector by f*.

Viewing the problem in terms of route flow variables only, the objective function is
only convex, since a link flow pattern may correspond to several route flow patterns (see
Theorem 2.2). An equilibrium route flow is hence not unique in general, even though
the link flow is. (Even when the equilibrium link flow solution is known, finding an
equilibrium route flow is still not a trivial task; see [270, 14] for algorithms by which link
flows may be decomposed into route flows.) An interesting property of [TAP] is that the
definitional Constraints (2.6d) [i.e, the System (2.5d)] induce a projection onto a subspace
of the feasible set of route flows, defined by (2.6b), (2.6¢), where the objective is strictly
convex. This property has some interesting consequences for the study of a Lagrangean
dual problem associated with [TAP] and [TAP-E]; this is the topic of the next section.

The above established properties of the primal formulation of traffic equilibrium prob-
lems are covered in many text books on traffic assignment (see, e.g., [762, 871, 638, 711,
831]); dual formulations are analyzed in the existing traffic assignment literature to a
much lesser degree, despite their richness in interpretations and usefulness for construct-
ing computational schemes.

2.3.3 Further properties of equilibrium solutions

We consider [TAP-E] under the assumptions of Theorem 2.5.

[TAP-E]
min T'(f,d) f Z/ s)ds — Y / gpq s, (2.27a)
(p9)eC
subject to
D e = dy,  Y(pg) €C, (2.27b)
T€Rpq
hper >0, Vr € Ryy, Y(p,q) €C, (2.27c)
> Spgralpr = fay  Va €A, (2.27d)
(P,g)E€CTERpq
dpg = 0, V(p,q) €C, (2.27e)
fo 2 0, VaeA (2.27f)

Note that the Constraints (2.27e)—(2.27f) are redundant in [TAP-E], but not in the
Lagrangean dualized problem.

We introduce multipliers gt = (ftq)aca for the link flow definitional Constraints (2.27d),
and define the dual traffic equilibrium problem
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[DTAP-E]
max 0(p) = Osc () + Osn(p), (2.28a)
where
[SC]
e ® S inf ["1(0)ds = (2280
acA aZ 0
and
[SR]

Osp(p) = Y. min {Z (Z %Mq) hpar — /Od”g;;<s>ds}, (2.28¢)

rERpy \aEA

st (2.270),(2.27¢), (2.27e). (2.284)

Observe that dualizing the Constraints (2.27d) in the link-route formulation of [TAP-E]
corresponds to dualizing the Constraints (2.13c) in the link-node formulation.

Due to the decoupling effect of dualizing (2.27d), the dual objective is the sum of two
functions; the evaluation of these functions, i.e., the solution of the subproblems [SC]
and [SR], further separates into |A4] strictly convex single-variable minimization problems
([SC4)), and |C| shortest route problems and strictly convex single-variable minimization
problems ([SR,,]), respectively.

We first discuss the solution of [SC]. Assume that each function ¢, : 4 — R4y, a € A,
is weakly coercive on R, (see Definition A.3.a) , i.e., that

lim ta(f.) = +oo. 2.2
Jlim ta(fa) = oo (2.29)

It is then straightforward to show that [SC,] is solved by

Falpta) = {t(;l(ﬂa)a if pq > t4(0), Va € A, (2.30)

0, otherwise,

where ¢! is the continuous inverse of ¢, ([794, p. 90]).%" 7
Turning to the problem [SR], through the Relation (2.27b) the problem [SR,,], (p,q) €
C, is equivalent to

dpq
min {dpq 3" Spgratta _/O gp—ql(s)ds} . (2.31)

reR

dpqug a€A
Its solution is obtained in two steps. First, a shortest route between p and ¢ given link
costs p is obtained; let m,,(p) denote its cost. The Problem (2.31) then reduces to

qu

driiz% {'”pq(lll)dpq - /0 gp_ql(s)ds} ; (2.32)

6The travel time formulas given in Table 1.1 satisfy the Condition (2.29), and have explicit inverses
t7t.
7If the redundant link flow nonnegativity restrictions are removed from [TAP-E], then the solution is
fa(pta) =7 (pa), in which case —f, = —t;! is the conjugate function ([779, Sec. 12]) of [, t4(s)ds.
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the solution to this strictly convex single-variable problem is

dpg(Tpg (1)) = max{0, gpe(7pe(p))}, (2.33)

i.e., the value of the demand function given the shortest route cost m,,(g), if nonnegative.®

[Compare with the equilibrium Conditions (2.24).] Note that 7,,(¢) may not be the
equilibrium shortest route cost, unless g is optimal in [DTAP-E].

To summarize, the solution set of [SR,,] is the convex combination of the simple route
flows corresponding to the shortest routes given the travel costs p, and carrying the flow
dpq, given by (2.33).

We introduce the solution sets

H(p) % {h|h solves [SR] at u}, (2.34)
Rpe(pt) def {r | route r solves [SR,,] at p }, Y(p,q) €C, (2.35)
Ja(pa) def { fa | fa solves [SC,] at y, }, Ya € A. (2.36)

The set H(p) is a polytope, but not a singleton for all values of g (in particular not at
an optimal solution).
Some properties of the dual function § are given below.

Theorem 2.6 [582] (Properties of 8) The dual objective 0 is the sum of a concave, piece-
wise linear function, and a strictly concave, differentiable function. It is thus everywhere
finite, continuous, concave, and subdifferentiable. Its subdifferential is a bounded polyhe-
dron, given by

00(p) = conv { ( Z Z Opgrafpgr — fa)
( acA

2,a)€C 1€Rpq(n)

f=f(u),he H(u)} . (2.37)

Further, (p) < T(£*), for all p € RMI.
Consider an arbitrary dual solution g, and let

max {p, t(0)},

where the maximum is taken component-wise. Then, f(f) = f(u), so that dsc(ft) =
Osc(p). Further, Osp(ft) > Osp(p), since o > p, and it follows that 0(f) > 6(p). Since
the dual objective is to be maximized over R, one can therefore, without any loss of
generality, impose the restrictions g > t(0) (see also [388, 145, 582]).

The Lagrangean dual problem may now be stated as

~ def
’1,_

[DTAP-E]
max O(p). (2.38)

#>1(0)

The (convex) program [DTAP-E] has a nice interpretation; in contrast to the primal
problem [TAP-E], in which equilibrium link flows and demands are sought, [DTAP-E] is
the problem of determining the equilibrium travel times, p* (see [388, 145, 147]). The
optimal solution is unique, since f* is unique and ¢, is strictly increasing on u, > t,(0)
(1582]).

We finally relate the optimal solutions to [TAP-E] and [DTAP-E].

8If the redundant demand nonnegativity constraints are removed from [TAP-E], then, similarly to the
case of [SC], dpg(Tpe(1)) = gpq(Tpe(mr)), and there is a conjugacy relation between dp, and [ g;,'(s)ds.
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Theorem 2.7 [582] (Relationships between [TAP-E] and its dual) Strong duality holds,
i.e., O(p*) =T(f*,d*). Furthermore, £* = f(u*), d* = d(w(p*)),

H* = {hEH(u*)

Z Z bpgralipgr = fq, Vae A } - H(III*), (239)

(p,9)€C rERpqg(n*)

and Ry, = Rye(p*), for all (p,q) € C, where R, is the set of shortest routes at equilibrium
for O-D pair (p,q).

Proof Strong duality follows from the convexity of [TAP-E] in (f,d) (see [43, Th. 6.2.4]). Further,
the set of optimal route flows may be characterized as the Lagrangean subproblem solutions for g = p*
which also satisfy the dualized Constraints (2.27d) [43, Th 6.5.1].

The uniqueness of f(u*) gives £* = f(pu*) [and similarly for d*], and the expression for H* follows. The
set Ry, is obtained from a linear approximation of [TAP-E] with respect to f at f = f*. Since t(f*) = p*,
this linearized problem is equivalent to [SR] defined at g = p*. It follows that Ry, = Ry, (). a

To conclude, the theorem states that the unique optimal link flows, f*, and demands,
d*, are obtained from the subproblem [SC] and [SR] defined at the optimal dual solution,
p*, respectively. Further, the set of routes solving [SR], given p*, coincide with those
that are the shortest at equilibrium. However, an optimal route flow pattern h* € H* is,
in general, not directly available from the subproblem [SR], even though the optimal dual
solution is at hand. This is so because H(p*) is usually not a singleton, or, equivalently,
because Osp is non-differentiable at p*. (In the case where (f*,d*) is known, algorithms
for calculating an h* € H* are given in [270, 14].)

Remark 2.3 The nonuniqueness of the route flows is an unrealistic property among
assignment models; route flows are certainly unique in practice. There are essentially
two ways of alleviating this unwanted property. One may solve the corresponding model
with an algorithm that is guaranteed to converge to one of the many possible solutions;
depending on the algorithm chosen, the solution generated has different characteristics.
One may also add a submodel after the assignment, in order to generate a unique set of
route flows from link flows according to some behavioural principle ([792, 523]).

The reader is asked to verify the simplifications that arise in the above analysis from
considering instead the fixed demand problem [TAP] and its dual [DTAP].

The problems [DTAP] and [DTAP-E] are studied by Hall and Peterson [452], using
generalized geometric programming theory ([276]), and Fukushima [388, 389], using con-
Jugate duality ([779]). Carey [145] uses traditional Lagrange duality theory, as we have
done here. Duality formulations of problems similar to [TAP] have been studied also in
[785, 428, 429, 476].

Algorithmic approaches for traffic assignment problems, utilizing the dualization of the
definitional Constraints (2.27d) are described in Section 4.3.7.

The analysis of the optimality conditions of [TAP-E] was based on the relaxation of
the network defining Constraints (2.27b). The effect of a combined relaxation of (2.27b)
and (2.27d) is discussed below.

Introduce dual variables (or multipliers) T = (7p,)(,q)cc for the Constraints (2.27h).
The dual objective is the sum of two functions. The first equals sc. The second is

def : dpa _
I, ) = Z inf { Z (Z 6pqmﬂa_7rpq) hpqr‘}"”pqdpq_/o gpql(s)ds} .

hpgr >0, Vr
(pa)eC quTP;ZO rERpy \a€A
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To ensure the finiteness of ¥, we must impose the constraints

Y Spgralla = Tpgy V1€ Rygy Y(p,q) €C (2.40)
acA

on (p, 7). Due to the monotonicity properties of g,, and the fact that we wish to max-
imize the dual function, we may without any loss of generality for any given value of
p > 0 choose the maximal value of x,, that is dual feasible, i.e., m,, = 7,(pt) =
minreRPq{EaeA Opgrafta .- This choice of m results in ¥ reducing to a function only of
p, which is given by

o™ S pin - [ 0],

dpg>0
(p,g)ec 7=

where m,,(pt) is the cost of the shortest route from node p to ¢ given the travel costs
p. In other words, ¥ = Osr [cf. (2.32)], and the relaxation of the Constraints (2.27b) in
combination with (2.27d) effectively results in only relaxing (2.27d).

Dual formulations of general traffic equilibrium problems are given in Section 3.3.3.

There is a plentiful of literature on algorithms based on the relaxation of network
constraints [i.e., of (2.27b) or the corresponding Constraints (2.13a) in the link-node
formulation]. In the context of traffic assignment, such schemes have almost invariably
been used for the solution of single-commodity network problems that arise as subproblems
in assignment algorithms (based on the decomposition of the problem into a sequence of
single-commodity assignment problems). Just as methods based on the relaxation of
(2.27d), these are highly parallelizable. See Section 4.3.7 for further details.

2.3.4 Stability and sensitivity of equilibrium solutions

In 1968 Braess [112] (see also [695, 876, 341, 375, 884, 873, 455]) presented an example,
in which the addition of a route to a network resulted in all travellers being worse off
than in the previous equilibrium solution. Known as Braess’ paradoz, this phenomenon
is readily explained from the non-cooperative nature of user equilibrium flows; each trav-
eller minimizes his/her travel time, without considering the travel times of others or, for
that matter, the total travel time. Since user and system optimal flows are different in
general, there is no reason to expect the total travel time to decrease when increasing
the capacity of the network. Indeed, Knddel [563] presents a case, where Braess’ paradox
occurred in practice. (If, however, travellers choose their routes according to Wardrop’s
principle of minimum total travel time, Braess’ paradox can not occur.) The principle
underlying Braess’ paradox has been recognized for many years by traffic engineers, and
is considered fundamental to the understanding of traffic distribution in signal controlled
traffic networks ([840, 257, 843, 842, 844]).? Tt is also more directly utilized in some traffic
control policies, such as ramp metering ([711, Chap. 7.3]); any time one restricts the flow
or capacity on a street, one is essentially increasing the travel cost on that link, presum-
ably with the objective of improving the overall travel conditions. In view of this fact,
Braess’ paradox is obviously very important when evaluating proposed improvements of
existing traffic networks, i.e., in network design ([600, 108, 876, 632]). Failure to recog-
nize this phenomenon may lead to severe congestion, as in the practical case reported by

Knaodel [563].

°It was recently ([177]) observed that a similar paradoxical behaviour may appear in mechanical and
electrical networks.
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Interest in the stability and sensitivity of equilibrium demands, flows and travel times
grew as a result of Braess’ observation.

Conditions under which Braess’ paradox can not occur are found in [874, 200, 201]; see
further Section 3.3.4. Stability results for traffic equilibria are also given in [47, 209, 205,
840].

Hall [451] shows that, for strictly increasing travel costs t,, the equilibrium cost 7, is a
non-decreasing, continuous (but possibly non-differentiable) function of the corresponding
demand d,,.'° See also Fang [309].

Most of the sensitivity analysis of traffic equilibrium problems have been made in the
context of general, and possibly asymmetric, cost functions; see Section 3.3.4.

2.4 User equilibrium versus system optimum

As described in Section 2.1, Pigou [756] had already noted the difference between a user
equilibrium and system optimal travel pattern, and mentioned introducing a differential
taxation to divert traffic towards a more efficient flow. In a critical article, Knight [562]
examines Pigou’s example, and explains the reason for this difference more clearly:

Suppose that between two points there are two highways, one of which is broad enough
to accommodate without crowding all the traffic which may care to use it, but is poorly
graded and surfaced, while the other is a much better road but narrow and quite limited
in capacity. If a large number of trucks operate between the two termini and are free to
chose either of the two routes, they will tend to distribute themselves between the roads
in such proportions that the cost per unit of transportation, or effective result per unit
of investment, will be the same for every truck on both routes. As more trucks use the
narrower and better road, congestion develops, until at a certain point it becomes equally
profitable to use the broader but poorer highway. The congestion and interference resulting
from the addition of any particular truck to the stream of traffic on the narrow but good
road affects in the same way the cost and output of all the trucks using that road. It is
evident that if, after equilibrium is established, a few trucks should be arbitrarily transferred
to the broad road, the reduction in cost, or increase in output, to those remaining on the
narrow road would be a clear gain to the traffic as a whole. The trucks so transferred would
incur no loss, for any of them on the narrow road is a marginal truck, subject to the same
relation between cost and output as any truck using the broad road. Yet whenever there
is a difference in the cost, to an additional truck, of using the two roads, the driver of any
truck has an incentive to use the narrow road, until the advantage is reduced to zero for all
the trucks. Thus, as the author [A. C. Pigou] contends, individual freedom results in a bad
distribution of investment between industries of constant and industries of increasing cost.

In such a case social interference seems to be clearly justified. If the government should levy
a small tax on each truck using the narrow road, the tax would be considered by the trucker
as an element in his cost, and would cause the number of trucks on the narrow road to be
reduced to the point where the ordinary cost, plus the tar, became equal to the cost on the
broad road, assumed to be left tax free. The tax could be so adjusted that the number of
trucks on the narrow road would be such as to secure the maximum efficiency in the use of
the two roads taken together. The revenue obtained from such a tax would be a clear gain
to the society, since no individual truck would incur higher costs than if no tax had been
levied.

The idea of pricing economic activities to obtain a system optimum (i.e., equal marginal
costs) were introduced to economics literature by Dupuit [285];'! a further development is

10Fisk [335] gives an example in which such a perturbation leads to an increase in travel costs in other
O-D pairs, and hence to a paradox related to that of Braess.

1The idea of pricing the use of the roads for the benefit of society is, however, much older still. In
order to fund for the building and maintenance of the stone walls surrounding and protecting the city of
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found in [795, 796, 707, 134]. The difference between user equilibrium and system optimum
is accounted for by the individual user’s failure to share the cost he/she contributes to the
total travel cost, since, as stated by Knight, any additional user of a road is a marginal
user. In other words, private cost does not equal social cost.

The system optimal flow minimizes the total travel cost

Zta(fa>fa: Z Z Cpgr (D) hpgyr. (2.41)

a€A (p,g9)€C TERpq

The marginal travel cost of a link a at the flow f, is defined as the increase in total travel
cost on link a caused by an additional (marginal) tripmaker, i.e.,

La(fa) = d(jca (ta(fu)fa) = talfa) + t5(Fa) fo- (2.42)

The difference between private and social cost then is ¢/ (f,)f., which obviously is
positive unless ¢/ (f,) = 0 for every link ¢ with a non-zero flow, i.e., unless there are no
congestion effects in the network ([533]).

In order to achieve economic efficiency, every traveller must be made aware of the the
cost he/she imposes on the other travellers. In this way, the traveller is supplied with
an incentive to minimize social cost. From (2.42), it is clear that the travellers should
perceive the travel costs t instead of t.

What is described here is, in fact, a mathematical description of Pigou’s rightly chosen
taxation, and constitutes the foundation for a marginal cost pricing strategy; by making
every tripmaker realize t instead of t as their travel times, the resulting equilibrium flow
in terms of t will be a system optimal flow in terms of the original cost. (This is easily
established by, for instance, replacing ¢, by 7, in the definition of [TAP]. By tracing the
proof of Theorem 2.1, it then follows that the equilibrium solution is characterized by an
equal marginal travel cost on the utilized routes, i.e., a minimal total cost.)

This of course means that any system optimum problem may be solved as a user
equilibrium problem by redefining travel costs as t, := ¢, ([47, 533, 209, 515, 762, 941,
711]). [Conversely, any user equilibrium problem could be solved as a system problem
with the appropriate redefinition of the marginal travel costs.] By reformulating the
system optimization problem as a user equilibrium problem, the results of Sections 2.3.1
and 2.3.2 may be used to establish existence and uniqueness properties of system optima.
(For instance, the system optimum problem is convex if the marginal cost function is
non-decreasing; from (2.42), this property holds if the travel costs are differentiable, non-
decreasing and convex.)

A further theoretical development of the concept of congestion tolls have been made
to include bottlenecks, several vehicle types, choices of departure times, etc. (see [47, 955,
947, 682, 839, 793, 888, 948, 828, 949, 210, 829, 950, 956, 209, 823, 205, 671, 709, 710,
204, 207, 50, 488, 598, 841, 413, 425, 29, 64, 422]).

Some authors claim that system optimal solutions are only applicable in the fixed
demand case ([226]), while some others (e.g., [53, 697, 709, 973]) incorrectly (according
to Gartner [413]) assert that the solution of the system optimal problem amounts to
maximizing consumer surplus.

York, a tax (known as the murage) was levied on all vehicles entering and leaving the city. (Even the
mayor of York and the Dean and Chapter of the Minster paid this tax, although reluctantly; Booth [97]
describes how, in 1305, the people of York must petition to King Edward I for the recovery of 73 pounds
which the mayor had appropriated.)
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The flows resulting from congestion pricing strategies are examples of a voluntary
system optimum ([871, 413]), that is, a system optimal solution is obtained by means
which do not limit travellers’ freedom of choice.

An involuntary system optimum ([637, 871, 413]), on the other hand, is obtained by
imposing the route choices on the users without charging tolls. This is only possible in
networks where flows are under the complete control of a central authority, such as in rail
networks or military transportation, and in some traffic management and route guidance
systems ([415, 740]).

These two concepts differ in the elastic demand case, where a user is free to choose not
to make the trip. The outcome of the use of these two approaches will be different in this
case, since the demand is determined by social costs and average costs, respectively. In
the fixed demand case, the two approaches to system optimum are equivalent.

Although the mathematical principles for obtaining a maximal utilization of the net-
work is clear from the above, the practical problems involved in an implementation of a
road pricing system, i.e., to make the user sensitive to the social cost, is immense.

Prager [765] was among the first to point out that since, in practice, the tripmakers
cannot obtain full information about the status of alternate routes, they cannot be guided
by Wardrop’s second principle. This criticism can, in turn, be used against Wardrop’s
first principle; the concept of a Nash equilibrium contains, implicitly, the assumption that,
when choosing a strategy, the player has full information about the values of all his/her
alternative strategies, based on the current situation.

Netter [709, 710] discusses efficiency tolls in connection with multiclass-user trans-
portation, in which different vehicles can have different values of transportation cost. He
concludes that the pricing process, based upon the notion of tolls of marginal cost, needs
a revision, since the pricing mechanism need not lead to a system optimal solution. The
reason for this is that, in the general case of multiclass-user transportation, the Wardrop
condition of a system optimum is not a convex problem. Multiclass-user transportation
will be discussed further in the context of general cost models (see Section 2.5).

As discussed earlier, different results have emerged from studies of the validity of the
principles of Wardrop. In this context, some researchers conclude that the differences
between user and system optimal solutions are so small, that the benefit from obtaining
system optimality would not add up to the costs for operating a system for marginal cost
pricing (e.g., [941, 602]). Wardrop [958] had already demonstrated that the difference
between the corresponding flows may be small, when analyzing a small example network.

2.5 Nonseparable costs and multiclass-user trans-
portation networks

The Wardrop conditions for user equilibrium presented in Section 2.1 allow for very gen-
eral choices of travel time and demand functions; indeed, the Conditions (2.2) and (2.4)
only assume that these functions are continuous and nonnegative. (Even the continuity
assumptions may be relaxed, if the definition of an equilibrium is slightly altered; see
Section 3.3.1.) Yet, when formulating the problems [TAP] and [TAP-E] in Section 2.2,
the travel cost on a link was assumed to be separable, that is, independent of the flow of
all other links in the network. The demand functions were also assumed to be separable,
and furthermore strictly decreasing with least route cost.

These assumptions limit the applicability of the traffic assignment models [TAP] and
[TAP-E], since separable costs and demands are not realistic representations of the cost
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and demand relationships in real traffic networks.

This limitation was observed quite early in the development of traffic assignment mod-
els. Prager [765] argued that the traffic moving in the opposite direction of a two-way
link should be taken into account in its travel cost function, and developed an equilibrium
model based on this assumption. Similar ideas appear in [162, 19].

In an urban area the delays of traffic streams at an intersection are highly interrelated;
consequently, the travel time on a link will depend on the traffic flow on the other inter-
secting links. This example was used by Dafermos [205, 206] to motivate the development
of traffic assignment models with nonseparable cost functions.

In the modelling of multiclass-user transportation networks, travel costs evolve that
crucially depend on the flow on several links in the network. The underlying (natural)
assumption is that the flows in a transportation network may be divided into different
classes of drivers and vehicles, each of which has its own individual demand and cost-
flow relationships, and contributes to the corresponding functions of the other classes. A
classification of vehicle types could distinguish trucks and buses from cars, heavy vehicles
from light ones, private transport from transit, etc.

Multiclass-user networks are often modelled by associating an individual copy of the
original network with each class; all travellers belonging to the same class use only one
network (e.g., [160, 162]). Consequently, instead of having several classes of transportation
in one network, an enlarged network, in which we may view all traffic as belonging to
the same class, is used. Obviously, the travel cost on one link in the enlarged network is
dependent of the flow in all the other copies of the same link for the other vehicle classes.

Roth [793] was perhaps the first to state the need for models that take different user
classes into account. Sender and Netter [823] study elastic demand problems with different
vehicle types and two-way links, and develop existence results for equilibria as well as
studying marginal cost pricing in this context. Independently, Dafermos [206] develops a
general model for different user classes, and studies the existence and uniqueness of user
equilibria and system optimal solutions. Jeevanantham [527] examines the influence of
differences in the travel cost perceptions of different user classes on the distribution of
equilibrium flows on some small examples.

In the general case, then, the cost functions ¢, depend on the whole network flow.
Thus, let ¢, : §R|+A| — R, be the travel time on link @ € A, given the whole vector of link
flows. (We let A denote the set of directed links; note that in the case of multiclass-user
transportation networks, the same original link may occur several times in the set A,
corresponding to different vehicle classes.)

As noted above, the concept of an equilibrium solution is not altered if complex travel
time functions are introduced. However, it does affect the presence of equivalent problems
[TAP] and [TAP-E], and the conditions for the uniqueness of an equilibrium solution.

To be able to solve the general equilibrium problem as an equivalent optimization
problem of the form [TAP] or [TAP-E] the travel cost function t must be integrable, i.e.,

t: 57%':" — ?R'f' must be a gradient mapping. Otherwise, the function
et [T T 5 4
7(f) / t(s)"ds, (2.43)
0

which is to replace (2.6a) as the objective function of [TAP], is not well defined ([727,
925, 144)).

If t is differentiable, the Integral (2.43) is well defined (i.e., the mapping t is a gra-
dient mapping) if and only if the Jacobian matrix Vt(f) is symmetric everywhere ([727,
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Th. 4.1.6]), that is'?

ta(f)  Ot(F)
afy  0f.’

The symmetry Condition (2.44) states that the flows on any two pairs of links have

an equal influence on each other’s disutility. An analogous result can be stated for the
general demand function g : ;%'_fl — ?Rl_fl, ensuring that the objective of [TAP-E] is well

Va,be A, Vf e F". (2.44)

defined. (See the dissertation by Bernstein [63] for a detailed analysis of conditions for
the existence of mathematical programs for the solution of traffic equilibrium problems.)

Observe that the above condition is satisfied automatically in the separable model,
where the Jacobian matrix is diagonal, and hence symmetric.

The results on the uniqueness of equilibria for nonseparable, symmetric costs and
demands, corresponding to Theorem 2.5, are valid as stated, with the only change being
that the property of an increasing function is replaced by the more general property of
monotonicity (see Definition A.2).

Under a monotonicity assumption on the travel time function, the problem [TAP] is
convex. The strict monotonicity assumption (which generalizes the property of a strictly
increasing function, and results in unique link flows) is implied by a diagonal dominance
condition on the Jacobian matrices, stating, in effect, that the dominant factor determin-
ing the cost on a link is the flow on the link itself.

It should be noted that the system optimum problem is well defined also for nonsep-
arable cost functions. With the use of a general cost function, it is, however, unlikely
that the total travel cost t(f)*f is a convex function of f ([823, 709, 710]); one important
consequence is that congestion pricing policies based on marginal travel costs may lead
to non-optimal solutions.

The nonseparable, symmetric models given above have been criticized by many re-
searchers for being too unrealistic. The symmetry condition was first criticized by Sender
and Netter [823] (see also [709, 710]), in the context of marginal cost pricing in multiclass-
user transportation networks. They argue that symmetry of the cost-flow relationships is
very unnatural when considering several vehicle types; symmetry would, in effect, reduce
the problem to one where all vehicles are uniform.

One theme of modelling development that has received a lot of attention during the
last 15 years is that of asymmetric models, in which the complex relationships that cannot
be accounted for by the simple assignment models are captured through the introduction
of, usually, asymmetric travel cost functions. The resulting models have been extensively
studied from a theoretical and algorithmic viewpoint. These models are studied in Chap-
ter 3. It would seem that the asymmetric models’ popularity is a consequence of their
mathematical elegance and nice interpretations rather than of their applicability, since
real-world applications seem to be lacking. A major reason for this is probably the prac-
tical difficulty of calibrating the asymmetric travel time functions. The second possibility
for improving the quality of a traffic assignment model is through the introduction of a
set of side constraints, modelling the more complex restrictions on possible flow patterns
(such as joint capacities on two-way links or bounds on total flows through junctions).
We believe this approach to be much more appealing from a practical point of view, since

12In the case of additive route costs, i.e., if (2.5f) holds, symmetric link costs imply symmetric route
costs. Indeed, using (2.5d),

Ve(h) = Vi, (ATt(f)) = AVLt(Ah) = AVH(f)AT,

and hence Ve(h) is symmetric whenever Vit(f) is.
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it 1s certainly easier for the traffic engineer to identity a suitable set of side constraints
(which may have immediate physical interpretations), than to estimate proper values of
parameters in complex travel time functions. This alternative approach has, however,
received much less attention than asymmetric models; an account of the development
made, and motivations for its use, is given in Section 2.8.2.

2.6 Related network problems

2.6.1 Traffic equilibria and network games

Knight [562] describes the steady-state situation where each traveller minimizes his/her
travel cost as an equilibrium state, and later Wardrop [958] gives a similar characterization
of the user optimal flow. Charnes and Cooper [160, 162] describe the user equilibrium
flow as a non-cooperative Nash [705] equilibrium, in which the players are defined by the
O-D pairs, competing to minimize the travel times of their respective commodity flows.
Dafermos [209, 205] further discussed along these lines; these first investigations of the
relationships between a Wardrop equilibrium and a network game is rather intuitive, and
no formal relationships are derived.

A non-cooperative N-person game is formally given by a set of penalty functions p; :
[TY, X; — R, defined on the joint strategy space X e 1Y, X;, and assumed convex on
the individual strategy space X;, ¢ € {1,...,N}. A point x* € X is a non-cooperative
Nash equilibrium if and only if, for each ¢ € {1,..., N},

Pi (Xr_axr7 X:’:.) = xrznelj{,lz Pi (X?_axia X:‘;) > (245>
i.e., if all the players’ strategies are optimal with respect to their individual penalty
functions, based on the strategies of the other players.

The theory of non-cooperative N-person games was first addressed by Nash [704, 705];
results of the existence and uniqueness of Nash equilibria are given in [790, 466, 615, 544,
380, 398, 435].

Rosenthal [791] studies a discrete version of the user equilibrium traffic assignment
problem. In the game defined on the traffic network, players are defined as the individual
travellers, with strategy spaces equal to their respective sets of routes available. Travellers
choose pure strategies by taking a route to their respective destination, thereby seeking
to minimize their payoff function, i.e., their individual travel time. The game is shown to
be equivalent to a non-cooperative, pure-strategy Nash game in the traffic network.

This result is extended to the continuous case by Devarajan [251]. He, as do Charnes
and Cooper, defines the O-D pairs as the players, and defines a continuum of pure strate-
gies, consisting of the feasible route flows for the fixed demands, for all commodities.
The game is restricted to separable travel time functions, and is defined through payoff
functions equal to sums of integrated travel times over links used by an O-D pair,

GEDY /Of“ ta(s)ds. (2.46)

a€Apg

The Nash game thus defined is equivalent to a Wardrop equilibrium. The same definition
of the game is given by Garcia and Zangwill [410, 1005].

More general non-cooperative game formulations of traffic equilibria are given by
Fisk [342] and Haurie and Marcotte [468, 469]; see also Colony [179].
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Haurie and Marcotte divide the travel made in an O-D pair into a number of players,
sharing the same penalty, namely the cost of the routes chosen. The game obtained in the
limiting case, when the number of players in each O-D pair tends to infinity, while sharing
the same strategy, is shown to be equivalent to a Wardrop equilibrium. The players can
not be associated with individual travellers, since a player, as defined, may use several
routes simultaneously; in equilibrium, all players divide their flow on all routes used in the
O-D pair. This discrepancy from the intuitive game among tripmakers is not surprising;
it is inherent in the continuous formulation of the Wardrop conditions that the travellers
are infinitesimal.

2.6.2 Discrete traffic equilibrium models

To derive a discrete traffic assignment model, let d,,, be the number of tripmakers travelling

from an origin p to a destination ¢, with D def > (pg)ec dpg being the total number of trips
performed. Denote by rj the route chosen by traveller k € {1,..., D}. The trip pattern
then is the vector u & (ri,...,rp). Further let A,y = hp,-(u) denote the number of trips
made on route r € R,, in the trip pattern u, and ¢,(f,) the travel time for a vehicle on
link @ at the volume

fa(u) = Z Z bpgralipgr(0).

(p,q)EC TERpq

Let ¢(rx | m1,...,7r%—1) be the cost of tripmaker & if he/she chooses route r and enters
the network when there are k — 1 tripmakers present, using routes (ry,...,7r5—1), and
assume that c(ri | r1,...,7h-1) = Yaer, La(fF), where f¥ denotes the volume on link a

when the £ first trips have been allocated, i.e., the cost of performing the trip on route
i is the sum of the costs of the links defining it. Finally, let ¢(u) denote the cumulative
user-cost function,

D
C(u) d:ef C(Th' .. 7TD) - ZC(T]C | r1,.. .7Tk_1).
k=1

The ordering of the trips in the definition of the trip pattern is immaterial ([855]). Hence,

fa
c(u) = 3 3 ta (k). (2.47)

acA k=1

The discrete user equilibrium condition then is defined as a trip pattern u*, for which,
for each & and r; with the same origin and destination as rj, we have

L L * * L * * * * ¢
c(7k | 717---77’k—177’k+17---77p) Sc(rk | rl,...,rk_l,rkJrl,...,rD). (2.48)

The definition implies that if u* is a user equilibrium then it is not possible for any one
of the D tripmakers, given his/her O-D pair, to take an alternate route that is less costly
than the route r; already chosen. This also means that it is a Nash equilibrium.

Of course, the costs of the routes used may be different in this case, since trips are nec-
essarily integer valued. The behavioural model, however, is the same as in the continuous
Wardrop equilibrium definition.

The model derived above is due to Smith [855] (see also [853, 854, 300, 301], and [63]
for a discussion on relationships between discrete and continuous traffic models). The
Objective (2.47) is also derived by Rosenthal [791] (see Section 2.6.1) as the objective of a
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discrete assignment model, which is shown to correspond to a Nash equilibrium model. A
continuous formulation in which the cost functions are appropriate step functions yields
the same solutions; it is also clear that for large flows, the Objective (2.47), defined
as the sum of travel time functions, is closely approximated by the Objective (2.6a),
defined by sums of Riemann integrals. Sufficient conditions on the cost-flow functions for
a continuous approximation of the discrete assignment models to be reasonable are found
in [963].

The above model may be derived from the efficiency principle ([853, 855]). Assume
that the trip pattern u can be described by a probability distribution, which is efficient
in the sense that a more costly trip pattern is less probable than a less costly one. Also
assuming that c(u) is rational, the equilibrium solutions [see (2.48)] are the most probable
trip patterns (see also [301, 857, 302]).

In the single-commodity case, a discrete equilibrium flow is obtained by successively
assigning tripmakers to the cheapest route. The continuous (single-commodity) model is
solved in the limit as the increment of flow tends to zero; this solution principle corresponds
to applying, in the limit, an infinite number of steps of incremental assignment ([871,

Sec. 5.4.2]).

2.6.3 Traffic equilibria and electrical networks

It has long been recognized that the problem of finding the currents and voltages in
a resistive electrical network is an equilibrium problem in a single-commodity network
([181]). An electrical network is composed of a set of links (branches), corresponding to
various electrical devices, and nodes, corresponding to connection points between these.

In a steady-state, the voltages and currents in the network are governed by Kir-
choff’s [552] (equilibrium) laws, which state that:

(1) (Kirchoff’s current law) The current flows are balanced, i.e.,

Yo fi—=> fi=di, YieWN,

JEW; JEV;

where f;; is the flow of current (in amperes) on branch (z,7) € A, and where d; is
positive (negative) at current sources (sinks), and zero otherwise.

(2) (Kirchoft’s voltage law) The potential difference between adjacent nodes equals the
voltage over the branch connecting the nodes, i.e.,

m—7; = 04(fi;),  V(,J) €A,

where 7; is the potential (in volts) at node ¢, and ©;; is an increasing function relating
the current flow to the voltage on branch (z,7). (If the electrical device on branch
(7,7) is a linear resistor, then ©,; = R;; fi;, i.e., the voltage is given by the product of
the resistance R;; (in ohms) and the current on the branch, according to Ohms law.)

Note the similarity between Kirchoff’s current law and the flow conservation constraints
in the traffic equilibrium model [cf. (2.11)], and between the voltage law and the equi-
librium Conditions (2.17). (The major difference between the two models is the single-
commodity nature of electrical networks.)

Kirchoft’s laws, and other relations reflecting the electrical properties of the devices
on the branches, may hence be used to formulate an equilibrium model for currents and
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voltages in the electrical network. One may also show that Kirchoft’s equilibrium laws
may be obtained through the solution of a nonlinear network flow problem, in which the
energy loss of the devices is minimized. The objective is composed by the sum of integrals
of the voltage-current relations ©;;, which thereby play the same role as the flow-cost
relations ¢;; in the transportation network. There is, however, no energy interpretation of
the integral objective in the traffic model.

It is interesting to note that mathematical programming formulations of the problem
of finding equilibrium currents and voltages in electrical networks had already been devel-
oped in the middle of the 1940s by Duffin [274, 275] (see also [229, 89, 161, 248, 162, 88,
508, 181]), and hence preceded the (similar) traffic models of Prager [765] and Beckmann
et al. [47] by almost a decade. Further electrical network analogies of traffic equilibrium
problems are presented in [804, 809].

Similar single-commodity flow models arise in other applications, such as in pipe net-
works ([189, 450, 180, 181, 178]); surveys of applications of nonlinear network flows are
found in [32, 591].

2.6.4 Spatial price equilibria

Let M and N denote the set of supply and demand markets involved in the production
and distribution, respectively, of a commodity. In supply market : € M, let s; denote the
supply of the commodity, and #; its supply price. Correspondingly, in demand market
j € N, d; denotes the demand of the commodity, and p; its demand price. Finally, let f;;
denote the shipment between the pair (z,7) of supply and demand markets, and ¢;; the
unit transaction cost which includes transportation costs and in some applications also
taxes and/or subsidies.

The market equilibrium conditions state that if there is any trade between the market
pair (7, ), the supply price at ¢ plus the transaction costs ¢;; equals the demand price at
7; if, however, the supply price plus the transaction costs is larger than the demand price,
there is no trading between the pair (¢, 7). That is, for all (i,j) € M x N,

fii >0 = 7w+ =p;, (2.49a)
fii=0 = mi+c;2p; (2.49Db)

To formulate a mathematical model for spatial price equilibrium, feasibility constraints
are introduced, stating that supplies are cleared and demands are satisfied:

Yofii = s,  VieM, (2.50a)
JEN
S fii = dj,  ViEWN, (2.50b)
1EM

fij > 07 \V/(Z,J> € M x N (250C)

Further, we assume that the supply price is dependent on the supply of the commodity,
x = (),

the demand price on the demand of the commodity,
p=p(d),

and the transaction costs on the shipments being made,

c = c(f).
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Note that the problem here defined can be made more general by introducing a general
network, so that a transaction may involve choosing several routes for transportation, and
by introducing more than one commodity being traded.

If the supply price function &, the demand function p, and the transaction cost function
c are separable, then the equilibrium conditions may be obtained by minimizing

> /:i mi(z)de + > > /Ofij cij(x)dx — EZA//(;dJ pilz)dz (2.51)

€M tEM jEN

over the set of Constraints (2.50). In the general case, where cost and demand func-
tions are asymmetric, the problem may be formulated as a variational inequality ([702,
Chap. 3]).

Network-based models of spatial price equilibrium problems were already known to
Cournot [186], and have developed rapidly since the pioneering works of Enke [297],
Koopmans [566], Samuelson [806, 807], and Takayama and Judge [886, 887]. For more
reading on models of economical problems on networks, and their relationships to traffic
equilibrium problems, see [199, 197, 532, 464, 702].

It is interesting to note that although traffic and economic network equilibrium prob-
lems are highly interrelated, the development of models and methods for these problems
have to a large extent taken parallel paths.

2.6.5 Optimal message routing in computer communication
networks

A problem with a structure similar to [TAP] is that of finding the optimal routing of data
messages in a computer communications network. Let d,, denote the rate of messages
(in bits per second) entering the computer network from an origin node p and exiting the
network at a destination node ¢. The routing problem is to segment the messages into
packets, and send them along routes to their destinations so as to minimize the average
delay of the data packets. At intermediate nodes, the packets are stored in queues for
each outgoing channel, and sent forward when the channel becomes free. The queueing
delays of messages at the links are not easily quantified, but there are simplified models
that represent queueing delay at a link as a function of the packet arrival rate at the link.
A commonly used delay formula is

ti(fi) & % +pifi,  V(i,5) € A (2.52)
1] )
where f;; is the arrival rate of packets at link (¢, 7), ¢;; the transmission capacity of the
link, and p;; the processing and propagation delay on the link.
Such simplified models give rise to multicommodity flow problems, in which a function
of the form (2.52) is to be minimized over flow conservation constraints ([374]). Many
of the algorithms presented for the problem [TAP] in Chapter 4 have originally been

proposed for the solution of routing problems. For further reading, see [556, 997, 998,
141, 421, 654, 65].

2.7 Discussion

The mathematical models presented in this chapter are based on Wardrop’s behavioural
principles. They are intuitively very appealing, and have had successful applications
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in a wide variety of social sciences. They may, however, be criticized for being too
simplified and based on unrealistic assumptions on traffic network characteristics and
traveller behaviour.

The simplicity of a model has its merits, of course, and the more complex models
presented the last 15 years have had very little practical use. As Dow [941] puts it:

In fact it often appears that in practice a model which is easy to analyze but not particularly
accurate is preferred to a more accurate model which is difficult to analyze.

With the exception of few studies (e.g., [360, 361, 974, 941, 288, 99, 602]) no published
articles on traffic equilibrium models and methods are devoted to empirical testing to
validate the models’ practical use. An important reason is the expense and difficulty of
collecting data for performing such a task. Another reason is the lack of publications from
practitioners of transportation planning methods.

As a consequence, the support for network equilibrium models is almost exclusively a
result of the underlying theory. Not even the theoretical foundations of the models are
well developed, however. The use of Wardrop’s equilibrium principles as formulations of
problems to be solved with efficient mathematical programming techniques rather than—
as was the original purpose—as behavioural principles to be analyzed and, if appropriate,
be utilized in the building of proper mathematical models, has had a tremendous impact
on the directions research in the area has taken. The vast amount of research being
performed at universities across the world on traffic equilibrium models today is actually
based on a very weak scientific foundation—this is quite worrying.

The separability of the travel time and demand functions were early recognized as
too restrictive in certain applications; in particular, such simple formulas can be used
to model realistically neither different vehicle types nor the interaction among vehicles
at intersections. The development of asymmetric assignment models arose from such
observations. (These models are described and analyzed in Chapter 3.)

Unfortunately, this development began before the symmetric models were fully under-
stood, and most of the research that has been made on the asymmetric models is motivated
more by their elegance and by the challenge involved in devising efficient methods for their
numerical solution rather than by their appropriateness. The difficulty in describing the
complex flow-cost relationships in these general models is much more pronounced than in
the separable models, and the asymmetric models are not used in practice. One may in
fact argue that most of the models that have been developed since the pioneering days
of Wardrop and Beckmann are models that should be utilized for describing an idealized
equilibrium state rather than for the numerical solution of practical problems.

The fundamental principles underlying the assignment models were stated some 40
years ago. The traffic flows in the then relatively uncongested urban networks were prob-
ably suitable for approximation by steady-state flows, as Wardrop did. Since those days,
the traffic networks have become much more complex and the demand for transportation
have become orders of magnitude higher, and the approximation of present traffic flows
by steady-state flows is far less realistic. During the last ten years, dynamic assignment
models, which take the time-varying character of traffic flows into account, have received
increased attention since their first appearance in the pioneering work of Merchant and
Nemhauser [665, 666], particularly since the advent of systems for vehicle guidance and
dynamic flow control and management ([105, 107, 943]). So far, no well-founded dynamic
models free from any serious anomaly such as instant propagation of some travellers, in-
finite cycling, failure to recognize the first-in-first-out principle, etc., have appeared, and
their numerical solution most often rely on a time-discretization which brings the dy-
namic model into a (typically very large) static one. In this book, we concentrate on the
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static models, and refer the reader to the following articles and their respective references:
[995, 146, 148, 969, 383, 970, 851, 852, 111, 149, 272, 28, 271].

Even in dynamic models, an equilibrium assumption is present. Researchers have begun
to question if this fundamental basis of assignment models is realistic; see, e.g., Bell and
Bennett [54].

An implicit assumption in the user equilibrium principle is that every traveller has both
full and accurate information about all the alternatives and their characteristics, and also
a uniform travel cost perception and route-choice behaviour. In stochastic models, dif-
ferences in perceived costs and route-choice characteristics are modelled by introducing
random components in the travel time formulas. These models are introduced in Sec-
tion 2.8.1.

The assignment problem is only part of the transportation planning process; as dis-
cussed in Section 1.8, to be able to accurately predict future traffic distribution, traffic
models should be integrated rather than analyzed in sequence. During the last 20 years,
transportation planning research has focused much of the research efforts on improving
predictive modelling. Recognizing the strong interrelation between users’ decision making
and the performance of transportation systems, the trend has been towards integrated
modelling approaches. In combined traffic assignment models, parts of the planning pro-
cess are analyzed simultaneously; this is a major advantage to the sequential approach in
the traditional transportation planning models, since they guarantee internal consistency.
For an introduction to this area, see [694, 863, 904, 905, 978, 979, 304, 208, 305, 306,
108, 619, 299, 620, 150, 104, 632, 381, 154, 803, 302, 166, 58, 382, 577, 725, 881], and the
relevant references cited therein.

The assignment models discussed so far include constraints that ensure that the demand
is satisfied, but not normally the constraints that ensure that traffic capacity, speed limits,
etc., are met. Examples of traffic assignment problems with side constraints are given in
Section 2.8.2. We also show that formulating traffic models with side constraints may be
an interesting alternative to the asymmetric models.

The basic assignment model and its properties is discussed in several expository articles;

see, e.g., [48, 131, 530, 713, 717, 774, 216, 413, 326, 103, 104, 351, 630, 352, 110, 675, 353].

2.8 Some extensions

2.8.1 Stochastic assignment models
Introduction

The notion of a user equilibrium is intimately associated with each traveller having accu-
rate information about travel costs, and all travellers being uniform and rational in their
decision-making. The user equilibrium model is therefore known as a deterministic model
of traffic assignment.

In reality, travellers’ perception of travel times are subject to variations, and routes are
chosen based on perceived travel times rather than the actual travel times. The routes
utilized are therefore not necessarily only those that are the shortest, nor do they neces-
sarily have the same actual travel time. To reflect the variations in travellers’ travel cost
perception, in a non-deterministic (or stochastic) assignment model, a random component
is added to the travel cost function.

Let T,(f) denote the perceived travel time on link a € A for an arbitrary user, and
associate with each route r € R,, a perceived travel time C,,,, distributed across the
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population of drivers. Assuming travel time additivity,

Cpqr(h) = Z 5pqua(f)-
acA

The function C,,, expresses the probability that a randomly chosen tripmaker associates
a given travel time with the route, or, equivalently, the probability with which he/she will
choose to make the trip along the route in question.

Let P,, = Ppyr(c) be the probability that route r € R,, is perceived as the shortest,
given actual travel times, c, i.e.,

Progr(€) & Pr(Cpyr < Cput, Vi# 1, 1E€R,, | €).

The random variable C,,, 1s assumed to be given by the sum of the actual travel time,
Cpgr, and a (flow-dependent) random error term, &,,,, which may vary from traveller to
traveller, with mean value E(&,,,) = 0. This means that

E (Cpgr) = E(cper + Epgr) = Cpgr

so that, on average, perceived travel times equal actual travel times. (This relation also
follows from E(T,) = t,, and travel time additivity.)

The difference in perceived travel costs is accounted for by the variance of the stochas-
tic variables . In mildly congested networks, the variations in perceived costs can be
expected to be more significant compared to the actual costs than in heavily congested
networks; the consequence is that stochastic models are more applicable to lightly con-
gested networks (see [934]).

The distribution of flows in a stochastic assignment model depends on the probabil-
ity distribution of the stochastic variables £. The two flow distributions most frequently
applied in stochastic assignment are the logit and probit models, which correspond to
choosing an independent Weibull-Gumbel and a normal probability distribution, respec-
tively.

In the following, we introduce the definition of stochastic user equilibrium, study the
two most important approaches employed to disutility perception modelling, and present
a general optimization formulation for obtaining a stochastic user equilibrium flow.

Stochastic user equilibrium

The natural extension of Wardrop’s principle of user equilibrium to the non-deterministic
case 1s to define a stochastic user equilibrium situation as one in which no user believes
he/she can improve the travel time by unilaterally changing routes ([220]). In other words,
perceived travel times are equal on the utilized routes within an O-D pair.

The stochastic user equilibrium conditions can be characterized by the equations!'®

dpg Pogr(€) = hipgr, Vr € Rpq, V(p,q) €C. (2.53)

13These conditions are natural, considering the weak law of large numbers; if d,, is large, and if the
travellers act independently, then

hpgr
Pyyr(c) = ;q )
Pq
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Also, the network flow constraints

Z hpgr = dpq, V(p,q) €C, (2.54a)
rE€ERpq
hpgr 20, Vr € Ry, Y(p.q) €C, (2.54b)
must hold.

Note that link and route flows are random variables, based on the perceived travel time
distribution ([214]). The variables f and h should therefore be recognized as the means
of these random variables. Note also that if route flows are given by (2.53), then (2.54a)

is satisfied automatically.
To show that the stochastic user equilibrium conditions generalize the (deterministic) user equilibrium
conditions, we redefine the route choice probability as

Ppgr € [Pr(Cpgr < Cpqr, VUF£ 1, 1E Ry | €),Pr(Cpgr < Cpqi, YU#£ T, LERY, | )],

for all » € Rpq, (p,¢) € C, by which the stochastic user equilibrium condition may be written as ([831,
Chap. 12])

Apgr € [Pr(Cogr < Cpgr, VIF#r, L€ Rpy | €), Pr(Chyr < Cpqr, YlF 7, LE Ry, | )], (2.55)

for all » € Rpy, (p,q) € C, where Apgr = hypyr/dpy is the portion of the demand that will utilize route
r € Rpy in the transportation.

The stochastic user equilibrium Condition (2.55) is applicable to both continuous and discrete random
variables (Cpq ) of perceived travel times. In the continuous case, the interval defined in (2.55) degenerates
into a point, and (2.55) reduces to (2.53). In the discrete case, then, (2.55) generalizes (2.53).

To see that (2.55) extend the deterministic equilibrium conditions, we note that in the deterministic
case, the probability statements in (2.55) are either one or zero. If hpgr > 0, the route-choice probability
is one, and route r is therefore a shortest route. If hp,r = 0, the route-choice probability must be zero,
in which case route r can not be a shortest route. These conditions are equivalent to the (deterministic)
user equilibrium conditions.

A mathematical program for stochastic user equilibrium

Sheffi and Powell [833] present an unconstrained mathematical program whose optimality
conditions coincide with the stochastic user equilibrium conditions. The travel costs t
are assumed positive, strictly increasing and twice continuously differentiable, and the
distribution of perceived travel costs are translationary invariant.

The program is as follows.

[TAP-SUE]

plZ”'

min T(f,h) % — ¥ dpqE(

(p,q)€C

>+Zt (fa)fa E/

a€A acA

To show that the unconstrained minima of 7" coincide with stochastic user equilibrium solutions, we
characterize the stationary points of 7. We first use a result by Williams [976] that

0
o (3

to obtain that ([833])

e(h )) — Prle), (2.56)

0
Ohpgr b <’“Ien7én e

( > pqr Z(Spqratl fa

acA
We thus obtain that
8T(f h)

oh = (—dpg Ppqr(c )"‘hpqr)zépqmtiz(fa)a
par a€A
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which must be zero at a stationary point. From the assumptions on t, we must then have
hpgr = dpqPpyr Vr € Rpq, Y(p,q) €C, (2.57)

i.e., the stochastic user equilibrium Condition (2.53). By summing (2.57) over the routes in each O-D
pair, we obtain the demand feasibility constraints, which thus are fulfilled automatically at a stationary
point of [TAP-SUE].

The objective of [TAP-SUE] is non-convex in general, but it is shown in [833, 831] that
there is only one stationary point, and that the objective is strictly convex in the link
flow variables in the neighbourhood of this point, which hence is the unique stochastic
equilibrium flow. (There may, however, be more than one stochastic equilibrium route
flow solution.)

Although there have been many suggestions of models of error perception, (see, e.g.,
[663, 951, 135]), the most popular are the logit and probit distribution models.

The logit-based stochastic model
In the logit assignment model, trips are assumed to be distributed according to the formula

e—@cpqr

R
par paq —Oc ?
YleRy, € P

h Vr € Ry, ¥(p.q) €C, (2.58)

where © is a positive parameter associated with the random cost component.

The logit model is derived from the assumption that the random components in the
travel costs are identically and independently distributed Weibull-Gumbel variates ([441,
264, 831]). Under this assumption, the perceived travel time is

1
Crpgr = Cpgr — 65pqa Vr € Ryq, \v/(pa Q) eC, (2-59)

where ¢,, is a Gumbel variate, and the parameter © is used to calibrate the variance in
the cost perception, sometimes referred to as the perception error.

It follows from (2.59) that if the value of © is large, the perception error is small, and
travellers will tend to choose minimum-cost routes. Indeed, the cost perception tends
towards being accurate as @ — 4+o0c0. A small value of © indicates a large variance in the
perception of travel cost, with travellers choosing routes with considerably larger actual
costs than those of the least-cost ones. It is also clear from the logit Formula (2.58) that
for all values of O, all routes receive flow, regardless of their travel times; the flow on
a route, however, monotonically decreases with an increasing actual cost. In the limit,
when © — 0, all routes within an O-D pair receive an equal share of the O-D flow.

The logit model of assignment was first studied for the case of constant travel times
by Dial [254], who also presented algorithms for assigning logit-based flows on the links
of a traffic network (see Section 4.5.2). The model is further developed in [442, 898, 772];
Fisk [334, 336] discusses the calibration of the parameter ©.

A logit model for flow-dependent travel times is presented by Fisk [336]. Consider the
mathematical program

[TAP-SUE-L)]
fa
min T(f,h) < 3 / ta(s)ds—l—é 3 S hygr10g hpgr, (2.60a)
0

acA (p,q)EC TERpq
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subject to
Z hqu = dpr7 v(paq) € C7 (260b)
TE€ERpq
hpgr > 0, ¥r € Ry, Y(p,q) €C, (2.60c)
Z Z bpgrahper = fa, Va € A. (2.60d)

(p,q)EC TERpq

The problem [TAP-SUE-L] is, for every positive value of ©, a strictly convex program in
both the link and route flow variables, and thus has the advantage over the deterministic
assignment problem of providing unique route flows. (Here, 0log0 is defined as zero.)

Note that in the limit of ® — +oc, the problem [TAP] is obtained.
To show that the unique optimal solution of [TAP-SUE-L] satisfies (2.58), we associate a set of
multipliers (7,,) with the Constraints (2.60b), and formulate the Lagrangean function

L(f, h, ) = T(f, h)+ E Tpg (dpq - E hpqr) ‘

(p,9)€C rE€R pq

In an optimal solution, h,q, > 0 must hold for every » € Rp,, (p,¢q) € C.
Solving the equations

OL(f,h,m) 1

3 = 6(loghpqr+1)+cpqr—7rpq20, Vr € Rpq, Y(p,q) €C,
par

yields
hpgr (Tpg) = €@ (Tra=crar)=1, Vr € Rpq, Y(p,q) € C. (2.61)

Inserting the Expression (2.61) into the relaxed constraint finally yields that h satisfies (2.58), that is,
that the unique solution to [TAP-SUE-L] is a logit flow distribution. It may also be shown that the

solution of [TAP-SUE] yields the logit distribution of flows, given the above choice of perception error
([833]).

The problem [TAP-SUE-L] is intractable for any non-trivial network because of the
property that every route is utilized. It is, however, possible to obtain optimal link flows
by iterative methods, and for known subsets ﬁpq of the set of routes R,,, (p,q) € C,
optimal route flows may be obtained. See Section 4.5.2 for further details.

The use of the deterministic model assumes complete information about the alternatives
available to each traveller, i.e., each traveller accurately perceives the travel costs on each
route. This model results from the choice © = +oc. If, on the other hand, no information
is available, then the most probable macrostate is that which maximizes the entropy, i.e.,
maximizes {— Y (pa)eC 2oreR,, Itwer 108 hpqr } subject to the demand feasibility constraints.
This objective is obtained from T by choosing © = 0. By choosing the value of ©® within
the interval [0,4o00], the corresponding route-choice problem is one where the amount
of information available to the travellers varies from no information to full information.
(An equivalent way of expressing this is, by assuming that the traveller makes use of all
the information available, that the traveller ranges from being completely insensitive to
the travel costs to being a cost-minimizer.) In terms of travel perception, by letting the
value of © range from 0 to 400 the perception tends from totally random (no correlation
with the travel times) to the case of variance zero. The value of © may be viewed as an
aggregated measure of the amount of (or the accuracy of the) information that is available
among the tripmakers about the actual travel costs.

The many nice properties of the entropy function makes the logit approach the natural
choice in the modelling of stochastic user equilibria. The logit model is, however, asso-
ciated with some serious drawbacks. In the extreme case where ©® = 0, the route-choice
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probabilities are A,, = 1/|R,,| for all r € R,,, i.e., only the number of routes in an O-D
pair affects the flow distribution. This dependency on the network topology is significant
also for relatively large values of ©, and results in the solution to [TAP-SUE-L] being
dependent on the representation of the network; this property is very unwanted in any
model.

One of the consequences is that overlapping routes receive overestimates of flows, and
that the larger the number of routes passing a particular link, the more flow it receives,
regardless of the travel cost on it. The solution to the stochastic user equilibrium problem
based on the logit model suffers from these drawbacks even for moderate values of ©, and
may, as a consequence, provide very inaccurate flows in certain applications. However,
for networks where the error in the perceived travel costs are mildly correlated and have
a similar probability distribution, the logit model is applicable.

The route-choice anomaly results from the inability of the logit model to account for the
correlation between the cost of the different alternatives, and stems from the independence
assumption on the random cost terms (termed the axiom of independence from irrelevant
alternatives; see [622]). Daganzo and Sheffi [220] argue that this must be the case for any
model assuming an independence between the random variables. (This would include for
instance the model proposed by Von Falkenhausen [951].)

Another deficiency results from the fact that the random components are identically
distributed with the same variances; the route choice probabilities are thus solely based
on absolute travel time differences, and do not take into account the magnitude of costs.

Further discussions of the properties of the logit model are given in [659, 816, 136, 356,
220, 57, 831].

The probit-based stochastic model

In a probit route choice model, the cost perception errors are assumed to be distributed
according to a multivariate normal law. As with the logit model, the mean perception
error is zero. The variance of C,,, equals ¢,,,, where 3 is a proportionality constant; the
covariance between the perceived travel costs on overlapping routes is given by

cov(Chgr, Cpq) = 8 Z bpgradpglata-
acA

Hence, overlapping routes are correlated, and the variance depends on the travel costs;
this is a major improvement over the logit model.

The probit-based assignment model can, in general, not be given an analytical for-
mulation of an optimization problem because of the non-analytical formulation of the
route-choice probabilities.'* Because of the large number of alternatives (routes) avail-
able, analytical approximations such as Clark’s [172] method are also less useful; see also
[580]. Methods for probit-based route choice models invariably use simulation techniques
for the numerical calculation of perceived travel times; see Section 4.5.2 for further details.

Another line of development is that of Soroush and Mirchandani [864]; in their stochas-
tic model, the network itself is stochastic.

14From (2.56), the formulation of the probit-based assignment model in the framework of the program
[TAP-SUE] is possible only if the variance of perceived travel costs is independent of the mean perceived
travel costs ([831, Sec. 12.1]); the variance can instead be defined by the free-flow travel times or link
lengths.
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2.8.2 Side constrained assignment models

The inherent simplicity of the traffic assignment problem makes it inapplicable to more
complex real-world traffic problems (e.g., [823]). For instance, it does not capture the
interactions between the flow on intersecting links, or between vehicles of different types.
An illustrative example of the inapplicability of the basic model and its possible conse-
quences is provided by Hearn [473], who comments on its property of allowing every road
to carry arbitrarily large volumes of traffic. This deficiency in the model causes that

the predicted flow on some links will be far lower or far greater than the traffic engineer
knows they should be if all assumptions of the model are correct. In practice, the result is
that the model predictions are ignored, or, more often, the user will perturb the components
of the model (trip table, volume delay formulas, etc.) in an attempt to bring the model
output more in line with the anticipated results.

In order to improve the model’s ability to accurately describe, reproduce, or predict a
real-world traffic situation, two fundamentally different approaches may be utilized.

The traditional approach is to capture additional flow relationships through the intro-
duction of nonseparable, and typically also asymmetric, travel cost functions. A solution
to the Wardrop conditions can then, however, not be obtained through the solution of
an optimization model of the form [TAP], due to the non-integrability of the resulting
travel cost function. Instead, the Wardrop conditions are formulated as non-optimization
models, such as variational inequalities. The resulting class of models has been exten-
sively studied both from a theoretical and an algorithmical point of view (see Chapter 3).
Due mainly to the practical difficulty of calibrating asymmetric travel cost functions,
real-world applications are scarce however.

The alternative—which has so far been surprisingly little studied—approach to improve
the quality of the basic equilibrium model is to introduce a set of side constraints to
model additional restrictions on possible flow patterns. Such side constraints could be
used to describe, for instance, the interaction of vehicles in a junction, joint capacities on
two-way streets and links in intersections and roundabouts, requirements that observed
flows on some links should be reproduced in the calculated solution, a traffic control
policy, or dynamic aspects. We believe this approach is appealing from a practical point
of view, since it is certainly easier for the traffic engineer to identify a suitable set of
side constraints—which may have immediate physical interpretations—than to estimate
proper values of parameters in complex travel cost functions. (In the example provided
by Hearn [473], the proper improvement of the basic model is the introduction of link
capacity constraints corresponding to the engineer’s anticipation of reasonable levels of
traffic flow.) The approach of introducing side constraints in traffic equilibrium models
was first discussed by Larsson and Patriksson [587, 589].

Although this alternative approach seems to be more useful than that based on asym-
metric cost functions, it has been given comparatively very limited attention. We present
a general side constrained assignment model and investigate its optimality conditions;
these may be interpreted as a generalization of Wardrop’s equilibrium Principle (2.1) in
the respect that an equilibrium holds for a well defined generalized cost function. More-
over, we show that the side constrained assignment problem may be equivalently solved as
a standard equilibrium model using this travel cost function. This result leads to an inter-
esting relationship between side constrained and asymmetric models of traffic equilibria,
which motivates the further study of side constrained models.
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A side constrained assignment model

Let g5 : 57%':" — R, k € K, be convex and continuously differentiable, and define the side
constraints

g(f) <0,  VkeKk.

Here, the index set K may, for instance, consist of the index set of the links, nodes, routes,
or O-D pairs, or any combination of subsets of them. The constraints are, without any
loss of generality, given as inequalities.

Consider the general side constrained traffic equilibrium problem

[TAP-SC]

min 7T'(f def Z/ (2.62a)

acA
subject to
E hqu = dpr7 v(paq) EC, (262b)
rE€Rpq
hpqr > Oa Vr € qua \V/(paQ) € Ca (262C)
Z Z Opgrafpgr = fa, Va e A, (2.62d)

(p,q)€C TERpq

g(f) < 0, Vkek. (2.62¢)

We assume that the feasible set of [TAP-SC] is non-empty; in cases where some func-
tions ¢x are nonlinear, we also assume that a constraint qualification (e.g., [43, Chap. 5])
holds. The convexity of [TAP-SC]| then ensures the existence of an optimal solution,
which is unique in the total link flows and characterized by the first-order optimality con-
ditions. We next show that the optimality conditions of [TAP-SC] give rise to a Wardrop
equilibrium principle in terms of generalized route travel costs.

Theorem 2.8 (A generalization of the Wardrop principle) Let w € Rl and B € RI*I be
vectors of optimal Lagrange multipliers for the Constraints (2.62b) and (2.62¢), respec-
tively. If (h,f) solves the problem [TAP-SC], then

hpqr >0 = qur = Tpq, Vr € qu, (263&)
by =0 = Ty >, VreR,, (2.63b)

holds for all O-D pairs (p,q) € C, where

_ e dgi(f .
Cpgr d:f Cpgr(h) + Z Opgra (Z Bk akf ) Vr € Ry, Y(p,q) €C. (2.64)
a€A keK

Proof Stating the stationary point conditions for the Lagrangean function

L(E,B8) E T(E)+ 3 Bror(f (2.65)

keX
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subject to (2.62b)—(2.62d) we obtain, from the convexity of [TAP-SC], that (h,f) is a solution if and only
if

hogr (Cpor — Tpg) = 0, Vr € Rpq, Y(p,q) €C, (2.66a)
Cpgr — Mg 2 0, Vr € Rpq, Y(p,q) €C, (2.66b)
Z hpgr = dpq, Y(p.q) €C, (2.66¢)
rER pq
hper > 0, Vr € Ry, V(pq) €C, (2.66d)
Z Z bpgrahpgr = fa, Va € A, (2.66¢)
(P.9)ECTER g
Brgr(f) = 0, VkeK, (2.66f)
gr(f) < 0, Vk € K, (2.66g)
Be =2 0, VkeK, (2.66h)

where Cpq, is given by (2.64).

The Condition (2.66b), together with (2.66a) and (2.66¢), implies that the multiplier mp, is the mini-
mum generalized travel cost ,4- in O-D pair (p, ¢), and (2.66a) further states that these costs are equal
for all routes utilized in the O-D pair. Hence, the Conditions (2.66a)—(2.66b) imply (2.63), and the
theorem is proved. O

Solutions to [TAP-SC] thus are flows satisfying a generalization of the Wardrop equi-
librium conditions, based on the generalized travel Costs (2.64) [as opposed to the actual
travel costs in the Wardrop equilibrium Condition (2.1)]. (If, for some route, no con-
straint feasibility in (2.62e¢) is affected by the flows on the links defining the route, then
its generalized route travel cost equals the actual route cost. The same conclusion holds if
the Constraints (2.62e) that are affected by these flows are satisfied with strict inequality
[cf. (2.661)].)

The interpretations of the optimal Lagrange multipliers and the Conditions (2.63)
depend on the form of the constraint functions. For example, in the case of simple upper
bounds on the link flows (K = A and ¢,(f) = fo — ta, ua € [0,+00], for each a € A),
(2.64) reduces to Cpgr = Y. 4ca Opgralta(fa) + Ba), and the multipliers 3, may be associated
with equilibrium queueing delays on saturated links, and m,, with the (minimal) sum of
total travel cost and queueing delay in each O-D pair; see below. The reader should note
that the optimal multipliers 8 are not necessarily unique.

An equivalent standard assignment problem

The side constrained assignment model [TAP-SC] may be solved as an equivalent, convex,
standard traffic equilibrium problem, with an appropriately chosen adjustment of the
travel costs, referred to as [TAP-A].

Theorem 2.9 (An equivalent standard assignment problem) The solution set of [TAP-
SC] equals that of a standard traffic assignment model with travel cost mapping

t(-) + Vg(-)B, (2.67)

where 3 is an arbitrary vector of optimal Lagrange multipliers for the Constraints (2.62¢).

Proof Consider the Lagrangean Function (2.65). It follows from the strict convexity of T' that the
optimal solution to [TAP-SC] is obtained from the solution to the Lagrangean subproblem

min L(f, 3),
st (2.620)—(2.62d),
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defined for optimal multipliers 3 (see the discussions following [43, Th. 6.5.1]). But this is a standard
traffic equilibrium problem with objective L(-, 3) and link cost mapping VL(-,8) = t(-)+ Vg(-)3. O

Hence, the link travel cost Mapping (2.67) provides a precise statement of the influence
of the side constraints on the travel cost perception of the users of the traffic network, and
therefore on their route choice behaviour. Note that the link travel cost Mapping (2.67)
is, through (2.62d), equivalent to the generalized route travel cost mapping defined by
(2.64).

The variational inequality problem corresponding to the first-order optimality condi-
tions of the problem [TAP-A] is to find an f* € F" such that

[t(f*) + Vg(f)B]"(f —f*) >0, VfeF".

In contrast to the variational inequality formulation [VIP] this problem is symmetric,
since its cost Mapping (2.67) is integrable.

Using non-optimal Lagrange multipliers 3 in the travel cost Mapping (2.67) corre-
sponds to solving a perturbed version of [TAP-SC]. The below corollary is immediate

from Theorem 2.9 and Everett’s Theorem (e.g., [590, Th. 8.3, p. 402]).

Corollary 2.1 (An Everett-type result for [TAP-SC]) If the Lagrange multipliers 3 em-
ployed in the travel cost Mapping (2.67) are non-optimal, then the solution f(3) to the
resulting standard assignment problem solves

min T'(f),
subject to

Z hpgr = dpq, v(pa Q> eC,
TE€ERpq
thT 07 \V/T' € qua V(p, q) € Ca
Z Z 6quhpq7“ = Jfas Va € 'Aa

(p,9)ECTERpq

v

gk(f) S gka \V/kEK,
where
et {gk(f(ﬂ)), if Bk >0,
96 = Umax {0, g(£(8))}, if B = 0.

Note that when the multipliers 8 tend to optimal ones, the perturbed problem tends
to [TAP-SC], since g, then tends to zero for all k € K.
In order to find (near-)optimal values of 3 one may solve the Lagrangean dual problem

max L(8),
where
L(B) = min L(f, B).

For a link capacity side constrained equilibrium model, Larsson and Patriksson [587]
investigate and evaluate an augmented Lagrangean dualization technique for finding op-
timal values of 3 and show that it is actually more efficient than traditional Lagrange
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dualization; moreover, for certain instances of augmented Lagrangean schemes, the dual
sequence generated can be shown to converge (at least linearly) although the set of dual
solutions is not a singleton in general. (See Section 4.6.1 for further details.)

To summarize, if explicit side constraints are utilized in a refinement of the basic
assignment model, the solution of the resulting model [TAP-SC] automatically produces
the travel cost mapping of an equivalent standard traffic equilibrium model. Hence,
through a process in which one or more models [TAP-SC] are solved, one may derive (i.e.,
determine g) and calibrate (i.e., find proper coefficients 3) adjusted travel cost functions
for use in existing transportation analysis tools based on traditional equilibrium models,
in order to (indirectly through the cost functions) take into account the additional model
components which are described by the side constraints. The solution of an augmented
Lagrangean dual problem may then be viewed as a means for calibrating these travel cost
functions.

Next, we discuss the only well-studied case of side constrained assignment problems.

Capacitated traffic assignment

There have been many suggestions for choices of classes of functions to be used to model
the congestion effects, i.e., to describe the dependencies between traffic flows and travel
times (see Table 1.1). In practice, the most frequently used functions are polynomials
whose degrees and coefficients are determined from real-world data through statistical
methods. These travel time functions are however unrealistic in the sense that the re-
sulting travel times will become finite whenever the link flows are finite; this means that
the links are actually assumed to be able to carry arbitrarily large volumes of traffic flows
although the links will in practice undoubtedly have some finite limits on traffic flows,
because, for instance, of congestion, speed limits, or cycle-times for traffic-signals.

An obvious and very simple way of improving the quality of a traffic assignment model
would thus be to include link flow capacities. This can be done either explicitly through
the introduction of explicit upper bounds on the link flows, or implicitly through the
use of travel time functions which tend to infinity when the link flows approach their
respective capacities ([211, 212]), but neither of these two techniques have been studied
to any greater extent.

From a modelling point of view, explicit upper bounds have the advantage of allowing
link flows to attain the capacity values, whereas the use of travel time functions with an
asymptote at the capacity level will force all link flows to be strictly less than the capaci-
ties. Moreover, the result of using travel time functions with asymptotes is, according to
the empirical findings of Boyce et al. [109], that the estimates of equilibrium travel times
become unrealistically high. One disadvantage of imposing explicit capacities is that they
destroy the profitable Cartesian product structure which is inherent in the uncapacitated
problem. (The loss of the product structure in the feasible set is perhaps the main reason
why traffic assignment problems with explicit capacities have been so little studied.)

In addition, a solution to an explicitly capacitated traffic assignment problem will,
in the user equilibrium case, no longer comply with Wardrop’s first principle ([473]),
which has over the years been established and accepted as the fundamental behavioural
assumption; however, the solution will satisfy Wardrop’s first principle if the usual travel
costs are replaced by certain well-defined generalized travel costs [cf. (2.64)].

The capacitated traffic assignment problem ([TAP-C]) is a special case of the general
side constrained assignment problem [TAP-SC], with side constraints defined by

0.(0) Y fo—u.,  Vae A,
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where u € [0, +o00]l is the vector of upper bounds on the link flows.
The optimality conditions of [TAP-C] yield, from (2.63)—(2.64), that the utilized routes
in an O-D pair (p, ¢) have equal generalized costs

quT d:e£ Z 6pqra(ta(fa) + 1804)'
acA

It is also possible to derive an equilibrium condition in terms of actual costs. Assume,
without any loss of generality, that, in O-D pair (p, ¢), routes are numbered in the order
of increasing costs, that the first [ routes are utilized, and among these the first m are
saturated, i.e., contain at least one link which carries flow on its capacity level. Then, the
network flow is a capacitated user equilibrium if and only if it is true that

Cpg1 < oo S Cpgm S Cpgmt1 = oo = Cpgl

and the unused routes in the O-D pair have generalized route costs that are at least as
large as those of the used routes.

Such a characterization of the solution of [TAP-C] was first made by Jorgenson [533],
in the special case of constant travel times. (In this case, [TAP-C] reduces to a linear
multicommodity flow problem, in which commodities are defined by the O-D pairs.) For
flow-dependent travel costs, similar characterizations are given in [473, 484, 516].

Here, it is important to note that one can, in general, not relate the actual travel
costs of the unused routes to those of the used ones; it may for instance happen that the
cheapest route in an origin-destination pair is not used because its generalized cost is too
high. Furthermore, one can for the capacitated problem not formulate a simple optimality
condition, similar to Wardrop’s first principle, in terms of actual travel costs only. (The
extensions of Wardrop’s first principle stated by Anantharamaiah [20] and Stefek [872]
are incorrect or, possibly, poorly formulated.) This is due to the fact that the Wardrop
principles are intimately associated with the Cartesian product structure of the feasible
set of [TAP].

The Lagrange multipliers for the capacity constraints “measure the time gained by
users of routes filled to capacity compared to the fastest route still available” ([533]),
but can also be given other interesting interpretations. First of all, in a network where
oversaturated links have queues at their exits, they may be interpreted as the equilibrium
time delays caused by the queueing ([678, 750, 895, 850]); this result is extended to the
case of non-constant link travel times in [678, 516]. Secondly, they can be seen as the link
tolls that drivers on saturated routes are willing to pay for letting them continue to use
routes that are faster than the non-saturated ones ([50]). [One may note that although
the equilibrium generalized route travel costs are unique, this is not necessarily true for
the multipliers 3.]

It is important to note that the capacitated equilibrium link flow pattern found by
solving [TAP-C] may also be found by solving the corresponding uncapacitated problem
[TAP] with travel time functions adjusted to ¢,(f,)+ 3, for all a € A; this is a special case
of the adjusted travel time Formula (2.67). Solving a capacitated problem can therefore
be used as a tool for guiding the traffic engineer how to correct the travel time functions
in order to bring the flow pattern into agreement with the anticipated results ([473]). As
compared to heuristic adjustments of the travel time functions, the described strategy has
the advantage that it is certainly easier for the engineer to give reasonable estimates of link
capacities than to estimate how an adjustment of the travel time functions will affect the
uncapacitated equilibrium flow pattern. Lagrangean (and augmented Lagrangean) dual
methods for [TAP-C]| can actually be interpreted as an automatized process of adjusting
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the travel time functions towards the correct ones, which are reached in the limit; see
Section 4.6.1.

An interesting subject for future research is to develop and formalize this technique into
a means for constructing travel time functions which take link interactions into account.
Such a procedure would involve formulating and solving a traffic assignment problem
[TAP-SC] which includes a set of side constrains describing the link interactions, and then
to utilize the Lagrange multipliers for the side constraints to derive adjusted travel time
functions which directly reflect the link interactions. This way of deriving complex travel
time functions may be preferable to a calibration of parameters in the travel cost functions,
since it may be comparably easy to identify an appropriate set of side constraints and
estimate proper values of their coefficients, since these may have very tangible physical
interpretations.

Conclusions

The lack of practical applications of asymmetric models of traffic equilibria may, at least
partially, be explained by the following. Following the hypothesis that the additional flow
relationships modelled through the introduction of asymmetric travel cost functions are
actually better represented by a set of side constraints, we observe that:

(1) The interactions and restrictions on the traffic flows captured through the introduc-
tion of nonseparable and asymmetric travel cost functions are not described in terms
of the physical relationships that they actually represent; in a side constrained as-
signment model, these physical relationships are modelled explicitly, and they should
therefore be easier to derive and calibrate.

(2) The asymmetric model is equivalent to a symmetric one with a travel cost function
of the form (2.67), whose parameters, i.e., the multipliers 8, are unknown.

The alternative strategy of extending the basic model with side constraints gives a large
flexibility in the construction of the model, since the side constraints can be nonlinear
as well as nonseparable. Moreover, it provides a means for the construction of proper
adjustments of tentative travel cost functions.

The many possibilities for realistically modelling traffic interactions with explicit side
constraints, and the strong relationships to equilibrium models with asymmetric or prop-
erly adjusted symmetric travel costs, motivate the further exploration of this modelling
strategy for traffic equilibrium problems. The successful outcome of this exploration re-
lies on cooperation between operations researchers and users of today’s transportation
planning systems.

Applications of network flow models with side constraints also arise in network flows
with conversions, losses and gains, and shared resources (e.g., [188, 960, 991, 454, 124,
534, 10, 238, 153, 98, 173, 426, 14, 394, 1007]); usual terms to describe these models are

embedded and generalized networks.



Chapter 3

General traffic equilibrium models

3.1 Introduction

3.1.1 Alternative definitions of equilibria

In the case of separable costs, various definitions of equilibria are known to be equivalent.

For more general cost structures, solutions to these equilibrium conditions may, however,
differ.

Let r and s denote two arbitrary, but different routes in O-D pair (p, ¢), where Ay, > 0.
Further, let D,; be a vector of the same dimension as h, which is zero in every position
except those corresponding to the routes r and s, where the elements of the vector are
—1 and 1, respectively.

Definition 3.1 (Alternative equilibrium definitions)

(a)

(b)

(Wardrop equilibrium [958]) The vector h is a Wardrop equilibrium if and only if
cpgr(h) < cpos(h).

The flow is a Wardrop equilibrium if for each driver, the present cost on any alter-
native route is at least as great as the cost on his/her present route.

(User-optimized [209]) The vector h is user-optimized if and only if*
cpgr(h) < cpgs(h + €Dys), Ve € [0, hpgr].

The flow is user-optimized if any driver who changes to an alternative route will
experience a cost that is at least as great as the old one on his/her old route.

(Equilibrated [494]) The vector h is equilibrated if and only if
cpor(h +eDys) < cpgs(h + eDy), Ve € [0, hpg]-

The flow is equilibrated if any driver who changes to an alternative route will expe-
rience a cost that is at least as great as the new one on his/her old route.

!Dafermos [205] subsequently generalizes the concept of user-optimized flows, to state that h is a
user-optimized flow if and only if no “sufficiently small” portion of the users of any utilized route can
reduce their travel costs by simultaneously changing to any other route, i.e., that there is an o > 0 such

that

eper(h) < ¢pgs(h +eDyy), Ve € [0, min{e, hpgr }.

Note that this definition reduces to the one of Dafermos and Sparrow [209] if & = hpgyr.
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Smith [849] demonstrates that Wardrop equilibria may not be user-equilibrated for gen-
eral cost functions, although the two concepts are equivalent in the separable case. Hey-
decker [494] shows that, under a monotonicity assumption on the route costs ¢, Wardrop
equilibria coincide with equilibrated flows. The concept of the Wardrop equilibrium,
which is the classical one, is hence also the most general of those given above, and will
therefore be considered in the following.

The difference between user-optimized and equilibrated flows is characterized by a
difference in the assumption on drivers’ cost perception ([494]):

The adoption of the equilibrated condition ... is equivalent to supposing that each driver
is instantaneously aware of the cost of travel on all of the routes which he could use. If a
driver does try an alternative route, then he will decide whether or not to habituate it by
comparing the cost he experiences on the new route with the new cost experienced by other
travellers who remain on his old route. By contrast, the adoption of the user-optimized
condition is equivalent to supposing that each driver, in attempting to minimize his travel
costs, acts only on the basis of his own experience. If he tries an alternative route, he will
habituate it if the cost he experiences is less than the cost he experienced on his old route.

The properties of equilibria have been studied through reformulations of the Wardrop
conditions as variational inequality problems (see Section 3.2.1), nonlinear complementar-
ity problems (see Section 3.2.2), and fixed point problems (see Section 3.2.3). Below, we
state the general problems, and provide a list of their most important properties. These
results are subsequently specialized to traffic equilibrium problems.

3.1.2 Variational inequality problems

Let X C R" be a nonempty, closed and convex set, and F' : X — R" a continuous
mapping on X. (These properties are assumed to hold throughout this section.) The
Variational Inequality Problem then is to find an x* € X such that?

[VIP]
F(x)T(x=x)>0, VxeX. (3.1)

(This problem is also known under the names generalized equations and as stationary
point problems.) We let ) denote the set of solutions to [VIP]|. Conditions under which
this set is guaranteed to be nonempty are given below. (For statements of the properties
of F' mentioned, consult Appendix A.)

Theorem 3.1 (Existence of solutions to [VIP]) A solution to [VIP] exists under either
one of the following additional properties of F or X .2

(a) The set X is bounded ([}66, 119]).*

(b) The mapping F is coercive ([{66, 686]).

(c¢) The mapping F is strongly monotone ([868]).

2The problem [VIP] may be interpreted as the problem of finding a point x* € X at which the vector
field F' is an inward normal to X.

3If a certain Slater constraint qualification holds, the conditions on the mapping F' may be replaced
by only pseudomonotonicity ([464]).

4The boundedness condition can always be relaxed if the feasible set can be restricted to a bounded
set without affecting the optimal solution set.
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The solution set is convex if F'is pseudomonotone, and also bounded under a Slater
constraint qualification or coercivity of F' ([464]).
The following theorem gives a sufficient condition for a solution to [VIP] to be unique.

Theorem 3.2 [868] (Uniqueness of solutions to [VIP]) The solution set of [VIP], if

nonempty, s a singleton if F' is strictly monotone on X.

The relationships between [VIP] and optimization problems are next studied. The
following result is a well-known optimality condition for the mathematical program

[P]
min T'(x). (3.2a)

xeX

Theorem 3.3 [43] (Optimality condition) Let T : X — R be in C' on X. If x* € X is
an optimal solution to [P], then x* is a solution to [VIP], with F = VT. The converse
holds whenever T' is pseudoconvex.

The results of the theorem imply that whenever F' is the gradient of a real-valued
function T', a solution to [VIP] may be found through the solution of the optimization
problem [P].

Conditions for F to be a gradient mapping may be found in [778, 925, 144, 464].

Theorem 3.4 [727, Th. 4.1.6] (Sufficient condition for F' to be a gradient) Let F' : X

R"™ be in C' on an open convex set Xg C X. Then F is a gradient mapping on Xy if and
only if VF(x) is symmetric for all x € X.

Under this symmetry condition, the line integral
def [* T o
T(x) % / F(s)tds (3.2b)
0

is path independent according to Green’s theorem, and F' is integrable. The problem
[VIP] can hence be put as an equivalent mathematical program, with an objective of the

form (3.2b)."

Properties of T relative to F' are given below.

Theorem 3.5 (Relationships between monotonicity properties of 7' and F') Let F = VT.
Then,

(a) F is monotone on X <= T is convex on X.
(b) F is strictly monotone on X <= T is strictly convex on X.

(c) F is strongly monotone on X <= T is strongly convex on X.

The properties of T' can be further studied through Definition A.2.

5An alternative formulation is
1 n
T(x) def / Z F; (xo + s(x — xo))(:cj — x?)ds,
0 o1

0

where x"” is an arbitrary point in X.
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3.1.3 Nonlinear complementarity problems

Let F': R} — R" be continuous. The Nonlinear Complementarity Problem is to find an
x* € ®" such that

[INCP]
F(x*)'x* = 0, (3.3a)
F(x*) = 0, (3.3b)
x* >0 (3.3¢)

The problem [NCP] is equivalent to a variational inequality defined on X = R ([544,
551]). Existence and uniqueness results for [NCP] therefore follow from those for [VIP]
(Theorems 3.1 and 3.2); see also [541, 542, 543, 544, 565, 464, 184].

3.1.4 Fixed point problems
Let F': X — R" be continuous. The Fized Point Problem is to find an x* € X such that

[FPP]
F(x") =x" (3.4)
In the field of traffic equilibrium, fixed point problems have mostly been applied as
an instrument of establishing the existence of solutions to variational inequality or com-
plementarity models. The general proof is based on the definition of an appropriate
continuous mapping, which transforms the original model into an equivalent fixed point
problem, for which existence is then established by imposing strong enough properties

onto the original problem data. There are several classical existence results for fixed

point problems (e.g., [122, 539, 277, 546]).

Theorem 3.6 [539] (Existence of a fixed point) Let X be bounded, and F' be a mapping
from X to X. Then there exists a solution to [FPP].

Theorem 3.7 [727, Th. 5.1.3] (Existence of a unique fixed point) Let F' be contractive
on X. Then there exists a unique solution to [FPP]. Furthermore, the sequence {x*},
defined by x° € X,

xF = F(xb), k=0,1,..., (3.5)

converges to the unique fixed point.

Theorem 3.8 [289] (A fixed point characterization of Q) Let B be a symmetric and
positive matriz in R"*". Then,

X' €= x"=PP (x -B7'F(x"), (3.6a)
where

PB(x) ¥ arg 111111 Ix—vyls (3.6b)

is the projection of x onto X with respect to the norm

I/l % (x"Bx)'2. (3.60)
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Applying Theorem 3.8, with B equal to the identity matrix I, to [NCP], yields the
equivalent fixed point problem of finding an x* > 0 such that ([901])
H(x) = x, (3.7a)
where
H;(x) = max {0,z; — F;(x)}, Ve {l,...,n}. (3.7b)
Theorems 3.7 and 3.8 provide the basis for many algorithmic procedures proposed for
the solution of [VIP] and [NCP], through the solution of an equivalent fixed point problem,

in particular for the class of projection algorithms; see Section 5.3.
Another fixed point characterization of solutions to [VIP] is given next.

Theorem 3.9 (A fixed point characterization of )

X" €N« x"€ H(x"), (3.8a)
where
H(x) e arg mel}ls F(x)"(y —x). (3.8b)
y

Theorem 3.9 was first stated by Zuhovickii et al. [1018] (see also [246, 307, 641]). The
optimization problem defining H is equivalent to that solved as a search direction finding
subproblem in the Frank—Wolfe algorithm. The mapping H is not contractive, and can
therefore not be used in conjunction with the result of Theorem 3.7 in the construction
of a convergent algorithm.® The result of Theorem 3.9 is, however, utilized in methods
based on the minimization of the primal gap function and has a nice interpretation in
terms of the equilibrium conditions (see Sections 3.1.5 and 5.3).

In the fixed point problem defined in (3.8a), H is a point-to-set mapping. The existence
of a solution to (3.8a) is ensured by a generalization of Theorem 3.6 from continuous point-
to-point mappings to upper semicontinuous point-to-set mappings.

Both Theorems 3.8 and 3.9 are special cases of a general fixed point result for variational
inequality problems, which is one property of a class of optimization reformulations of
[VIP]. This is the topic of the next section.

3.1.5 Mathematical programming reformulations

Whenever F is not the gradient of any function, the integral in (3.2b) is not unambiguously
defined, and [VIP] can in this case not be converted into an equivalent optimization prob-
lem of the form (3.2). (In analogy with the symmetry characterization of Theorem 3.4,
we then say that the problem [VIP] is asymmetric.)

The objective functions (or merit functions) of the mathematical programming refor-
mulations of [VIP] studied in this section are of the type given by the following definition.

Definition 3.2 (Gap function) Let  be the set of solutions to [VIP]. A function 1 :
X — RU{—00,+00} is a gap function for [VIP] if

(1) o is restricted in sign on X, and

(2) ¥(x)=0<+=x€Q.

A gap function provides a measure of the violation of [VIP] at any point x € X, and
by minimizing v over X (assuming that ¢ is nonnegative on X), a point in € is obtained.
It may therefore be used as a merit function for variational inequalities.

Utilizing the mapping H in a method of the form (3.5) would, in the context of traffic assignment,
correspond to the iterated all-or-nothing heuristic; see Section 1.5.4.
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The primal and dual gap functions

Variational inequalities are highly related to equilibrium problems in non-cooperative
game theory (e.g., [615, 84]).” The saddle point problem characterizing the solutions to
the game problem is to find (x*,y*) € X x Y such that ([779])

L(x"y) < L(x"y") < L(x,¥"), V(x,y)e X xY. (3.9)

This problem is said to be convez-concave if L : X x Y +— R is convex in x and concave
in y. The Problem (3.9) may be reformulated as the minimax problem ([779, Le. 36.2];
see also [222, 243])

inf L(x,y) = L(x",y") = inf sup L(x,y). 3.1
sup inf L0xy) = L(x",y7) = fnf sup L(x.y) (3.10)

In the study of N-person non-cooperative games, Zuhovickii et al. [1017, 1018, 1019, 1020]
observe that under a monotonicity assumption on F', x* € X is an equilibrium point of
the Game (2.45) if and only if (x*,x*) is a saddle point of L(x,y) = F(x)T(x —y), i.e.,

- T 0 — Ty .
max mip F(x) (x—y)—O—lgél)r(ngle%g( F(x) (x—y). (3.11)

Exploring the rightmost equality of (3.11) we obtain the primal gap function G : X —
R4 U {+oo} defined by

G(x) = }sllelg F(x)"(x—y). (3.12)

The function G has been studied extensively in various contexts; below, we summarize

its most important properties.

Theorem 3.10 (Properties of () For any x € X, let Y(x) denote the (possibly empty)
set of optimal solutions to the problem defined in (3.12).

(a) G is a gap function.

(b) G isls.c. on X.

(c) If X is bounded and F € C' on X, then G is Lipschitz conlinuous on X.

(d) If F € C' on X, then G is differentiable at x € X if Y(x) = {y(x)}, with

VG(x) = F(x) + VF(x)" (x — y(x)).

(e) If F € C" on X, and F is monotone on X, then if x ¢ Q and Y(x) = {y(x)},
p = y(x) — x defines a feasible direction of descent with respect to G at x, and the
directional derivative satisfies

G'(x;p) = VG(x)'p < —G(x).

(f) G is conver on X if x — F(x)Tx is convex on X and each component of F' is concave

on X.

"Consider the non-cooperative N-person game (2.45). If each penalty function ¢; is differentiable,
then by defining F(x)T = (Vip1(x)T, ..., Vapn(x)T), we obtain that x* € X is an equilibrium point
of the game if and only if

F(x)T(x; —x}) >0, Vx;€X;,ie{l,...,N},

i.e., if and only if x* € X solves [VIP] defined on Hf\;l X;.



General traffic equilibrium models 79

(g) (A fixed point characterization of )
x € ) <= x € Y(x).
(h) (A stationary point characterization of Q)  Under the conditions on F in (e),

x € Q< G (x;y —x) >0, Yy € X.

Proof

(a) See [1017, 1018, 1019, 1020]. See also [246, Sec. 3.1] and [472, 474].

[280].

[641].

(d) See [244]. See also [1020, 34, 472, 474, 478].

(e) See [244]. See also [474] for the first result, and [641].

(f) See [472, 474, 478].

(g) See [1018]. See also [246, 307, 641]. (This is Theorem 3.9.)

(h) See [641]. O

Thus, if [VIP] has a solution, the set of solutions to

[Pg]
ég; G(x) (3.13)
is the set 1.

When X is polyhedral, (3.12) reduces to a linear program, which, in the symmetric
case, 1s equivalent to that solved in the Frank—Wolfe algorithm.

In the context of traffic equilibrium, the primal gap function G provides a measure of
the violation of the Wardrop user equilibrium conditions; indeed, letting f € F",

G(f) = max t(£)T(f —y) (3.14a)
= t(f)If - min t(f)Ty, (3.14b)

i.e., G(f) is the difference in total travel costs between that of the flow f and that of
the corresponding shortest route solution. A positive value of the gap function hence
corresponds to a situation in which there is a potential benefit for some travellers in
adjusting their route choices, and the value is zero exactly when no traveller has an
incentive to change route, i.e., when the flow satisfies the Wardrop conditions of user
equilibrium. This measure of the violation of the Wardrop conditions is a standard output
of many traffic assignment packages ([472]). [For instance, the lower bound on the optimal
value provided by the Frank—Wolfe subproblem in the separable model is related to this
measure by G(f) = T'(f) — I(y(f)), where y(f) is any shortest route pattern given the
travel costs t(f); cf. (4.8).]

Murchland [697] was the first to study the primal gap Function (3.12) in the context
of traffic equilibria; he derived it as the gap between the value of the objective of [TAP]
and the value of a conjugate dual formulation of [TAP]. (The interpretation of the general
merit Function (3.18) as the gap in Fenchel’s [323] inequality is made in [33, 744, 747].)
Hearn [472, 474] suggests using this measure as a merit function in the solution of the
separable traffic equilibrium model.
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The primal gap function G has been used as a merit function in several algorithms
for [VIP] ([1019, 1020, 244, 766, 594, 641, 644, 642, 645, 647, 286, 646]), some of which
are applied to traffic equilibrium problems; see Sections 5.2.5, 5.3.4, and 5.3.5. (For the
special case of [NCP], it is also studied in [182, 543, 185].)

Turning to the leftmost equality of (3.11) we obtain the dual gap function g : X —
R_ U {—oc} defined by

g(y) = jnf F(x)'(x-y). (3.15)

Theorem 3.11 (Properties of g) Let F' : X — R™ be pseudomonotone on X. For any
y € X, let X(y) denote the (possibly empty) set of optimal solutions to the problem defined
in (3.15).

(a) ¢ is a gap function.

(b) g is concave on X.
(c) If F € C' on X, then g is differentiable at'y € X if X(y) = {x(y)}, with

Vy(y) = -VF(x(y)).

Proof

(a) See [1017, 1018]. See also [244] and [34, Sec. VIL5].
(b) See [483, 478, 719].
(c) See [483, 478]. ]

As a consequence of the gap function property of ¢, the set of solutions to
[Pal

;gg 9(y) (3.16)

is the set . See Sections 5.2.5 and 5.3.6 for methods applied to [P,].
Summarizing the properties of the saddle function L, although it is not convex in x we
have, for pseudomonotone F,

9(y) <0< G(x), VY(xy)eX xX,

and (x*,y*) is a saddle point to L if and only if x*,y* € Q.

Finally, one may note the nice symmetry in the properties of G and g. While the
evaluation of (G(x) is a convex problem, the minimization of G is in general both a
nonconvex and nondifferentiable problem; on the other hand, while the evaluation of ¢(y)
is in general a nonconvex problem, the maximization of ¢ is always a convex problem.
In addition, convexity of G holds for affine and monotone maps F', and under the same
conditions the evaluation of ¢(y) is a convex problem.
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Smith’s class of gap functions

Smith [845, 846, 847] develops a family of gap-type merit functions for variational in-
equalities on bounded polyhedral sets. Letting

(2] & max {0, 2}, Ve R,

the family of merit functions is defined by

)= (FETx-y)k)",  VxeX, (3.17)
JjEX
where p > 0. Smith shows that for all p > 1, G* is a gap function for [VIP]. Hearn et
al. [478] relate this gap function to the primal gap function G; since
lim (G"(x)"? = max F(x)"(x—y’)=G(x), VxeX,
p—+0o JEX
the primal gap function is a limiting case of Smith’s class of gap functions.

They proceed to show that G? is differentiable on X for 2 < p < +o00, and convex
for p > 2 and p = +oo for instance if F' is affine and monotone. Note that the extreme
points y/ of X must be known explicitly in order to evaluate G?(x), for all finite values
of p. The practical use of these gap functions are therefore limited to polyhedral sets, in
combination with column generation techniques ([845, 846]).

A class of merit functions for [VIP]

Auchmuty [33] (see also [744, 746, 747, 588, 748, 749]) introduces a class of merit functions
for [VIP], which includes the primal gap function, and some other known merit functions,
as special cases. Let ¢ : X — R be a convex function in C' on X, and define

p(x) = sup L(y,x), (3.18a)
where
L(y,x) = ¢(x) — ¢(y) + [F(x) = Vex)]" (x—y). (3.18b)

Theorem 3.12 [33, 746, 747, 588] (v is a gap function) Let ¢ : X +— R be a convex
function in C' on X. Then ¢ : X — Ry U {+o0} is a gap function for [VIP].

Proof TFor any x € X, ¥(x) > 0 holds, since L(x,x) = 0. Next, assume that x* € Q. Then
L(y,x*) < FE")T(x*—y) (¢ convex)

< 0, Yy e X. (x* € Q)

Since L(x*,x*) = 0 holds, we have that ¢¥(x*) = 0. Conversely, let ¢(x*) = 0, for some x* € X. Since,
from (3.18a), L (y,x*) < 0 must hold, for all y € X, x* must be a solution to the problem defining
¥ (x*). Replacing y (x*) with x* in the necessary optimality conditions for (3.18a),

[Ve(y (x)+ F(x") - Ve(x)]' (y -y (x*)) >0, VyeX,

then yields that x* solves [VIP]. O

The inner problem of (3.18) in the definition of v is defined as follows. Consider
replacing the mapping F' in [VIP] by the symmetric and monotone mapping V. The
error thus introduced, Vo — F, is, at the point x € X, approximated by the fixed cost
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term Vi (x)— F(x), which is added to V. The approximate variational inequality (which
we denote by [VIPy,]) then has the mapping

Vi + F(x) - Vip(x),

which is integrable, and [VIPy,] is equivalent to solving the convex program of minimizing

P(y) + [F(x) = Vo) (y —x)

over y € X. This problem is obviously the same as the inner problem of (3.18).

Remark 3.1 The better Vi approximates F, the closer will the solution, y(x), to
[VIPy,| be to Q. If F'is symmetric and monotone, then Vi = F' is a possible choice; in
this case, the approximate problem [VIPy,]| is equivalent to [VIP]. If the mapping Vi is
replaced by a more general, possibly asymmetric, mapping ®, then [VIPg] may yield even
better approximations to €. In this case, though, [VIPg] is not equivalent to a convex
optimization problem, or to the calculation of a merit function .

The approximate problem [VIPg] may also be constructed as follows. Rewrite the cost
mapping F' equivalently as
¢+ [F — D). (3.19)

The subproblem [VIPg] is then, at x € X, constructed by fixing the term within the brack-
ets to its value at x. The process leading to [VIPg] is referred to as a cost approzimation
([747]); see Section 5.2.1 for a detailed description of this algorithm concept.

The merit function ¥ corresponding to ¢ = 0 is the primal gap function discussed
above. As shown in [588], the generalization of the dual formulation (3.15) does not
define a gap function for [VIP] in general.

Theorem 3.13 [747, 588] (Properties of ¥) For anyx € X, let Y (x) denote the (possibly
empty) set of optimal solutions to the problem defined in (3.18).
(a) [33] ¥ is l.s.c. on X.
(b) If X is bounded or if ¢ is strongly convex on X, then v is continuous on X.
(c) If X is bounded, F€C" on X and p € C* on X, then) is Lipschitz continuous on X.
(d) Let F € C* on X and ¢ € C* on X. If X is bounded and o strictly convex on X, or

if @ is strongly convexr on X, then ¢ € C! on X, with

Vip(x) = F(x) + [VF(x)" = Vi(x)](x - y(x)).

(e) Let F € C" on X and p € C* on X. If X is bounded, x ¢ 0, and VF(x)T — V2p(x)
is positive definite, then there is a'y € Y(x) such that p =y — x defines a feasible
direction of descent with respect to 1 at x. If furthermore F' is strongly monotone on
X, p strongly convex on X, and V¢ Lipschitz continuous on X, then for anyx € X,

V(%) (y(x) = %) < =(mp +me — My,)[ly(x) - x]*

(f) ¢ is convex on X if F' is affine, with F(x) = Ax — b, ¢ is quadratic, with ¢(x) =
1xTBx, and A + AT — B is positive semidefinite.

2
(g) (A fixed point characterization of )

x € ) <= x € Y(x).
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(h) (A stationary point characterization of )  Under the conditions on F and ¢ in (e),

x € Q)<= Y'(x;y —x) >0, Vy € X.

The fixed point result (g) generalizes Theorems 3.8 and 3.9, for the choices p(x) =
1xTBx and ¢(x) = 0, respectively, where B € R"%" is a symmetric and positive definite
matrix.

The function ¢ may, instead of being chosen as a fixed function, be chosen dependently
(and adaptively) of the point x at which the approximation is made. From the viewpoint
of making good symmetric approximations of [VIP], and the construction of efficient
numerical methods, this may indeed be of great advantage. For a sequence {x*} of points,
we may therefore introduce a sequence {¢*} of convex functions ¢* : X — Rin C' on X
(or, in more generality, a sequence {®*} of monotone cost approximating mappings).

The corresponding sequence {1)*} of gap functions include, as special cases, the primal
gap function (¢* = 0), the gap functions of Fukushima [391, 885] (¢*(x) = ix'Bx,
B symmetric and positive definite), the gap functions of Wu et al. [994] (o(x,y) =
1xTB(y)x), the gap function of Auchmuty [33, 747, 588] (¢*(x) = ¢(x) for all k), and
the gap functions of Zhu and Marcotte [1013, 1014] (¢*(x) = vr(x,x*), v > 0). See
Larsson and Patriksson [746, 747, 588, 748, 749] for further details on the relationships
between these merit functions, and algorithms based on their minimization.

In Section 5.2.1, we introduce a general iterative scheme for [VIP], in which the solution
to a subproblem of the form [VIPgx| is utilized either as a search direction with respect
to a merit function ©* or as the definition of a successive approximation scheme. A
large number of existing algorithms for asymmetric traffic equilibria may be put into this
framework.

3.2 Traffic equilibrium models

In this section we shall derive equivalent reformulations of the Wardrop conditions as
variational inequality, nonlinear complementarity, and fixed point problems, which will
enable us to establish existence and uniqueness results for traffic equilibria.

3.2.1 Variational inequality models
The fixed demand case

Assumption 3.A (Properties of the traffic network)
(1) The network is strongly connected.

(2) The demand d,, is nonnegative for each (p,q) € C.

(8) The route cost cpyr - §R|+R| — Ry is positive and continuous for each r € R,, and
(p,gq) €C.

(4) If the route costs are additive, i.e., if (2.5f) holds, then the travel time function
lg: §R|_|“_4| — Ry is positive and continuous for each a € A.

Theorem 3.14 [630] (Variational inequality formulations of the fixed demand Wardrop
conditions) Let Assumption 3.A hold.
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(a) The fized demand Wardrop Conditions (2.2) are equivalent to the variational inequal-
ity problem of finding an h* € H such that

[TAP-VIP-H]
c(h)'(h—h*)>0, Vhel. (3.20)

(b) Assume that the route costs are additive. Then the fized demand Wardrop Condi-
tions (2.2) are equivalent to the variational inequality problem of finding an f* € F*
such that

[TAP-VIP-F']

t(f)T (fF—f) >0,  VfeF" (3.21)
Proof
(a) The flow h* solves [TAP-VIP-H] if and only if it solves the linear program
min ¢ (h*)" h. (3.22)
hen

The primal-dual optimality conditions of (3.22) are (2.2a)—(2.2d). The positivity assumption on
Cpgr implies that mp, > 0.

(b) The theorem is proved by establishing the equivalence of [TAP-VIP-H] and [TAP-VIP-F"] under
additivity. Let h* € H solve [TAP-VIP-H]. The flow h* corresponds to a (unique) link flow
solution, f* € F", through (2.6d). By virtue of the additivity assumption, for any pair (h,f)
satisfying (2.6b)—(2.6d),

ch*)" (h—h*) =t ()" (f —£*), (3.23)

and therefore (3.20) implies (3.21). Thus, £* solves [TAP-VIP-F"]. Conversely, let f* € F" solve
[TAP-VIP-F"], and construct a route flow solution, h* € H, satisfying (2.6b)—(2.6d) together with
f*. As above, we may conclude that, for any pair (h, f) satisfying (2.6b)—(2.6d), (3.23) holds, and
therefore (3.21) implies (3.20). Thus, h* solves [TAP-VIP-H]. O

The formulations [TAP-VIP-H] and [TAP-VIP-F"] are due to Smith [840], although
Dickson [256] is, perhaps, the first to state a variational inequality formulation corre-
sponding to the Wardrop conditions; his formulation, [TAP-VIP-F"], is, however, based

on separable travel costs. (In this case, [TAP-VIP-F"] represents the optimality conditions
of the link-route version of [TAP].)

The elastic demand case

Assumption 3.B (Properties of the traffic network)

(1) The network is strongly connected.

(2) The demand function gy, : %E' — R4 is nonnegative and continuous for each (p,q) €
C.

(8) The route cost cpy : %T' — Ry is positive and continuous for each r € R,, and
(p,q) €C.

(4) If the route costs are additive, i.e., if (2.5f) holds, then the travel time function
lg: §R|_r_4| — R4 is positive and continuous for each a € A.
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Introduce the route-O-D pair incidence matriz, I'T = (7,,,), defined by

def { 1, if route r joins O-D pair (p, q),
par 0, otherwise,

VreR, ¥Y(p,q) €C. (3.24)

Then the Wardrop Conditions (2.4) may be compactly written as

hT(c-T'm) = 0, (3.25a)
c—I'm > 0, (3.25b)
I"h—g(m) = o, (3.25¢)
h > o, (3.25d)

T > 0 (3.25¢)

Theorem 3.15 (Variational inequality formulations of the elastic demand Wardrop con-
ditions) Let Assumption 3.B hold.

(a) The elastic demand Wardrop Conditions (2.4) are equivalent to the variational in-
equality problem of finding (h*, 7*) € %TH'C' such that

[TAP-E-VIP]

T (()-(5)e e

(b) Assume that g is invertible. Then the elastic demand Wardrop Conditions (2.4) are
equivalent to the variational inequality problem of finding (h*,d*) € Hy such that

[TAP-E-VIP-H,]

ch)'(h—h)—g (@) (d-d*)>0, V(hd)eH,. (3.27)
Proof
(a) See, e.g., [343, 630].
(b) See, e.g., [193, 630]. ]

The formulation [TAP-E-VIP] is due to Fisk and Boyce [343]. Florian [349] and Dafer-
mos [193] present link flow based versions of [TAP-E-VIP-H,| (which we denote by [TAP-
E-VIP-F7], cf. [TAP-VIP-F7]).

Note that in the fixed demand case (g = d), [TAP-E-VIP-H,] reduces to [TAP-VIP-H]
(and, similarly, [TAP-E-VIP-F]] reduces to [TAP-VIP-F"]).

3.2.2 Nonlinear complementarity models

Consider the formulation [TAP-E-VIP] of the elastic demand Wardrop Conditions (2.4).
This formulation is equivalent to a nonlinear complementarity problem (since the feasible
set is the nonnegative orthant, see Section 3.1.3), with x = (h, &) and

oo = ( M gm ) '

We will refer to this formulation as [TAP-E-NCP].
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Theorem 3.16 (Nonlinear complementarity formulation of the elastic demand Wardrop
conditions) Let Assumption 3.B hold. The elastic demand Wardrop Conditions (2.4) are
equivalent to the nonlinear complementarity problem [TAP-E-NCP].

Proof Follows immediately from the equivalence of [TAP-E-NCP] and [TAP-E-VIP], and Theo-
rem 3.15.a. ad

The model [TAP-E-NCP] is given by Aashtiani and Magnanti [1, 2, 4].

3.2.3 Fixed point models

Fixed point formulations of the equilibrium conditions arise in two different ways. A
range of fixed point formulations may be obtained from a reformulation of a variational
inequality or nonlinear complementarity formulation, through the general fixed point The-
orem 3.13.g. Such fixed point formulations are primarily used for establishing quantitative
properties of the underlying traffic model, or the convergence properties of an iterative
algorithm for its solution.

Sender and Netter [823] formulate the first known fixed point formulations of the
Wardrop conditions, both for elastic and fixed demands, and for multi-modal networks.
The formulations may, in fact, be derived from the variational inequality formulation
[TAP-E-VIP-H;] and the fixed point Theorem 3.8 using B = 1.

In the elastic demand case, it is also possible to derive a fixed point model based
directly on the demand-travel cost relationship. For a given demand d > 0, let m(d)
denote the vector of minimum travel costs (assumed unique) obtained when assigning the
demand onto the network according to the principle of user equilibrium. Introducing the
demand function g, these travel times yield a demand g(m(d)) [which may differ from d].
Then, the equilibrium conditions may be written as d* solving the fixed point problem

[TAP-E-FPP]
g(m(d")) =d". (3.28)
The formulation [TAP-E-FPP] is due to Fisk and Nguyen [338]; it is further studied in

(339, 337] for multi-modal and multi-class user transportation networks.

3.3 Properties of equilibrium solutions

3.3.1 Existence of equilibrium solutions

Based on the reformulations of the Wardrop conditions presented above, several results
for the existence of equilibria have been established. Below, we shall give the most general
of these.

Assumption 3.C (Properties of the traffic network)

(1) The network is strongly connected.

(2) The demand function g, : §R|_f| — Ry is nonnegative, upper bounded and continuous
for each (p,q) € C.

(3) The route cost cpy, : ?R'f' — Ry is positive and continuous for each r € R,y and
(p,g) €C.
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(4) If the route costs are additive, i.e., if (2.5f) holds, then the travel time function
to: ?R'f' — Ry is positive and continuous for each a € A.

Theorem 3.17 (Existence of equilibrium solutions) Let Assumption 3.C hold.

(a) There exists an equilibrium solution (d*, h*) to the elastic demand Wardrop Condi-
tions (2.4).

(b) Further, assume that each demand function g,, is fired. Then there exists an equilib-
rium solution h* to the fired demand Wardrop Conditions (2.2).

Proof
(a) See Aashtiani and Magnanti [4].
(b) See Aashtiani and Magnanti [4]. For the case of additivity, see Smith [840]. 0

Remark 3.2 Smith [840, 846] establishes existence results for the elastic demand case
(both for additive and non-additive travel costs), in which the boundedness assumption
on the demand functions is replaced by a certain boundary condition.

Remark 3.3 The results in [4] are based on the formulation [TAP-E-NCP], while that
in [840] utilizes [TAP-VIP-F7]. In both cases, reformulations into equivalent fixed point
problems are used, in combination with fixed point theorems, such as Theorem 3.6. Braess
and Koch [113] consider [TAP-VIP-F"], and establish existence under an additional as-
sumption of monotonicity of t. Harker [462] utilizes [TAP-E-NCP-F]], and an existence
result for [NCP] due to Smith [856], to prove a result similar to Theorem 3.17.a for an
additive model. Florian [349] utilizes [TAP-E-VIP-F]] to establish the existence of an
equilibrium under monotonicity assumptions on t and —g (—g is assumed strictly mono-
tone). The assumptions used by Sender and Netter [823] are similar to those in [349].
Further existence results are found in [1, 2, 339, 310, 364], some of which are established
for multiclass-user equilibria. Equilibria on multiclass-user networks may be studied on
single-mode networks, where each mode defines its own network copy ([206, 94, 95, 1, 2]).
A summary of some of the above mentioned results are found in [326, 462].

Remark 3.4 In the modelling of additive traffic equilibrium problems, a node-link for-
mulation of the feasible set of link flows may also be used. In such a formulation, the set
F" is replaced by the set F'", defined by the flow conservation Constraints (2.13). The
set F'™ is not bounded, due to the presence of cycles (see Section 2.2.2); however, under
the assumption that travel costs are positive everywhere, no traveller can reduce his/her
travel cost by travelling in a cycle, and the existence of an equilibrium solution using a
link-node formulation may hence be established by using the same arguments as for the
link-route formulation used in this section.

With the above assumptions, there may be more than one equilibrium solution, and
the travel costs of different flows i H*, as well as the demands, may be different. (This
follows from the non-monotonicity of the travel costs and demands.) To alleviate this
unwanted property, we will in the next section impose further conditions on the travel
time and demand functions to ensure that the equilibrium travel times and demands are
unique. We will also establish the uniqueness of the total link flows.
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Discontinuous cost functions and equilibria

The existence results of Theorem 3.17 depend heavily on the continuity of the travel cost
and demand functions. B .

Asmuth [30, 31] assumes that t : 9?|+A| — 2% and g : ?R'f' — 2% are closed (see
Definition A.7.a) and convex valued point-to-set mappings, i.e., that given a flow f, the
travel cost is an element of the closed and convex set t(f).®

With the additional assumption that g is upper bounded, Asmuth establishes the
existence of an equilibrium solution (cf. Theorem 3.17.a). Similar results are obtained by
Fang and Peterson [308, 311, 312, 313, 314].

Motivated by the modelling of congestion pricing schemes using discontinuous step
functions, Bernstein and Smith [64] extend the notion of user equilibrium to incorporate
discontinuous cost functions.

Let each cost function c,q : %T' — ¥, be positive, bounded and lower semi-
continuous (see Definition A.6.a). As in Section 3.1.1, we let r and s denote two arbitrary,
but different, routes in O-D pair (p, q), where h,, > 0. Further, let D,; be a vector of
the same dimension as h, which is zero in every position except those corresponding to
the routes r and s, where the elements of the vector are —1 and 1, respectively.

Definition 3.3 (Discontinuous user equilibrium) The vector h is a discontinuous user
equiltbrium if and only if

Cpgr(h) < lir?l%nf Cpgs(h + eDys).

It is clear that if each cost function ¢,,, is continuous, then discontinuous user equilibria
coincide with Wardrop equilibria ([64, Th. 2.1.iii]).

To ensure the existence of a solution to the discontinuous user equilibrium conditions,
Bernstein and Smith introduce a notion of regularity of the cost functions.

Definition 3.4 (Regular cost) A lower semicontinuous cost structure is regular if and
only if, for every h € H and r,s € R,,, with r # s and hyys > 0, (p,q) € C,

lim inf ¢ypr(h +Dps) = 30 () + 32 (),

ag€rns agEr—s
where t,(f) o limjosup {t.(x) | x € F",||x — f|| < &} is the upper hull of t,.

Observe that additive and continuous costs c¢,,, are always regular. The regularity
condition states that a flow shift can only create cost discontinuities on those links where
link flows actually change.

We now have the following result, which extends that of Theorem 3.17.b to discontin-
uous regular costs.

Theorem 3.18 [64] (Existence of discontinuous equilibrium solutions) Let the network be
strongly connected, the demand d be nonnegative, and each cost function c,q, %T' — Ry
be positive, bounded, additive, lower semicontinuous and reqular. Then there exists a

discontinuous user equilibrium solution.

8The motivation behind the use of point-to-set demand functions is their possible derivation from
utility maximization behaviour; no clear motivation exists for the choice of the travel costs as point-to-
set mappings.
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3.3.2 Uniqueness of equilibrium solutions

To establish the uniqueness of the demands, travel costs and link flows, the below as-
sumptions will be used.

Assumption 3.D (Properties of the traffic network)

(1) The network is strongly connected.

(2) The demand function gy, : %E' — Ry is nonnegative, upper bounded and continuous

for each (p,q) € C. Further, —g is monotone on §R|_E|.

(3) The travel time function t, : 3%'_:" — Ry is positive and continuous for each a € A.

. A
Further, t is monotone on SRLF )

Theorem 3.19 (Uniqueness of equilibria) Let Assumption 3.D hold.
(a) Let either —g or t be strictly monotone. Then the equilibrium travel times are unique.

(b) Let —g be strictly monotone. Then the equilibrium demands are unique.

(c) Let g be positive on ?R'f', and t strictly monotone. Then the equilibrium travel times
and link flows are unique.

Proof

(a) See Aashtiani and Magnanti [4].

(b) See Florian [349].

(¢) See Aashtiani and Magnanti [4]. O

Remark 3.5 Asmuth [30, 31] establishes the uniqueness of the demands, travel times
and link flows under the assumption that —g and t are strictly monotone set-valued map-
pings. Smith [840] establishes the uniqueness of the link flows under a strict monotonicity
assumption on t in the fixed demand case. Dafermos [193] assumes strong monotonicity.
(This is one example of the use of overly restrictive assumptions in the analysis of a traffic
model; the main reason for this is that the assumptions are simultaneously used to ensure
the convergence of an iterative algorithm for its solution.) The uniqueness results stated
are based on a uniqueness theorem of the form of Theorem 3.2.

Remark 3.6 Observe that the uniqueness of the equilibrium travel costs may be estab-
lished under milder monotonicity assumptions on t in the case of separable costs; see
Theorem 2.5.a.

3.3.3 Further properties of equilibrium solutions

We here extend the results of Section 2.3.3 to asymmetric models.
Consider the elastic demand problem of finding (f*,d*) € F such that

[TAP-E-VIP-F}]
t(f) (f—f)—gt(d) (d=d) >0, V(f,d)eF], (3.29)
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where F; % {(f,d) € RAFCT| (£, d) satisfies (2.27b)—(2.27d) }.

We introduce multipliers g € R4 and 7 € Rl for the link flow definitional Con-
straints (2.27d) and the demand feasibility Constraints (2.27b), respectively, and define
the dual variational inequality ([778, 688, 784, 62, 755, 736]) formulation of the traffic
equilibrium problem, where (p*, w*) € 11, is sought such that

[DTAP-E-VIP-Fj]
f(p) (p—p)—g(m) (x—7") >0, V(u,m)ell, (3.30)

where II, = {(p,m) € RIAIHC] | Yae Opgralta = Tpg, V1 € Ryq, V(p, ) €C }.
In contrast to the primal problem [TAP-E-VIP-F]], equilibrium travel costs and de-
mands are here sought directly. The dual formulation [DTAP-E-VIP-F7] is well defined

if t and —g™! are strictly monotone and coercive; these conditions ensures that
tf)=p = f=1f(p)=t"(n), (3.31a)
g'(d)=nm < d=d(xn)=gn) (3.31Db)

for all values of (g, ). (See, e.g., [1006] for results on the existence and boundedness of
inverses of monotone operators.)

Fukushima and Ttoh [393] establish some relationships between the solutions to [DTAP-
E-VIP-F]] and [TAP-E-VIP-FJ] under strong monotonicity assumptions on t and —g™1;
in particular, they prove a generalization of the first part of Theorem 2.7, i.e., that the
equilibrium link flows and demands are obtained through (3.31) from the solution (p*, @)
to [DTAP-E-VIP-FJ].

The explicit statement of [DTAP-E-VIP-F]] is intractable due to the large number
of constraints defining II,. One may, however, without any loss of generality, for any
solution g let the multipliers w be defined by

Tpg = Tpe(p) = min {Z 5pqm,ua}

acA

(cf. Section 2.3.3), i.e., as the shortest route costs given the fixed link costs g; this
choice of & results in [DTAP-E-VIP-FJ] being reduced to a problem only in the travel
cost variables. (This problem may be viewed as the fixed point problem of finding a
travel cost p* such that f(p*) is among the possible link flow allocations of the demand
d(m(p*)). This problem is a generalization of the dual problem [DTAP-E], where the
corresponding formulation is that of finding a zero subgradient of the dual function 6
[cf. (2.37) and (2.39)]. Compare with the fixed point model [TAP-E-FPP], which is a

primal model based on the demand variables.)

3.3.4 Stability and sensitivity of equilibrium solutions
Nonparametric sensitivity analysis

First motivated by Braess’ paradox (see Section 2.3.4), the stability and sensitivity of
traffic equilibria have been studied with regards to changes in the network topology,
demands and costs.

Most of the results presented may be derived from the following general results.

Theorem 3.20 [201, 202] (Sensitivity and stability of solutions to [VIP])
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(a) (Sensitivity) Let x* be a solution to [VIP]. Let F be a perturbed function, and X* a
solution to the corresponding variational inequality. Then

[Fx) - F(x)] & -x7) <0 (3.32)

(b) (Sensitivity) Let F' be monotone on X. Then

[Fz) - ()] (%" —x7) < 0. (3.33)
(c) (Stability) Let F' be strongly monotone on X. Then

I = x| < - FE) - FEOIL (331

In Braess’ [112] example, the addition of a route resulted in the increase in travel costs
for every user of the O-D pair joined by the route.

When applied to the model [TAP-VIP-H] or [TAP-VIP-F"], Theorems 3.20.a and
3.20.b state that, although the travel cost may increase for some travellers, improving the
travel cost functions results in decreases in the incurred travel costs on average. Under
strong assumptions on the travel costs, Braess’ paradox may be guaranteed not to occur.

Theorem 3.21 [201] (Braess’ paradox does not occur) Assume that t : §R|_|“_4| — %lﬁ_ is

strongly monotone and in C' on ?R'_r_“'. Let £* solve [TAP-VIP-F"]. Let link a € A be

improved while the rest remain unchanged, i.e.,

t(f) <tu(f), YEECF, fy=f,, Yb#a, (3.35)
and that
0ty (f)
9 fa
Let f solve the corresponding problem [TAP-VIP-F"]. Then,

ozt () S ().

Note that the Requirement (3.35) is fulfilled in the separable case, i.e., in the model
[TAP]; the result thus extends that of Hall [451].

Theorem 3.20.c states that a small change in the function F' results in a small change
in the incurred solution. Applied to the model [TAP-VIP-F"], it yields a continuity result
for the equilibrium link flows as functions of the travel cost functions.

Theorem 3.20 may also be applied to the elastic demand models, e.g., to [TAP-E-
VIP-Fj], in which case simultaneous changes in the travel demand and cost functions are
made. Dafermos and Nagurney [203] state Theorem 3.20 for [TAP-E-VIP], and extend

Theorem 3.21 to show that an improvement in the demand function for an O-D pair

—0, VYfcF", Vb+a.

yields a decrease in the equilibrium travel cost and an increase in the demand; these
results extend those in [451, 309]. Similar results are obtained for the fixed demand
model [TAP-VIP-F"] under perturbations of the demand vector, and for spatial economic
equilibrium problems ([201, 200, 202]).

Steinberg and Zangwill [874] and Dafermos and Nagurney [200] derive formulas for
the cost change that is induced by a change in the demand, or the addition of a route,
in the model [TAP-VIP-F"]. (Sheer et al. [830] show how to calculate them using graph
theory techniques.) Dafermos and Nagurney also establish conditions under which Braess’
paradox will not occur when a route is added to the network (see also [376, 232, 233]).
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Remark 3.7 The stability and sensitivity results for changes in the network topology,
and cost and demand functions, have not been described within a general framework,
although they are very similar. The similarity should not be surprising, though, for two
main reasons. Firstly, the addition of a route (or link) to an existing network may be
thought of as an improvement to an existing route (or link) by reducing its cost from
a level at which it is not used by any traveller; consequently, network improvements
may be studied as special cases of travel cost improvements. Secondly, perturbations in
demands and travel costs are essentially equivalent. Indeed, consider the perturbation
of the (fixed) demand di to ady, where o > 0. By redefining the route and link flows
as (1/a)hy, and (1/«)for, respectively, it is straightforward to show that the demand
perturbation is equivalent to perturbing the travel cost function instead to

t)=t|af+> £,
itk
i.e., a scaling by « of the contribution of the flow in commodity k£ to the travel cost. A
cost improvement is hence equivalent to a demand decrease.

Parametric sensitivity analysis

In parametric sensitivity analyses of traffic equilibrium models, a perturbed problem of
the below form is studied:

[TAP-VIP-F]

t(f5,e) (f—f)>0, VfeF, (3.36)
where

Fr={fec®M | f=Ah, Th=d(e), h>0},

and where € is a vector of perturbation parameters.

Results studied are the stability of the solution set of the perturbed problem with
respect to the perturbation parameters, in terms of (Lipschitz) continuity and directional
differentiability, and is highly related to the stability results of solutions to the first-order
optimality conditions of nonlinear programs (i.e., the Karush-Kuhn-Tucker conditions;
see, e.g., [43, Chap. 4]) under appropriate regularity assumptions. The interest of such
results to the field of traffic equilibrium is, for example, the possibility of calculating the
sensitivity of the solution to the input data, and the development of solution methods
for complex tratfic models, in which traffic equilibrium problems arise as subproblems.
Examples of the latter are equilibrium network design and O-D matrix estimation models
(both of which are continuous bilevel programs, where the traffic equilibrium problem is at
the lower level). For theoretical results of parametric sensitivity analysis and applications
to traffic equilibrium models, see [T77, 328, 899, 576, 198, 900, 769, 384, 273, 382, 702,
770, 881].
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Chapter 4

Algorithms for the basic model and
its extensions

In this chapter we will review and develop convergent algorithms for separable traffic
equilibrium models. The algorithms are given a unified presentation based on algorithm
concepts such as decomposition, column generation, and partial linearization. This form
of presentation serves two purposes: firstly, it facilitates comparisons among methods
proposed; secondly, it becomes possible to introduce new algorithms through suitable
combinations of the above concepts.

For the reader’s convenience, we again state the program [TAP].

[TAP]
fa
min T'(f) o Z/ tq(s)ds, (4.1a)
acA’0

subject to

Z hqu = dpr7 v(paq) S C7 (41b)
TERpq

hqu - 07 \V/T' € qua v(paQ) € Ca (41C)

fo,  Vae A (4.1d)

Z Z 6quahpq7“

(p,q)ECTERpq
Throughout this chapter, the network is assumed to satisfy the following.
Assumption 4.A (Properties of the traffic network)
(1) The network is strongly connected.
(2) The demand d,, is positive for each (p,q) € C (fired demand case).

(3) The demand function ¢,y @ Ry — Ry is positive, continuous, upper bounded and
strictly decreasing for each (p,q) € C (elastic demand case).

(4) The travel time function t, : Ry — R4 is positive, continuous and strictly increasing

for each a € A.

The first statement of a convergent algorithm for the solution of the fixed demand traffic
assignment model [TAP] is that of Smock [858, 859] (see Section 1.5.4). This algorithm,
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which is equivalent to what is known today as the method of successive averages (MSA),
may be viewed as a simplified version of the still most popular method for the solution of
[TAP]—the Frank—Wolfe [377] method. (The first application of this method to [TAP] is
that of Bruynooghe et al. [132].)

Previous to the development of algorithms of the above type, however, algorithms
based on duality were established for nonlinear single-commodity network flow problems
([160, 45]). These algorithms were available to the community since, a few years earlier,
Beckmann et al. [47] and others had formulated the mathematical program [TAP] to be
solved in order to yield equilibrium flows, and procedures transforming this multicom-
modity flow problem into a sequence of single-commodity flow problems had been known
for a long time. [One such procedure is the cyclic decomposition scheme, see Section 4.2.2.
This was not utilized for the solution of [TAP] until in the late 1960s ([210, 423, 424, 209]).]

There may be many explanations for the postponement of the application of efficient
methods for traffic assignment problems; the most obvious one is that transportation
analysts and practitioners, and the operations researchers at universities in Europe and
the United States, were not aware of each others” work.

An efficient algorithm for [TAP], and its extensions, must take the problem structure
into account, because of the size of real-world problems. The most important structures
inherent in [TAP] are:

(1) (Network constraints) The main constraints of traffic assignment problems are net-
work defining ones; this is true also in side constrained models.

(2) (Independent constraints) The constraints of [TAP] define a Cartesian product of
feasible sets for the different O-D pairs; in side constrained models, this structure
is lost, but may be regained by using relaxation strategies for handling the side
constraints.

(3) (Nonlinear and convex objective) The objective of [TAP] is a nonlinear, differentiable
and convex function. It is also separable with respect to the links of the network.

4.1 The Frank—Wolfe algorithm and its extensions

The method of Frank and Wolfe [377] was originally proposed for the solution of convex
quadratic programs, but is in fact applicable to any optimization problem with a pseu-
doconvex and continuously differentiable objective and a nonempty, compact and convex
feasible set (e.g., [653, Chap. 14] and [768, Sec. I11.3]). When applied to a problem defined
on a bounded polyhedral feasible set, the algorithm alternates between the solution of a
linear program defined by a tangential approximation of the objective, and a line search,
minimizing the original objective over the line segment defined by the current iterate and
the solution to the linear program. For convex problems, the linear subproblem defines a
lower bound on the optimal value, which may be be used in termination criteria.
As applied to [TAP], the algorithm may be described as follows.

4.1.1 The Frank—Wolfe algorithm
Step 0 (Initialization) Let f° be a feasible solution to [TAP], LBD =0, & > 0, and k = 0.

Step 1 (Search direction generation) v Let

def

T(f) = T(fF) 4+ VT (5T (f — £7). (4.2)



Step 2

Step 3

Step 4

Step 5

Algorithms for the basic model and ils extensions 97

Solve the linear programming subproblem

min T(f), (4.3a)
subject to
Z hpgr = dyg, V(p,q) €C, (4.3b)
TERpq
hpr >0, Vr € Ry, Y(pq) €C, (4.3¢)
Z Z bpgrahpgr = fay Va € A. (4.3d)

(p,g)EC T€ERpq

Let y* be its solution, and p* = y* — f* the resulting search direction.

(Convergence check) Let LBD := max {LBD,T(y")}. If

T(f¥) — LBD

TBD <e, (4.4)

then terminate, with f* as the approximate solution. Otherwise, continue.

(Line search) Find a step length, [, which solves the one-dimensional problem
min {T(f* +Ip") |0 < <1} (4.5)
(Update) Let f*+1 = f* 4 [, p*.

(Convergence check) If

T(£+1) — LBD
LBD

<e, (4.6)

then terminate, with f¥*! as the approximate solution. Otherwise, let k := k +1,
and go to Step 1.

The initial solution f® may be obtained as an all-or-nothing assignment given free-flow

travel times (see Section 1.5.4).
Due to the separability of the constraints of [TAP] and the absence of flow capacity

constraints, the linear Subproblem (4.3) separates into |C| independent problems, in which
the shortest route is sought between each origin and destination, based on fixed travel
costs 0/0f,T(f*) = t,(f¥). The reader should note that although [TAP] is based on the
(intractable) route flow based formulation, it is not necessary to enumerate the routes
within the Frank—Wolfe algorithm.
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4.1.2 Termination criteria

The program [TAP] is a special case of the program
[P]

min T(x), (4.7)
where T is convex and continuously differentiable on the polyhedral set X [which in [TAP]
is defined by the network Constraints (4.1b)-(4.1d)]. From the facts that y* solves the
linearly approximated problem and that 7' is convex, respectively, it follows that

I(y*) = T(x")+ VI (y"—x") (4.8a)
< T(xM) + vT(x)T(x = xF) (4.8b)
< 77 (4.8¢)

where x* is an arbitrary solution of [P], i.e., that T(y*) is a lower bound on the optimal
value of [P].

Moreover, if T'(y*) = T'(x*) for some k, then x* solves [P]; this explains the use of the
termination Criteria (4.4) and (4.6).

There is, however, a hesitance among transportation researchers to utilize the (artifi-
cial) objective function 7" in termination criteria due to its lack of interpretation. One
alternative is to utilize Wardrop’s equilibrium Conditions (2.1) directly, by measuring the
difference in the travel costs of the routes used within an O-D pair. The error could then

be defined as

s { o) = 0| 26,008, > 0}, (19)
where h* is the route flow solution in iteration k. The use of such a termination criterion
of course requires the knowledge of which routes are being used in the network, and the
Frank—Wolfe algorithm normally does not provide this information. There are, however,
situations in which route flow information is desirable when analyzing the equilibrium
solution (e.g., [934, 941, 414]); see Section 4.3.5 for a thorough discussion on route-flow
based algorithms.

It has been observed (e.g., [586]) that the lower bound provided by the shortest route
solutions in the Frank—Wolfe algorithm gives poor estimates of the quality of the cur-
rent flow solution. This is not surprising, considering the global use of the tangential
approximation; in particular, when the network is heavily congested, there is a consid-
erable difference between the equilibrium flow, in which several routes are used, and an
all-or-nothing solution, in which only one route is used in every O-D pair.

Hearn [472] suggests improving this bound, by solving the linear program

z > T(F+VT(HT(w—xF), (4.10)
v > T(y")+VT(y") ' (w —x5),

obtaining the minimaz bound, z. The problem (4.10) corresponds to making a tangential
approximation of T also at the optimal solution of the linear subproblem. The unstruc-
tured linear Program (4.10) may, however, be too expensive to solve repeatedly.

Various convergence tests, and the effects of the choice of stopping criteria on the error
of predicted equilibrium flows are discussed by Rose et al. [788].
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4.1.3 The use of the Frank—Wolfe approach for the solution of
[TAP]

The first known application of the Frank—Wolfe algorithm to [TAP] is that of Bruynooghe
et al. [132]; another early reference is Murchland [697]. It has since then been rediscov-
ered by several researchers, for instance by LeBlanc [599, 606, 607], Nguyen [713], Steen-
brink [871] and Golden [430] in transportation analysis contexts, and by Yaged [997],
Gerla [420], Fratta et al. [379], and Klessig [557] in the context of computer communica-
tion networks (see Section 2.6.5).

Depending on the interpretations of the algorithm, it has also become known under
different names:

(1) (Linearization) A possible interpretation of the Frank—Wolfe algorithm is that of a
simple outer approximation scheme, in which only one supporting hyperplane is used
to approximate the epigraph of T'.

(2) (Conditional gradient) Another possible interpretation of the Frank—Wolfe algorithm
is that of a constrained steepest descent algorithm, the reason being that the sub-
problem corresponds to finding the direction of most negative directional derivative
of T among all feasible directions, i.e.,

min { VI(x*)Tp | p € Tx(x),x* +p e X }, (4.11)

where T'x(x*) is the tangent cone of X at x* (the cone of feasible directions).!

(3) (Flow deviation) This name may stem from the interpretation of the Frank—Wolfe
method in behavioural terms as an iterative process, in which, in each iteration, some
travellers adjust their choice of routes to less congested ones, according to the current
traffic conditions.?

(4) (Convex combination) This name stems from the adjustment process in Step 3, in
which the next iterate is chosen as the optimal convex combination of the current
iterate and the subproblem solution.

The Frank-Wolfe algorithm was made popular by the work of LeBlanc et al. [607],
Nguyen [717], and the validation studies of Florian and Nguyen [360] and Van Vliet
and Dow [941]. It is now the most common approach to solving equilibrium problems
in transportation planning studies; some program packages available are ATIM ([697]),
UROAD-UTPS ([799]), TRAFFIC ([720]), and EMME/2 ([35]). It has also been extended
to elastic demands (e.g., [423, 715, 717]); see Section 4.4.

The relative ease of implementing it, along with its popularity among practitioners
despite its drawbacks (see below), have resulted in the development of many research-
based packages (e.g., [633]), and its practical performance is therefore well known also to
scientists.

!Note that the condition of p being a feasible direction is redundant because of the presence of the
feasibility constraints (x* +p € X). Since there is no normalization made on the direction p, the solution
to (4.11) is an extreme point of the set X. Replacing the condition x* + p € X with a normalization,
such as —1 < p; < 1for all j, or pTp < 1, in the feasible set of (4.11), yields feasible direction methods of
the Zoutendijk type, and successive linear programming methods (e.g., [43, Chap. 10]). Another way in
which one may avoid generating extreme points is to add a nonlinear normalization term to the objective
of (4.11); such methods are studied in Section 4.2.1.

2The reader is warned to draw too many conclusions from this interpretation; the model is inherently
static, and the travellers make their route choices before leaving their origins.
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Among its merits one may count its utilization of the network constraints, and the very
limited core storage needed;® these are important properties of any method if it is to be
effective in solving large-scale structured problems. Moreover, since rough approximations
of the optimal solution are often acceptable in practice, and since the algorithm has been
found to be efficient in the first few iterations, the algorithm is considered sufficiently
good for practical use.

Remark 4.1 The development of more efficient algorithms for the traffic assignment
problem has mostly been of academic concern, and few developments during the last two
decades have been applied in practice (e.g., Florian [354]). The main reason for traffic
equilibrium problems drawing the attention of academic researchers is not so much because
of the necessity to solve real-life traffic planning problems to facilitate the improvement
of the traffic system; rather, the reasons are their rich modelling possibilities, their com-
plexity and special structure, and their size, which make them a challenge for academic
research both in mathematical modelling and in the design of efficient algorithms.

One reason for the popularity of the Frank—Wolfe method may be its similarity to many
of the heuristics used in transportation planning during the 50s and 60s. According to the
description given in Section 1.5.4, many heuristics can be viewed as simplified versions of
the Frank—Wolfe method, where the line search Step 3 is replaced by a predetermined
step length; see Table 1.2 and Figure 1.2.

4.1.4 Shortest route algorithms

In the Frank—Wolfe algorithm the vast majority of the calculations—well over 90% in
large-scale applications—are spent on solving the shortest route problems in Step 1. The
importance of choosing and implementing the most efficient shortest route algorithm is
therefore obvious, and a large number of articles are devoted to this subject.

The Problem (4.3) is the problem of finding the shortest route between each pair
of origin and destination in a directed graph with positive link costs (¢,(f¥)). Most
algorithms used in practice for the solution of (4.3) are shortest route algorithms that
yield, for a given origin node, a tree of shortest routes to all destination nodes (tree-
building methods); in (4.3), such an algorithm would be applied |O] times. Due to the
nonnegativity of the link costs, it is possible to apply label-setting shortest route methods,
which have the best worst-case time complexity.

The basic label-setting algorithm is known as Dijkstra’s [258] algorithm, although
others discovered it independently; the first computerized assignment was made using
Moore’s [685] version of this method (see Section 1.5.4). The main differences among
label-setting algorithms lie in the way in which a temporarily labelled node is selected,
and which data structure is used to implement it ([408, 409, 14]); both the theoretical
and practical time complexity vary with the implementation, which hence must be chosen
carefully together with the coding of the network. Shortest route algorithms in this class
for use in transportation planning are presented in [968, 253, 741, 938]; comparisons
between shortest route algorithms in applications to transportation planning are made in
(269, 871, 937, 252, 407, 684].

When searching for the shortest route trees for all origins in the network, the naive
approach (and, in fact, the one used in practice) is to apply Dijkstra’s algorithm (from
scratch) |O| times. One alternative is to use a matrix-based algorithm for the solution

30nly total link flows need to be stored and the network constraints need not be considered explicitly.
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of the all-pairs shortest route problem ([366, 959]); because of the high storage require-
ments, and the fact that usually not all pairs of nodes define O-D pairs, such algorithms
are considered impractical. The search for a shortest route tree for an origin may, how-
ever, utilize the shortest route tree for another origin as a (primal infeasible but dual
feasible) starting solution ([405, 406, 407]). Another possible improvement is to build two
trees simultaneously, from both the origin and a destination node, instead of only one as
described above ([224, 721, 487]).

As the main iterations of the Frank-Wolfe algorithm proceed, the costs (,(f¥)) defining
(4.3) will vary little from one iteration to the next; a very natural approach is then to
utilize the solution of (4.3) from iteration k£ as a (primal feasible, and near-optimal)
starting solution in iteration & 4+ 1. This constitutes a potential improvement of any
algorithm for [TAP] and its extensions, that utilizes shortest route calculations. This
reoptimization approach is addressed in [990, 621, 786, 449, 696, 259, 405, 406, 408] (see
also [871, Sec. 7.7] and [675, Sec. 2.1.5]), and then studied theoretically mostly for simple
cost changes. Its practical consequences have, however, been studied very little (e.g.,
[260, 404]); no modern textbook on network flows includes a discussion on this important
topic. One reason for this may be the need to store the shortest route trees, which
previously may have been considered impractical.

The framework of auction algorithms for network problems (e.g., [75]) may be applied
to shortest route problems ([73, 74]). It has, however, yet to be applied in a transportation
planning context, although its performance is very encouraging.

4.1.5 Convergence characteristics of the Frank—Wolfe method

The convergence properties of the Frank—Wolfe algorithm have been studied extensively
for applications to general nonlinear programs ([377, 242, 612, 245, 140, 1004, 246, 987,
500, 768, 279, 280]). Applied to [TAP], under Assumption 4.A, it may be shown that the
sequence {f*} converges to the unique link flow solution f*. In terms of commodity link
flows, f,,, the optimal solution is not unique, and the Frank-Wolfe algorithm converges
to the set of optimal commodity flows, i.e.,

{ ing Hf;q—fmu}ﬁo, V(p.q) € C.

fp efy,

Furthermore, {T(f¥) — T'(f¥)} — 0. If, in addition, the cost functions are differentiable,
then VT is Lipschitz continuous on X (see Definition A.4), in which case the exact line
search Step 3 may be replaced by inexact line searches, such as Armijo or Goldstein step
length rules (see Rules A and G in Appendix A, and [280, 747]).

The unsatisfactory performance of the Frank—Wolfe algorithm, in particular at the
vicinity of an optimal solution, was observed quite early. Its convergence rate is dis-
cussed in [140, 1004, 246, 987] for applications to general convex programs [P] defined on
polyhedral sets. The conclusion is that the theoretical convergence rate is arithmetic (or
sublinear), i.e., that T(x*) — T* = O(1/k).* ® Examples of the poor performance are
given in [1003, 987].

The reason for its poor performance lies in the search direction finding phase (Step 1);
the linear approximation is valid only locally, but is used globally when solving (4.11),

1A colleague of mine, who wishes to remain anonymous, says that this convergence result amounts to
the Frank—Wolfe method being convergent, but just almost.

SThere are actually stronger convergence results for the Frank—-Wolfe algorithm (e.g., [246, 987, 279,
280]). The conditions for these results are, however, very unlikely to hold for traffic equilibrium problems.



102 The Traffic Assignment Problem

since its variables are not normalized. The extreme point solution to this problem, and
thereby the search direction generated, will therefore depend more on the structure of the
feasible set than on the objective. The implication is that when the optimal solution is
approached, the search directions will tend to become orthogonal to the steepest descent
direction, i.e., the directional derivatives will tend to zero ([987]). Lupi [628] makes
a very interesting observation in the context of traffic assignment; while the steepest
descent algorithm in unconstrained optimization yields angles of 90° between successive
search directions, he observes that the corresponding angle in the Frank—Wolfe algorithm
is around 120°. This phenomenon agrees well with observations that both methods suffer
from rapidly decreasing step lengths, and explains the term zig-zagging used to describe
the behaviour of the Frank—Wolfe algorithm.

An interesting empirical observation is made by Janson and Zozaya-Gorostiza [524],
who claim that, although an equilibrium solution can not include any cycle flows (see
Section 2.2.2), cycles may be generated in the Frank—Wolfe algorithm, especially in the
first iterations. The cyclic flows are very unlikely to be removed, and thus degrade the
efficiency of the algorithm.®

This empirical result is very natural, considering that all the routes that are generated
in (4.3) will retain some amount of flow in any finitely generated solution, since the step
length in the line search is positive and since it is unlikely that unit steps will ever be taken.
The consequence of this is of course, that also non-equilibrium routes receive positive flows
in any finitely generated solution. (Individual routes for different O-D pairs are, in the
Frank—Wolfe algorithm, aggregated into all-or-nothing solutions. Since equilibrium and
non-equilibrium routes (in different O-D pairs) that are generated simultaneously are
given equal weights, to eliminate non-equilibrium routes is very difficult.)

4.1.6 Improvements and extensions

The poor convergence of the Frank—Wolfe method observed led to the development of
modifications and extensions of the original scheme. The modifications are of three fun-
damentally different types; either the line search is modified in order to take longer steps,
the search direction is improved by combining it with previous ones, or the linear subprob-
lem is modified in order to avoid generating extreme point solutions. Below, we describe
some of these improvements.

The simplest modification is the use of predetermined step lengths in place of the line
search. Although, strictly speaking, it is not appropriate to say that these methods were
proposed as improvements to the Frank—Wolfe algorithm—they were actually applied even
before it—some predetermined step length formulas have been observed to sometimes yield
better convergence than line searches ([936]), the most important reason being that the
predetermined step lengths may not tend to zero as rapidly as those determined by the
line searches. Powell and Sheffi [764] prove the convergence of a Frank—Wolfe algorithm in
which the line search Step 3 is replaced by a sequence {l;.} of step lengths in the interval
[0,1]. Under Assumption 4.A and the additional assumption that each ¢, is differentiable,
convergence of the sequence {f¥} towards the optimal link flows is ensured for sequences

6This property is, in fact, inherent in most algorithms for traffic assignment based on total link flows.
This is due to the fact that convex combinations of cycle-free solutions may not be cycle-free, unless very
restrictive assumptions hold ([402]).
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of step lengths satisfying

400 +oo
Yolp=+400, DI} < +o. (4.12)
k=1

k=1

The step length formula [, = 1/k, k = 0,1,..., is the largest possible step length choice
which satisfies the Condition (4.12); the sequence {f*} is defined by the average of the pre-
viously generated all-or-nothing solutions and the resulting algorithm is therefore known
as the method of successive averages (MSA).”

Weintraub et al. [965] propose taking a larger step than that indicated by the line
search. Convergence is ensured if each step leads to a feasible solution with a lower
objective value; the step given by the line search is used whenever necessary to enforce
these conditions. Numerical tests are performed on randomly generated networks, with
encouraging results.

Van Vliet and Dow [941] and Arezki and Van Vliet [24, 22] propose replacing (4.3) with
a quantal loading procedure (see Section 1.5.4), in which the travel cost is updated between
applications of the shortest route algorithm for each successive origin (or, more generally,
subset of the origins); the all-or-nothing solution generated thus takes into account that
some links in the network may become heavily loaded. Although convergence is not
ensured (since the all-or-nothing solution is not guaranteed to yield a descent direction),
convergence is observed in practice, and improves that of the original approach.

One line of development of improved Frank—Wolfe type algorithms is based on the stor-
ing and utilizing of (a few) previously generated all-or-nothing solutions in the definition
of the search direction, with the objective of reducing the zig-zagging phenomenon.

The parallel tangents (PARTAN) approach originates in conjugate direction methods
for unconstrained quadratic programs ([825, 623]). It extends the Frank—Wolfe algorithm
by combining the solution obtained from each line search step with the previous solution,
f5=1 thus introducing an additional line search. The PARTAN algorithm was first applied
to nonlinear networks by Collins et al. [178] and to [TAP] by LeBlanc et al. [605] (see also
[365, 357]). The maximal step in the second line search was first calculated explicitly using
previous steps taken ([439, 365, 605]); Arezki [22, 25] subsequently derived an analytical
formula which alleviated the need to store previous step lengths. The approach has been
observed to reduce the zig-zagging inherent in the Frank—Wolfe algorithm; Janson and
Zozaya-Gorostiza [524] however show that cycle flows may be generated in this algorithm
also (see above), and propose a modification of the basic scheme and the PARTAN version
in which cycles of length two are eliminated.

Fukushima [387] proposes storing a number of previously generated all-or-nothing so-
lutions, and performing the line search Step 3 towards a convex combination of these.
Fukushima reports behaviour similar to that of PARTAN, using relatively few all-or-
nothing solutions and a fairly crude choice of convex combination. This algorithm is
highly related to the conceptual algorithm of Meyer [669], in which the number of line
searches within one main iteration (to be applied on combinations of the extreme cur-
rently stored points) is user-specified. With the choice of only one line search, a method
like Fukushima’s is obtained, while, if the number is very large, the problem [TAP] is
(arbitrarily accurately) solved over the convex hull of the stored all-or-nothing solutions,
thus defining a simplicial decomposition algorithm for [TAP] (see Section 4.3.4).

“The method of Powell and Sheffi is, however, not the first application of predetermined step lengths
in a Frank—Wolfe type scheme (see, e.g., [278, 279]); moreover, the step length Rule (4.12) is not limited
to use in the Frank—Wolfe algorithm only.
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An algorithm similar to the PARTAN approach and that of Fukushima is given by
Lupi [628]. In the algorithm, the Frank-Wolfe direction, y* — f*, is combined with the
previous direction, p*~!, such that the direction obtained, p*, is feasible and close to
orthogonal to the direction of p*~!. Arezki [22] shows that both Lupi’s and Fukushima’s
algorithms, when keeping only the previous all-or-nothing solution, can be optimized in
terms of directional derivatives, and that they then are very similar (in fact, the first three
iterates are always identical).

We next consider a subproblem of the form (4.11), with a normalization of its variables.
Given a feasible solution f*, the cone of feasible directions for commodity (p,¢) in the
link-node formulation of [TAP] (see Section 2.2.2) is

apq

Try, (F) = { oy € R | Apyy =0, puy > 0if f5,, =0, Vae A}, (4.13)

where A is the node-link incidence matrix, and Zoutendijk’s [1016] method corresponds
to solving |C| independent linear flow circulation subproblems

min { () Py | oo € T, (%), =1 < pupy < 1, Ya € A} (4.14)

The bounds |pap| < 1 present in the constraints of (4.14) define a trust region ([345])
for the linear approximation. The algorithm has mainly been used for single-commodity
flows ([45, 664, 508, 555, 962, 8, 635, 548]), but is proposed for use in [TAP] and [TAP-E]
in [324, 964].

4.2 Algorithm concepts

In this section we describe three important concepts in the formulation of algorithms
for the solution of [TAP]. The first is a general iterative descent algorithm based on
the solution of auxiliary convex direction-finding problems, the second an approach for
the decomposition of a problem defined over a Cartesian product of feasible sets into
a sequence of smaller problems, and the third a scheme for algorithmically generating
profitable variables in a large-scale problem. They are as follows:

(1) (Partial linearization) The class of partial linearization methods is a framework of
descent algorithms for continuous optimization problems. A search direction is ob-
tained from the solution of a convex auxiliary problem, defined by an approximation
of the original objective through a first-order approximation of an additive part of an
equivalent reformulation; alternately, a line search is made in the direction obtained
with respect to the original objective. The algorithm may be applied to a variety
of representations of a convex problem, such as Lagrangean dual formulations and
projections of a linearly constrained problem onto the space of non-basic variables.
The Frank—Wolfe algorithm is an instance of this class of methods, as is the Newton
method, gradient projection and reduced gradient methods.

(2) (Decomposition algorithms) Disregarding the link flow defining Constraints (4.1d),
the feasible set of the problem [TAP] is a Cartesian product with respect to the dif-
ferent commodities. The objective, however, is a function of the total link flows, and
is therefore not separable in the O-D pairs. In the Frank—Wolfe algorithm, separable
subproblems are obtained from linearizing the original objective. A separable sub-
problem is, however, obtained from any choice of a separable approximation in the
partial linearization method. The resulting subproblems may be solved sequentially
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or in parallel, the proper choice depending on the computer facilities available. De-
composition schemes may, in this manner, enable the solution of large-scale problems
through the solution of a sequence of problems in much smaller dimensions. The
classical Jacobi and Gauss—Seidel approaches for the solution of systems of nonlinear
equations are instances of this general decomposition scheme.

(3) (Column generation) This is an algorithm principle for the solution of a mathematical
programming problem where the variables (or columns) of the problem as they are
needed. The algorithm principle consists of two main steps: in the first, the original
problem is solved over the set of known variables (the so called restricted master prob-
lem), and in the second, the solution to this problem is the basis for the formulation
of a subproblem, which is solved to generate variables that may improve the restricted
master problem solution. A particular column generation algorithm is the result of
the choice (a) of variable definition, (b) the formulation of the subproblem, and (c)
the methodologies by which the restricted master and subproblems are solved. The
choice of variable definition determines the number of constraints in the restricted
master problems and the number of variables in the complete master problem (i.e.,
the level of aggregation), while the choice (b) determines the difficulty of the sub-
problem and the characteristics of the variables that it generates (e.g., if they are
extreme points of a polyhedron). The structure of [TAP] naturally leads to certain
choices of variables and types of subproblems, and the full generality of column gen-
eration has therefore not been explored. The most common approaches are to define
route flows or all-or-nothing solutions as variables and generate profitable variables
by solving Frank—Wolfe subproblems. The first approach is what is usually termed
column generation, and the second is usually referred to as simplicial decomposition;
the difference between the two, however, lies only in the level of aggregation of the
variable definitions.

Nearly all the methods that have been proposed for the solution of [TAP] may be
described by making proper combinations of the above three concepts. The purpose
of describing algorithms in this rather unorthodox way is to make comparisons among
algorithms simple, to identify the merits and drawbacks of existing methods, and to be
able to bring out and justify proposals of new ones.

Below we describe these concepts in more detail.

4.2.1 Partial linearization algorithms
The general algorithm

The class of partial linearization methods to be presented in this section was introduced
in [745] to characterize and interrelate a number of iterative algorithms for continuous
optimization problems. The discussions here are for applications to a convex program of
the form

[P]

min T(x), (4.15)

where T': X — R is convex and continuously differentiable on the set X, which is assumed
nonempty, closed and convex. We also let {2 denote the set of optimal solutions to [P].
One iteration of the algorithm consists of the following two main steps:
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(1) Given a feasible point, a feasible search direction is defined through the (possibly
inexact) solution of an approximation of the original problem, in which the original
objective is approximated by a convex function.

(2) The direction defined by the solution to the above described subproblem is a feasible
direction of descent with respect to the original objective. A (possibly inexact) line
search is made with respect to this function in the direction obtained, and the re-
sulting step length defines a new point with a reduced value of the original objective
function.

Formally, in iteration & we introduce a function ¢* : X — R, convex and continuously
differentiable on X. Expressing the original objective in the form

T(x) = " (%) +[T(x) = ¢*(x)], (4.16)

the second term expresses the error obtained in the objective of [P] when replacing T'
with ©*. The idea of a partial linearization method is to take this error into account by a
linearization of the error term, i.e., a first-order Taylor expansion of T'— ¢* at the iterate
x*. The subproblem objective obtained equals

Tgu(x) = (%) + T(x*) = " (x") + [VT(x*) = ¢ (x")]" (x = x), (4.17)

and the subproblem becomes

[P2:]
min Th(x). (4.18)

xeX

The subproblem objective Tjk is convex and continuously differentiable on X the
subproblem [P’;k] is hence a convex program.

The complete algorithm is described below. A sequence {¢*} of convex functions is
assumed to be given. (Note that each function may be chosen adaptively, given x*.)

Step 0 ([Initial guess) Choose an initial point x° € X, and let k£ = 0.

Step 1 (Search direction generation) Find a y* € X that solves [P’;k] The resulting

search direction is p* = y* — x*.

Step 2 (Convergence check) If x* solves [P];k] — Stop (x* solves [P]). Otherwise, continue.

Step 3 (Line search) Find a step length, [, which solves the one-dimensional problem
min {T(x" + Ip*) | x" + IpF € X, 1 > 0}.
Step 4 (Update) Let x*+t = x* + [;p*, and k := k + 1.

Step 5 (Convergence check) If x* is acceptable as a solution — Stop. Otherwise, go to
Step 1.

In most algorithms that will be identified as special cases from the class of partial
linearization methods, the sequence {p*} is given by a function of the form ¢*(x) =
©(x,x%), i.e., a function  : X x X — R of the form ¢(x,y), convex and in C! on X with
respect to x and continuous with respect to y.

The algorithm here described is generalized to variational inequalities in [744, 746, 747,
588, T48]; see Sections 3.1.5 and 5.2.1 for a discussion.

Before illustrating the general algorithm by providing some well-known instances, we
give the most important convergence properties of the above algorithm.
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Convergence properties of partial linearization methods

Theorem 4.1 [745, 746, 747] (Properties of the search directions) For any x € X, let
Y (x) denote the (possibly empty) set of optimal solutions to [Pf;k], y € Y(x) andp = y—x.

(a) x €N <= xeY(x) <= T,(y) =T,(x).

(b) Let X € X be any point such that T,(X) < T,(x). Then VT(x)T(x — x) < 0.
Especially, forX =1y, if x ¢ Q, then VT (x)T(y —x) < 0.

(c) Let ¢ be strictly convex on X. If Y(x) is nonempty, then it is singleton.

(d) Let ¢ be strongly convex on X (with modulus m,). Then Y(x) is nonempty and
singleton, and

VI(x)'p < —m,|lp|*. (4.19)

(e) Let o : X x X — R be a continuous function on X x X of the form p(x,y), convex

and in C* on X with respect to x. Then the direction finding mapping x — D(x) e

Y (x) — x is closed on X.

Property (a) validates the termination criterion of Step 2, and provides a fixed point
characterization of the solution set of [P].® The descent properties (b) and (d) are es-
pecially important in exact implementations of partial linearization algorithms. While
(b) enables inexact solutions of [P];k], (d) enables inexact line search strategies, such as
Armijo-type rules and predetermined step lengths.

The property (e) implies that the class of partial linearization algorithms is globally
convergent when it is supplied with a line search rule with a closed algorithmic map (such
as the exact line search Rule M); this result follows from the well-known convergence

theorem of Zangwill [1004, Sec. 4.5].

Theorem 4.2 [745, 746, 747] (Basic convergence of partial linearization algorithms) Let
v X x X — R be a continuous function on X x X of the form p(x,y), conver and
in C1 on X with respect to x. Assume that the point x° € X is chosen so that the level
set L% (x°) is bounded, and further that [P,] is well defined, in the sense that Y(x) is
nonempty and bounded for every x € X. Then, under Rule M, {f(x*)} — f(X) for some
X € ), any accumulation point X*° of the sequence {x*} (at least one such point exists)
ltes in £, and

{ inf )||xk - xn} — 0. (4.20)

xeQnLE (x°

Assuming further that X is bounded and that VT is Lipschitz continuous, the exact
line search Rule M may be replaced by the Armijo Rule A (see Appendix A), with the
same conclusions. If, in addition, each function " is strongly convex on X (with modulus
m,x) and VT is Lipschitz continuous on X (with modulus Mgr), then it may also be
replaced by the predetermined step length Rule P, in which the step length [} is chosen
in the interval (0, 2mx /Mvr).

81t also indicates the advantage of choosing the current iterate as the starting point in the solution
of [P’:’k]; another desirable property of a partial linearization algorithm is the possibility to reoptimize

[Pl;}l'il] from the solution of [P’;k].
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The subproblem [PZ +], for a general choice of function ¢, is potentially as difficult
to solve as [P]. The idea behind the truncated partial linearization algorithm ([746]) is
to reduce the work performed on [P’;k] by limiting the number of iterations performed
with a descent algorithm for solving it. This strategy introduces a trade-off between
the computational effort spent on solving the subproblem and the quality of the search
direction obtained. The result of Theorem 4.1.b ensures that if any improvement is
made over Tjk(xk), then the point obtained will define a feasible descent direction with
respect to T'. Under the assumptions of Theorem 4.2, the truncated partial linearization
algorithm converges if at least one iteration is performed on each subproblem [prk] using
a descent algorithm with a closed algorithmic map ([746]); under an additional Lipschitz
continuity assumption on VT, it is possible to apply Armijo-type line searches ([747]).
The criteria used for terminating the solution of [P’;k] of course has a major influence
on the overall convergence rate of the algorithm. If the Frank—Wolfe algorithm is used
for the approximate solution of the subproblem, then its termination may be based on
the (local) relative objective error (see [677]);° the convergence of the overall algorithm
is ensured by requiring the relative error to tend to zero. If the termination criterion is
defined such that each subproblem is solved sufficiently accurately, then the theoretical
convergence rate of the exact algorithm may also be kept in the truncated version. (See,
e.g., [239, 240, 241] for such results in the special case of Newton’s method.)

Instances and interpretations

Choosing ¢* = 0 for all k yields the Frank-Wolfe algorithm. The class of partial lin-
earization methods thus generalizes the Frank—Wolfe algorithm, by allowing an additive
part of the objective to be linearized, thereby retaining more of the original objective
in the subproblems. A nice property of the Frank—Wolfe method is the availability of a
lower bound on the optimal value of [P] (see (4.8)) obtained from the Subproblem (4.11).
This property is inherited by a partial linearization algorithm only if the error function
T — ¢* is convex ([675, 583, 747]); if, however, the subproblem [szk] is solved using a
truncated Frank—Wolfe algorithm, then the first iteration in each subproblem yields the
same lower bound as the Frank-Wolfe method, since VT& (x*) = VT'(x*). (This is an
interesting special case of a truncated algorithm for the solution of [PZ’“]’ since it is easily
implemented by slightly modifying an existing Frank—Wolfe code; see below for further
discussions on truncated algorithms for [P];k])

If ©* is strictly convex, then the subproblem in iteration k& has a unique solution (if
one exists) [cf. Theorem 4.1.c|]. An optimal solution to [P] is then also obtained from the
sequence {y*} of subproblem solutions; this is not the case in the Frank-Wolfe algorithm.
Moreover, the choice of a strictly convex subproblem facilitates the use of dual methods
for [P];k]

An interesting interpretation of the subproblem [P];k] is given next. Let ©* be chosen
such that V*(x*) = 0. Then the subproblem [sz] is equivalent to

g{rg} {(VT(x")T(x — xF) 4+ ¢F (%)} (4.22)

9Given some ¢;, > 0, a point yfk € X is then found, satisfying
VT (yi) (v —vi) > —er, Yy eX, (4.21)

ie., yfk is an gg-optimal solution to [Pf;k] [247, Le. 1.8.2]. The validity of (4.21) is checked automatically
in the Frank—Wolfe algorithm, since the left hand side of (4.21) is minimized in the subproblem phase.
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In the Frank—Wolfe algorithm, the first-order approximation, which is valid only locally
around the iterate x*, is used globally in the Subproblem (4.11). When ¢* is chosen
nonlinear, as shown in (4.22), the subproblem in the partial linearization algorithm in-
troduces a regularization term in the objective function of the Frank—Wolfe subproblem,
restricting (indirectly through the penalization term) the distance between the current
iterate and the corresponding subproblem solution. A particularly illustrative example is
the choice ©* = 1/(2v)| - ||*, 7% > 0, in which case the objective of (4.22) becomes

1
VT (x") (x = x) 4 o—[x = xF|* (4.23)
2’}/}9

this subproblem (which is the subproblem of the gradient projection method of Gold-
stein, Levitin and Polyak [432, 612]) may be viewed as a relaxation of the subproblem of
Zoutendijk-type methods [see, e.g., (4.14)] in the sense that, instead of introducing ex-
plicit trust regions (or normalization bounds, such as ||x — x*||* < 1) on the subproblem
variables, trust regions are introduced implicitly through the regularization term (see also
[675, Sec. 4.5.2]).

By retaining the nonlinearity of the original objective function, partial linearization
methods may therefore avoid the zig-zagging phenomenon inherent in the Frank—Wolfe
algorithm caused by the generation of extreme point subproblem solutions.

Subproblems of the form (4.22) are inherent in the regularized Frank—Wolfe algorithm
of Migdalas [677] and the nonlinear proximal descent method of Tseng [912]; the class
of partial linearization algorithms has a strong relationship also to the auxiliary problem
principle of Cohen [174, 175] (see [747, 588, 749]).

The choice of ©*(x) = 1/(2v:)x'Bix, where 7; > 0 and By, is symmetric and positive
semidefinite, yields a subproblem objective

1

VT (x")T(x —x*) + Z—(X — x"TBi(x — x¥) (4.24)
Yk

of the deflected gradient projection algorithm; it By is positive definite, then T;“k is strongly

convex, and the solution to [P’;k] is given by
yh = Pyt (xF — B VT(xY), (4.25)

where PP*(x) denotes the projection of x onto X with respect to the norm Ix|lB, =
(x"Byx)'/2. For the choice B, = 0, for all k, we recover the Frank-Wolfe algorithm,
while the gradient projection algorithm is obtained from choosing By = I. Newton’s
method ([612, 768, 281]) is obtained by the choices By = V*T'(x*), v, = 1; quasi-Newton
methods follow from choices of By approximating V27'(x*).

Hence, the class of partial linearization methods includes algorithms with conver-
gence rates ranging from sublinear (the Frank—Wolfe algorithm) to quadratic (Newton’s
method).

The class of partial linearization methods also includes a variety of reqularization meth-
ods, where, in the subproblem, a strictly convex objective is added to the original objective
function. Let apk(x) =T(x)+ rk(x). Then

Th(x) = T(x) + r¥(x) — r*(x*) = V¥ (xF)T(x — x*);
if 7% =7, then D,(x) = r(x) —r(x*) = Vr(x*)T(x —x*) is the D-function of Bregman [116,
117, 118], also studied in [157, 234, 158, 892, 164, 293]. If r*(x) = (1/yx)r(x,x*), 7 > 0,
with Vrf(x*) = 0, then the traditional form, Tjk(x) = T(x) + (1/v)r(x,x"), of the
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subproblem objective of regularization methods ([896, 612, 897, 760]) is obtained. The
main reason for considering regularization methods is the wish to strictly convexify a non-
strictly convex function. An extensively studied special case is obtained from the choice
rF(x) = 1/(27;)||x||?, which yields T;fk(x) = T(x)+1/(27;)||x — x*||?, i.e., the subproblem
objective of the prozimal point method ([680, 687, 651, 652, 761, 781, 782, 783, 70, 629, 84]).
(This algorithm, in turn, includes a number of splitting algorithms (e.g., [120, 294]); for
an objective of the form T' = g + h, ©* is given by g + 1/(2v)| - ||*.)

The reader should note that a given choice of partial linearization, when applied to
different representations of the problem [P], yields different algorithms. For example, gra-
dient projection type partial linearizations, when applied to a problem which is projected
onto the space of non-basic variables, yield reduced gradient methods (e.g., [43, Sec. 10.6]),
and to steepest descent methods when applied to a Lagrangean dual formulation; sim-
ilarly, Newton methods turn into second-order reduced gradient methods when applied
to the former representation, and further to sequential quadratic programming methods
(e.g., [43, Sec. 10.4]) when applied to the Karush-Kuhn-Tucker optimality conditions of
[P]. A final example is provided by the proximal point algorithm; when applied to a La-
grangean dual formulations of [P], it yields the class of augmented Lagrangean methods

(e.g., [491, 763, 445, 780, 781, 782, 70, 84]), also known as the method of multipliers.

Utilization of problem structures

The large freedom of choice of function ¢* enables the partial linearization methods to
adapt to problem structures; the most important ones in the context of traffic assignment
are listed on page 96.

A partial linearization algorithm that may be said to utilize the network structure
must execute the vast majority of the operations involved in the solution of [P’;k] directly
on the network; in order to define an efficient algorithm for large-scale problems, the
problem [P];k] should not be very difficult to solve repeatedly, nor should the storage
requirements for carrying out the operations increase very rapidly with the network size.
Several algorithms that may be placed within the framework of partial linearization have
been successfully specialized to nonlinear networks, including convex simplex (e.g., [801,
714, 178, 486]), reduced gradient (e.g., [46]), scaled reduced gradient (e.g., [237]), Newton
(e.g., [559, 10, 236, 560, 902, 514, 1011]), and gradient projection methods (e.g., [400]).

In network problems with additional constraints, the network components must be
identified (e.g., [90, 126, 125, 91]), and the non-network components treated separately.
The most common strategy has been to develop specializations of simplex-type algorithms,
where basis partitioning techniques are used to separate the network basis from the non-
network components of the model (e.g., [548, Chap. 7]). An approach less investigated
(but one which is more general, since it may be applied to nonlinear side constraints) is
the handling of the non-network constraints through dualization/penalization techniques.
In such an approach, the side constraints are included in an extended objective function
by means of a penalty function, or a (augmented) Lagrangean function with parameters
including Lagrange multipliers for the dualized constraints ([484, 587, 757]); the subprob-
lems are then pure network problems.

The utilization of network structures can be enforced on a partial linearization algo-
rithm through the proper choice of solution procedure for the corresponding subproblems
[P];k] One particularly interesting choice of algorithm for the solution of [P];k] is the
truncated Frank—Wolfe algorithm, which may be easily implemented on the basis of an
existing Frank—Wolfe code.
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The objective of [TAP] is separable and strictly convex in the total link flows (see
Section 2.3.2). In order to define a rapidly convergent partial linearization algorithm, the
choice of the sequence {*} must be made such that the nonlinearity of the objective is
preserved; one should, however, note that each subproblem should be effectively solvable.
(In the extreme case, with p* = T, the subproblem is equivalent to the original problem.)
In addition, choosing strictly convex functions ¢* ensures that the optimal solution may be
identified from the sequence of subproblem solutions, and that methods based on duality
may be utilized for their solution (e.g., [43, Sec. 6.5]).

The standard traffic assignment problem has a favourable constraint structure; the
requirements on each commodity flow is independent of the requirements on the other
commodity flows, i.e., the constraints define a Cartesian product of feasible sets. The ob-
jective, however, is defined by the sum of the independent commodity flows, and hence it
is nonseparable. If the objective is replaced by a separable approximation, then the corre-
sponding traffic assignment problem decomposes into as many single-commodity problems
as there are commodities in the network; these problems may either be solved in parallel
or sequentially in a manner similar to Gauss—Seidel methods.

In the next section, we study convex problems defined on Cartesian products of feasible
sets, and show how partial linearization algorithms may define sequential and parallel
decomposition methods for such problems.

4.2.2 Decomposition algorithms

Let the constraints defining the feasible set X of [P] in (4.15) be given by

B, X1 d;
= . ' X;2 = ( d2 ) (4.26a)
h B, X'm d'm
x; > 0, 1=1,...,m, (4.26b)
where m > 1, x = [[Z,x;, x; € R™, >, n;, = n, and the matrices B; and vectors

d;,: = 1,...,m, have appropriate dimensions. Define the Cartesian product X = [T2, X,
where

XZ'Z{XZ'ERT

BiXi:di}, i:l,...,m.

Let ©f : X +— R be of the form p*(x) = 37, ©¥(x;), where ¢¥ : X; s R is a convex
function in C' on X;, i.e., a function of the variables x; only. Then the subproblem
objective becomes

Th () = 3 Th(x) = 3 b 0c) + [V () = Ve = )},

where VT denotes the partial derivative of T' with respect to x;. The subproblem [szk]
thus separates into m independent problems

[P ]

min T (x;). (4.27)

X; €X; i
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Based on the expositions in [746, 747] we shall below relate sequential and parallel
partial linearization methods for the solution of [P] to the classical Jacobi and Gauss—
Seidel algorithms for the solution of systems of nonlinear equations ([945, 727]), and
give convergence results for implementations with different degrees of parallelism and
asynchronism.

Sequential decomposition algorithms

In the sequential (Gauss—Seidel) version of the decomposition algorithm, we choose in

iteration k the index 73 € {1,...,m}, and solve [P];k |, with the solution yfk, and then let
K

k k By o
R + 0y —%7), =1,
¢ xF, otherwise,

where [ minimizes T'(x} _,x} +1(yf —x} ), xF _Joverl e {1 >0|x} +I(yf —x) e X;}
(if the exact line search Rule M is used).
Convergence of this method is guaranteed under conditions similar to those of Theo-

rem 4.2 when indices i3 are chosen according to the cyclic rule,
ir = k (mod m) + 1. (4.28)

Truncation strategies for the solution of the subproblems are also valid under conditions
similar to those mentioned above for the original partial linearization scheme; if VT is
Lipschitz continuous and the functions ; are chosen strictly convex, the algorithm may
also be supplied with inexact line searches, and the cyclic rule may be replaced by the
less restrictive essentially cyclic rule ([610, 155, 909, 912, 626]), in which every index
t € {1,...,m} is assumed to be chosen at least once every B successive iterations, i.e.,
there is a B > m such that'®

{1,0;m} C fityeoyirppaa}, Yk 1 (4.29)

Under the additional assumption that each function ¢; is strongly convex, predetermined
step lengths may be used; these may be chosen individually for the different components,
with upper limits 2m(p§ [Myr.

The above algorithm is a sequential partial linearization method in which the infor-
mation obtained from the updating of the variable component x; is utilized immediately

10The possibility of executing the algorithm with the essentially cyclic rule brings forward possibilities
for devising rules for choosing indices that may speed up the practical convergence, compared to the
cyclic rule. The basis for this is the fact that the bound B can be made arbitrarily large; within
this bound the indices may be chosen according to any specified rule. A good strategy may be to
generalize the Gauss—Southwell (remotest) order ([155, 623]), in which the index chosen in a particular
iteration is the one corresponding to the variable block being, in a certain sense, farthest from the set
of optimal solutions. The essentially cyclic rule may, in turn, be replaced by the free-steering order
([811, 812, 296, 727, 674, 331]), in which each index is only assumed to be chosen an infinite number of
times in the sequence {iz}. If the sequence {x*} is generated by the decomposition version of the partial
linearization algorithm, then it is possible to show that

ViT(x®) (x; — x°) >0, Vx; € X;

holds for those indices that occur infinitely many times in building the subsequence converging to x°°.
This result is analogous to those obtained earlier for general fixed point problems in [330, 331], and can
probably not be strengthened without introducing restrictive convexity conditions on T'. (Convergence un-
der the free-steering rule has been established for the Gauss—Seidel method applied to specially structured
strictly convex problems [735, 83, 84] and strongly convex unconstrained programs [811, 812, 296, 727].)
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in the update of x;;1, as opposed to the parallel algorithms to be described below; this
approach enables the solution of large-scale problems through a decomposition into se-
quences of problems of smaller dimensions.

We next show that the above cyclic version of the partial linearization algorithm in-
cludes a block version of the classical Gauss—Seidel algorithm (or the method of successive
replacements) as a special case. To this end, we will write the objective as T'(x;_, X;, X, ).
One iteration of the block Gauss—Seidel algorithm for the solution of [P] is defined through
the following m subproblems, solved sequentially:

[G-5*]
. k+1 ) k : — ¢ P
Jmin T(x;" %, x;, ), t=1,2,...,m. (4.30)
Let
ol (xi) = T(x,xi, X7, ). (4.31)

Then V¥(x¥) = V,T'(x*), and hence the objective of [Pik] equals that of [G-S¥]. Since

T is minimized in each step during iteration k we have that x¥*' = y* and the sequence

of problems [P];k] over i € {1,...,m} is equivalent to the sequence of problems [G-S*].
(See [811, 812, 1001, 727, 84] for convergence results for the Gauss—Seidel algorithm.)

Parallel decomposition algorithms

The above mentioned methods are inherently sequential; Jacobi-type versions (or methods
of simultaneous replacements) of the partial linearization method, in which subproblems
are allowed to be solved in parallel, are therefore introduced in this section.

Assume that we have access to a parallel computer with m independent processors,
each one responsible for a component x; of x. The above decomposition scheme can then
be alternatively implemented in such a way that the subproblems [P’;k], i e {l,...,m},

are solved simultaneously, followed by a global (possibly approximate) line search. The
resulting parallel partial linearization algorithm has the same convergence properties as
the original partial linearization algorithm (with the exception that individual step lengths
may be used in Rule P).

The block Jacobi algorithm is the result of choosing the functions ¥ according to
(4.31), in which case the independent subproblems (solved in parallel) become

[77]
min T(xF ,x;, Xf+). (4.32)

X;€X;

Note that the Jacobi algorithm is traditionally not supplied with a line search ([84,
Sec. 3.3]).

To make sure that the sequence of iterates generated by the parallel partial linearization
algorithm agrees with that given by the original (sequential) method, the implementation
requires a synchronization mechanism [513, 499, 84, 438], by which the processors are
coordinated to operate on the correct data and in the correct sequence. Although the
parallel algorithm may speed-up the practical convergence rate, the need for a synchro-
nizing step in the algorithm (the exchange of subproblem solutions among processors,
and possibly a global line search) may still deteriorate the performance, since faster pro-
cessors (subproblems) must wait for slower ones before the information exchange can be
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made. The efficiency can be further degraded by memory conflicts or slow communication
channels ([575, 84]). In addition, if some (inexact) line search is used, the efficiency is
degraded due to an increase in serial computations. (The possible inefficiencies resulting
from the need for a synchronizing step are further discussed in [191, 84].) We therefore
also consider asynchronous versions of the Jacobi-type methods, in which processors do
not wait to receive the latest information available. The advantage of such an approach
is a minimal delay in communication, which may speed-up the convergence compared to
synchronous algorithms. Convergence still holds, provided that the information that any
particular processor utilizes is not arbitrarily outdated.

Removing the synchronization of the processors enables the faster processors to execute
more iterations since they are not required to wait for the most recent results to become
available. Because the speed of computations and communications can vary among the
processors, and communication delays can be substantial, the processors will, as a result,
perform the calculations out of phase with each other. Thus, the advantage of a reduced
synchronization penalty is paid for by an increase in interprocessor communications, a
use of outdated information that may be counterproductive if certain conditions are not
met, and a more difficult convergence detection, see [84]. (Certainly, the convergence
analysis also becomes much more complicated.) Recent numerical experiments indicate,
however, that the introduction of asynchronous computations can substantially enhance
the efficiency of parallel iterative methods ([295, 76, 159]).

In a partially asynchronous parallel algorithm, there is an assumed upper bound on
the communication delays and differences in the frequency of computation of different
processors. !

In the partially asynchronous partial linearization algorithm, each processor ¢ calculates
the subproblem solution y* based on the latest information available on the components
x;, 7 € {1,...,m}, updates its own variable component by a predetermined step length,
and communicates the result to all the other processors. It then resumes calculations on
a new subproblem, based on the new information about its own component and possibly
new information received about other variable components.

Denoting the upper bound on the communication delays and processor idle times by
B, global convergence for the partially asynchronous partial linearization algorithm is
guaranteed for Lipschitz continuous functions V7" and V; and strongly convex functions
@;, under the condition that the step lengths used in the update of the variables are
bounded above by m/(Mvr[1/2+(m+1)B]), where my = min;eq1,.m} Mo, ([746, 747]).12

4.2.3 Column generation algorithms
The general algorithm

Consider the linearly constrained convex program

1Ppartially asynchronous versions of partial linearization algorithms have only been studied to a limited
extent; deflected gradient methods in unconstrained programming [84, Sec. 7.5], gradient projection
methods [916, 917, 918, 84, 913], and coordinate ascent methods for strictly convex network flows [915]
are the only examples to date.

2Interesting observations can be made regarding the relationships among the maximal step length, the
allowed amount of asynchronism, the number of processors involved in the calculations, and the properties
of the given problem, that are brought forward in this expression. Compare the maximal step length
allowed with that of the original algorithm, and the sequential decomposition version. The decreasing
intervals of allowed step lengths is a consequence of the decreasing quality of the step directions, resulting
from the usage of more outdated information in the update of the variables.
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[P]
min T'(x), (4.33a)
subject to
A b
B o d;
b
B, AT = | 4|, (4.33b)
. N
B,
x; > 0, i=1,...,m, (4.33¢)

where m > 1, x = [[Z2, x;, X; € R™, > n; = n, and the matrices A, B; and vectors
b, d;,7 = 1,...,m, have appropriate dimensions. [Constraints of the form (4.33b) are

termed block angular (e.g., [554, 800, 818, 819]).] Define X =[], X;, where

XZ'Z{XZ'E?RT

BiXiZdi}, i=1,...,m

?

and
Z={xeR"| Ax=Db};

the problem [P] may then be written as
min_ T'(x).

xeZnX

We assume that Z N X is nonempty and that X is bounded. According to the Represen-
tation Theorem [cf. (2.14)], each set X; may then be given an internal representation as
the convex hull of its extreme points y?, j € X},

XZ'Z{XZ'E%M

xi= Y Myl, Y N =1,X>0,Vje x} (4.34)

JEX; JEX;
or, compactly, X; = conv (&;). (Disregarding the constraints defining x; in (4.34), this
set is, in the variables X!, a (|X;] — 1)-simplex.)

The problem [P] may hence be equivalently formulated as the complete master problem

[CMP]

min T'(x), (4.35a)
subject to

x € Z N [] conv (X;). (4.35b)

=1

The original problem [P] has n variables, while the complete master problem [CMP]
has Y-, |&;| variables. The number of linear constraints in the two equivalent problems
differ in the representation of the sets X;. The complete master problem has m convexity
constraints, representing these sets; this number is, in general, much lower than the
number of constraints representing the sets X; in the original formulation.
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In general, the number of variables in [CMP] is much larger than in the original problem;
if, however, the extreme points of the sets X; that are necessary to express the components
x; of an optimal solution of [P] are known (the number of these variables is in general
much less than the total number of variables), then due to the simple structure of the
constraints of the master problem, the optimal solution to [P] may be obtained efficiently.

The idea behind a column generation scheme is to algorithmically generate variables
(or columns) in the sets X; that potentially may be used to span convex hulls that include
the components X; of an optimal solution.

Let &; be a set of known points—not necessarily extreme points—in X;, and consider
the restricted master problem

[RMP]

min T'(x), (4.36a)
subject to

x € Z N ][] conv (AA?Z), (4.36b)

=1
i.e., a restriction of the problem [P] to the subsets conv (X;) of X;, i=1,...,m.
Alternately to solving a restricted master problem, in the column generation scheme

a vector (column) in X; \ conv (&X;), ¢ = 1,...,m, is generated through the solution of

a subproblem in order to enable the solution to [RMP] to be improved. The form of the
subproblem and the techniques employed for its solution vary with the application; see
Lasdon [590] for an overview. Column generation methods also usually include schemes
for dropping previously generated columns that are no longer believed to be necessary in
order to express an optimal solution.

Instances and definitions of columns

Dantzig-Wolfe decomposition ([227, 228, 225, 822, 418, 590, 261]) is a well-known special
case from the column generation principle, in which columns are generated as solutions
of approximations of [P], where the (coupling) constraints defining 7 are Lagrangean
dualized; the objective of the restricted master problem is traditionally defined by an
inner linearization of 7' at the generated points. Extensions of this approach include
the use of nonlinear penalizations of the dualized constraints (known as nonlinear pricing
[528, 529, 322])—which are related to augmented Lagrangean methods for [P] (e.g., [70])—
, and approximations of 7" in the subproblem (e.g., [503]).

The convergence of column generation methods is based on Carathéodory’s Theorem
([142]; see also [43, Th. 2.1.6]), which states that any point in X;—and in particular the
corresponding components of an optimal solution of [P]—may be represented as a convex
combination of at most n; + 1 points in X;. (Thus, in total >-7,(n; + 1) = n + m points
suffice.) [This result may be sharpened to requiring only dim (X;) + 1 points, where
dim (X;) is the dimension of the affine hull of X; (e.g., [877, Th. 2.2.12]).] Note that
for bounded polyhedra, the Representation Theorem is a special case of Carathéodory’s
Theorem in which the columns that are used to express an arbitrary point in X; are
extreme points of Xj.

Although it is not necessary to consider extreme points only, the traditional algorithmic
approach for the solution of [P] through the solution of a sequence of restricted master
problems with increasing sizes, is based on the generation of extreme points of the sets X;,
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through the solution of linear programming subproblems. (In the terminology of Geof-
frion [418], such column generation algorithms are algorithms based on inner linearization
followed by restriction.)

In traditional presentations of column generation methods, the restricted master prob-
lem contains only one convexity constraint. In the context of the problem [P], it would
mean that the points yg € R, i =1,...,m, that are generated simultaneously, would be
concatenated into one column, y’ € R for all j € 2&; the restricted master problem then
becomes

[RMP]
min T(x), (4.37a)
subject to
X € Z N conv (X). (4.37h)

We shall refer to this as an aggregated master problem, as opposed to the disaggregated
master Problem (4.36). )

The complete master problem, in which A" in (4.37) is replaced by the set X of all
extreme points of X, contains |X'| = []Z, |&;| columns. Contrary to what one might
expect, aggregating the columns results in a much larger complete master problem, since
T2, | > >r, |A]. (The maximum number of points needed, however, reduces from
n 4+ m to n + 1, according to Carathéodory’s Theqrem.)

For some special cases of sets 7, the points y! may be aggregated such that the di-
mensions of the columns y’ are reduced drastically. Assume that

1 =7 ().

and that

A= (32) = (o (00 sseg (o) " wsng(an)

where T € %" is an identity matrix, and diag (az) € R"*" is a diagonal matrix. We
may then redefine the variable vector x as

X = X, 4.38
> (4.38)
1=1

and view the problem [P] is terms of variables x. Instead of concatenating the vectors y?
when defining a column y’ of [RMP], we let

v =yl, Vjeda; (4.39)
=1

the dimension of these columns is m times lower than that of the concatenated ones.
Letting Z; = {x € R" | Ayx = by }, the restricted master problem becomes
[RMP]

min T'(x), (4.40a)
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subject to
X € 73N conv (X), (4.40b)

where X' denotes the set of points defined by (4.39). Note that the total number of
variables in a complete master problem of the form (4.40) equals that of the complete
master problem of the form (4.37), although the columns generated are of much lower
dimension. (The maximum number of columns needed changes drastically, from m(n+1)
in the disaggregated formulation of [RMP] to n + 1 in the aggregated one.)

When performing the aggregation defined by (4.39), information is lost; in order to
recover a solution to the disaggregated formulation, some additional work is needed.

Simplicial decomposition

Simplicial decomposition ([952, 953]) is a special case of column generation in which
the column generating subproblem is the same as the direction-finding subproblem of
the Frank-Wolfe algorithm,'® and the original objective is used in the solution of the
restricted master problem. The basic decomposition theory outlined above, thus applies
to this methodology. The notion of simplicial decomposition (or SD for short) is due to
von Hohenbalken [952, 953]. Techniques of this type have a longer history however:

(1) (Improvement of Frank-Wolfe) Simplicial decomposition type methods have been
studied as improvements of the Frank—Wolfe algorithm ever since its zig-zagging be-
haviour became apparent (e.g., [1004, 697, 987, 504, 669]). Most of these discussions
are intuitive, but a formalization naturally leads to a simplicial decomposition ap-
proach.

(2) (Quadratic programming) Simplicial decomposition is highly related to finite meth-
ods in quadratic programming. Relationships among the capacity method ([505]),
Wolfe’s least-distance programming method ([988, 989]), and some pivoting methods
([985, 225, 927, 926, 931]) are given in [928, 929, 930, 86]. Cottle and Djang [183]
show that the least-distance method produces the same sequence of iterates as sim-
plicial decomposition when applied to this special quadratic program. Pang [734]
extends this result to hold for any convex quadratic program, when the symmetric
programming algorithm ([931]) is applied to its (implicit) inner representation. See
Djang [262] for a thorough study on this topic, and also [802, 835].

(3) (Network flows) One of the first methods to be implemented for use in traffic assign-
ment was developed in the Metropolitan Toronto Regional Transportation Study; the
algorithm may be viewed as a version of simplicial decomposition, in which short-
est routes define (disaggregated) restricted master problems of a prior: bounded size
which are heuristically solved (see Section 1.5.4 for more details). Among the first con-
vergent methods to be proposed and tested for traffic assignment we also find column
generation methods of the simplicial decomposition type (e.g., [424]), and simplicial
decomposition was early applied to computer communication networks ([420, 141]).
For more details of applications of column generation to traffic assignment, see Sec-
tions 4.3.4 and 4.3.5.

13In primal applications dual variables are not involved in simplicial decomposition algorithms.
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To simplify the discussion, let us consider the linearly constrained convex program
[P] of the form (4.7), where the feasible set X is a bounded polyhedron.'* Recall that
the Frank-Wolfe Subproblem (4.11) yields an extreme point, say y*, of X, given a point
x*¥ € X.' The point y* is added to the set X of known extreme points of X, and the
restricted master problem

[RMP]
min T'(x), (4.41a)
subject to
x = A"+ > Ny, (4.41D)
jex
A+ 3N =1, (4.41c)
jeX
AN >0, Vjiedx (4.41d)

is solved to yield x**!, )

Note that the feasible set of [RMP] is the convex hull of the solution x* and conv ().
If x* € conv (X)—which indeed is the case if no column has been dropped from X'—
then the column x* is redundant; when column dropping is applied, it however becomes
necessary to include x* as a column in [RMP] in order to ensure convergence.

The simplicial decomposition principle is closely related to that of Holloway [504], who
develops an extension of the Frank—Wolfe algorithm by means of an inner linearization
(i.e., inner representation) of the feasible set, followed by restriction. The Holloway tech-
nique belongs to the family of inner linearization/restriction type algorithms defined by
Geoffrion [418]. As applied to [P], simplicial decomposition is, in fact, an instance of the
algorithm class of Holloway.!®

Convergence rate results, and conditions under which convergence is finite, are scarce
for general column generation methods. For the special case of simplicial decomposition,
however, this is a well studied topic. Holloway shows that the convergence rate of the
extended Frank-Wolfe algorithm is linear, and subsequently von Hohenbalken [953] shows
that for the special case of simplicial decomposition convergence is finite. This result
allows for the removal of columns which receive zero weights in the solution to a restricted
master problem.

According to Carathéodory’s Theorem, the maximal number of columns in [RMP]
needed to express an optimal solution to [P]is n + 1 (or dim (X) + 1 from its sharpened
version). This number is too large to be useful as a limit in practice, however, and the
convergence result of von Hohenbalken enables the use of column dropping rules, by which
columns with small weights are removed from [RMP]. This possibility is also important for
another computational reason; in order to be able to apply efficient second-order methods
to [RMP], the number of variables must be kept small.

There is, however, another side to this. Letting the maximum number of points retained
in [RMP], r > 1 say, be smaller, implies the need to solve a larger number of master

14Tf X is unbounded, then extreme directions may be obtained from the solution of the Subprob-
lems (4.11); these may be included in a restricted master problem with a feasible set of the form (2.14).

15The starting solution, x° = y°, may be obtained from the solution to (4.11) given x = 0.

16 An interesting relationship exists between simplicial decomposition and Dantzig—Wolfe decompo-
sition. As shown in [585], Dantzig-Wolfe decomposition for linear programs is the result of applying
simplicial decomposition to a saddle point problem formulation of the linear program.
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problems in order to obtain the right subset of columns and, in fact, the finite convergence
result for simplicial decomposition is lost if the value of r is chosen too small. Indeed,
letting r = 1 in (4.41) yields the Frank—Wolfe algorithm, which is only asymptotically
convergent.

It is then interesting to be able to estimate the smallest possible value of r that im-
plies finite convergence. Although it is problem dependent, it is possible to give it a
precise value. The value sought is obviously equal to the number of extreme points that
may be necessary to express an optimal solution to [P], and is obtained by applying
Carathéodory’s Theorem to the face of X of smallest dimension that includes the set of
optimal solutions; this set is known as the optimal face of X (e.g., [987]),

X ={xeX |VI(x)'(x-x)=0}, x€q

Hence, finite convergence is ensured under the condition that » > dim (X™) + 1 ([479)]).

4.2.4 Discussion

The three algorithm concepts for the solution of traffic equilibrium problems presented in
the above sections are sufficient to describe nearly every method that has been proposed
in the literature. (For example, the classical Frank—Wolfe algorithm is obtained from
the choice @* = 0 for all k in the partial linearization algorithm. It is a decomposition
algorithm since the direction-finding subproblems separate into |C| shortest route problems
(although traditionally they are solved sequentially over origins). Finally, it may be viewed
as a very special column generation algorithm, in which a very crude column dropping
rule is applied.)

A very large class of algorithms is derived from the combination of the three algorithm
concepts. It also includes several interesting algorithmic approaches that have not been
presented previously, but which deserve further study. We provide such an example below,
which is based on combining second-order partial linearization algorithms with simplicial
decomposition.

It is well known that due to the linearity of the subproblem the Frank—Wolfe algo-
rithm often exhibits a very slow convergence. Simplicial decomposition algorithms utilize
Frank—Wolfe subproblems in the column generation phase, and therefore, to some ex-
tent, inherit the drawbacks of this method. [This has been observed in particular when
column dropping rules are applied on problems with an optimal face of high dimension
(see [481] for examples).] Consider replacing the Frank—Wolfe subproblem in the simpli-
cial decomposition algorithm with a nonlinear partial linearization subproblem. (Such a
method would extend both the partial linearization algorithm (in the sense that its line
search step is replaced by a multidimensional search, whenever more than one column is
retained in the restricted master problem) and the traditional simplicial decomposition
algorithm (which is obtained from the choice ¢* = 0 for all k).!” The use of a nonlinear
partial linearization subproblem in the column generation phase may undoubtedly en-
hance the performance of a simplicial decomposition scheme, since the column generating
subproblem retains more information from the original problem than the Frank—Wolfe
subproblem. (The increase in subproblem computations can be partly circumvented by
choosing ©* to exploit the problem structure, and by applying truncation strategies to
[szk].) If this scheme is supplied with the proper column dropping rules, we obtain a

17The idea of using non-vertex points in restricted master problems of column generation methods is
suggested in [550, 585].
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partial linearization algorithm which utilizes restricted master problems only when it is
necessary for making sufficient progress. To illustrate this feature, we consider using a
Newton subproblem, i.e., let ©*(x) = (1/2)xTVT(x*)x for all k. Tt is well know that
locally, around a solution, Newton’s method converges when using unit step lengths. Us-
ing Newton-based column generating subproblems within the simplicial decomposition
scheme, the sequence of restricted master problems would thus increase in dimension in
the first few iterations, but as the solution is approached, unit steps begin to be taken
towards the latest subproblem solution, and the column dropping rules would thus even-
tually reduce the simplex to a line segment, i.e., to the original Newton algorithm. This
scheme can be viewed as a dynamic partial linearization algorithm, where master prob-
lems are used only when necessary. The theoretical and practical properties of this scheme
are subjects of ongoing research efforts ([585]).

The concepts of partial linearization, decomposition, and column generation, will be
used in the subsequent description of algorithmic approaches for the solution of the traffic
assignment problem [TAP] and its extensions.

4.2.5 A taxonomy of algorithms for [TAP]

In order to be able to distinguish between and interrelate algorithms easily, we introduce
a taxonomy for describing an algorithm within the framework.

We first introduce a notation for the problem being solved; we only need to distinguish
between the two possible representations of the feasible set of [TAP]. We use the notation
F" to denote the link-route representation, i.e., the set of feasible link flows defined by
the System (2.6b)—(2.6d), and the notation F™ for the link-node representation, i.e., the
feasible set defined by (2.13).

To describe a decomposition method for [TAP], we need to distinguish (a) between a
sequential and a parallel decomposition scheme, and (b) between a decomposition over
either origins or O-D pairs. To this end, we introduce the notation D (sequential) and
DY (parallel), and D¢ (origin-based) and D¢ (O-D-based). (A sequential decomposition
scheme over origins, for example, is denoted by D3.)

Column generation schemes proposed for [TAP] are invariably based on columns de-
fined by various degrees of aggregations of shortest route flows (and are hence simplicial
decomposition algorithms). To denote the level of aggregation in a column generation
scheme, we shall use the notation Cr, Cp, and C4 for, respectively, columns defined
by individual route flows, flows from separate origins, and link flows. (The number of
convexity constraints present in a restricted master problem is, respectively, |C|, |O|, and
one.)

To describe the hierarchy in which these two concepts are applied, we shall write them
within brackets, according to the following rule: if an instance A of an algorithm concept
is embedded in an instance B of another algorithm concept, then it is denoted by B[A].
To give an example, suppose that an algorithm for [TAP] is a column generation scheme
over individual route flows, where the restricted master problem is solved by a parallel
decomposition scheme over origins. In the taxonomy introduced, this algorithm would be

described by
F(Cr[DB)).

A partial linearization algorithm may be applied to a variety of representations of
[TAP] (e.g., directly to the link-node formulation, to the solution of a projection of [TAP]
to a non-basic variable space, or to a Lagrangean dual formulation, see Section 4.2.1)
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and to its restrictions (e.g., to a restricted master problem, or to single-commodity flow
problems within a decomposition scheme), as well as in a column generating subproblem
phase of a column generation scheme (although this alternative is not well studied, since
column generations are always made using Frank—Wolfe subproblems). We will denote a
partial linearization algorithm by the corresponding choice of sequence {*}, since it may
(in essence) be identified by the choice of subproblem.

4.3 Algorithms for the basic model

In this section we shall provide a review of the methods proposed for the solution of
[TAP], following the development of the Frank-Wolfe algorithm. In order to place each
algorithm within the framework of the combination of the three algorithm concepts, we
shall use the taxonomy introduced above.

We begin by studying decomposition methods.

4.3.1 Decomposition algorithms

Historically, sequential decomposition algorithms of the Gauss—Seidel type were the first
alternatives to the Frank—Wolfe algorithm to be developed; a main reason for this devel-
opment is that efficient codes for single-commodity network flows were available. Given
a feasible flow, f*, in iteration k a subproblem of the form

[TAPZ]
fai,+ i ff,
min T(ff_ £, £} ) = Z/ s ta(s)ds, (4.42a)
acA’0
subject to
Afy, = d, (4.42b)
f. > 0 (4.42c)

is solved. (Here, 75 denotes one O-D pair or a larger subset of the O-D pairs, such as an
origin; the node-link formulation of [TAP] is used without any loss of generality.) In the
sequential approach, the solution to [TAP} ] defines fiﬂ.

If the flows in all commodities but the commodity 2; are held fixed at their current
values, then the corresponding restriction of 7', f;, — T(fi_,fik,fi_l_), is strictly convex,
and the single-commodity flow problem [TAPZ] is uniquely solvable. Note, however,
that the equilibrium solution is not unique in the commodity flows (see the discussion
following Theorem 2.5, and Theorem 2.7); a commodity may therefore receive flows that
oscillate wildly in the sequence {f*} (e.g., [424]), and the flows obtained in the limit of
this sequence depend on the ordering of the commodities made in the sequence {i;}.

The cyclic decomposition (or block Gauss—Seidel) version, where 7 is chosen according
to the cyclic Rule (4.28),'® is convergent, in the sense that every accumulation point of

the sequence {f¥} is optimal in [TAP] (e.g., [34, Th. VI.1.3] and [84, Prop. 3.3.9];'° a

18Viewing the traffic assignment problem as a non-cooperative game among the commodities (see
Section 2.6.1), this algorithm may be interpreted as a process in which each player, in turn, chooses an
optimal strategy based on the other players’ current choices of strategy; the process terminates when no
player can improve his/her conditions, and this then defines an equilibrium state.

19Tn the result of [824], additional monotonicity assumptions on the link performance functions are
made.
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parallel (or block Jacobi) version requires an additional global line search step to yield
convergence without additional assumptions on the model (see Section 4.2.2).

The number of iterations needed to obtain a desired accuracy is expected to be lower
for the sequential approach, since the information obtained from the solution to [TAP;] is
utilized when solving [TAP;,]. In the context of traffic assignment, this may be explained
by the fact that a decomposition results in the problems [TAP;] neglecting the interactions
between the flows of different commodities, and a faster transfer of information about
adjusted commodity flows may reduce the potentially detrimental effects of these neglected
interactions. In a parallel computing environment, the Jacobi-type approach could be
more efficient, however, since more iterations are carried out during a given time period.

We first study the development of sequential decomposition algorithms, and con-
centrate on the different approaches presented for the iterative solution of the single-
commodity problems [TAPZ]. For the simplicity of presentation, we shall drop the itera-
tion counter, and refer to [TAP;].

4.3.2 Sequential decomposition algorithms
Equilibration operator type approaches

The first sequential decomposition algorithms were independently developed in 1968 by
Dafermos [210, 209, 205, 206] and Bruynooghe et al. [132]. The two methods are essentially
equivalent, although they are presented for different representations of [TAP].

Dafermos’ algorithm (F"(Dg)) is based on determining the most expensive (simple)
route used and the least expensive (simple) route in an O-D pair, and a following transfer
of flow between the two routes towards the least expensive one using a simple line search.
This flow transfer, which is termed the equilibration operator, results either in the two
routes receiving flows with equal costs, or the most expensive route receiving a zero flow.
The next O-D pair is considered when all routes are equilibrated, i.e., when [TAP%] is
solved. Tt is to be noted that the method is impractical for the solution of large-scale
problems, since all the routes in the network must be enumerated. In [210, 209] quadratic
networks are considered, while in [209, 205, 206] more general costs are treated, and in
[701] the method is extended to elastic demand problems.

The method of Bruynooghe et al. (F™(DJ)) is the same, with the exceptions that
it is based on the link-node formulation and a definition of a commodity as an origin.
The flow transfers thus correspond to the transfer of flows from the most expensive tree
of used routes towards the least expensive tree. This method is also impractical, since
the calculation of the most expensive tree of (simple) routes is an NP-complete problem
([411, p. 213]), due to the presence of cycles. Both methods may, however, be applicable
to large-scale problems, when embedded in a column generation scheme.

From the experiments conducted with this algorithm, two important observations were
made ([424]): firstly, the number of equilibrium routes is very limited compared to the
total number of routes in the network; secondly, these routes are identified early by
the algorithm. Gibert [424] proposes therefore storing the shortest routes obtained, and
applying the algorithm of Bruynooghe et al. to this subset. One advantage is immediate:
the determination of both the shortest and the longest route in each O-D pair becomes
a very simple comparison operation. Gibert’s algorithm includes a rule for dropping
routes with zero flows, a truncation strategy for the solution of the restriction of [TAPfk],
and a termination criterion of the form (4.9). Global convergence is established for two
different versions of the algorithm; the basic version (F"(D3[Cx])) is a direct extension
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of the algorithm of Bruynooghe et al., where routes are generated within the solution of
[TAPZ], while in the modified algorithm the flow updates are made simultaneously over
all the origins. (Gibert’s algorithm is the first convergent column generation algorithm for
traffic assignment presented; the column generation algorithm given by Martin et al. [650]
(see Section 1.5.4) is a heuristic.) The algorithm is extended to elastic demand problems
in [423]. An algorithm essentially the same as the basic one above was proposed much
later by Schittenhelm [813], who also extends the algorithm to the solution of a combined
trip distribution and assignment problem, and by Lee [608].

The method of Leventhal et al. [611]—sometimes acknowledged as the first column
generation method for the nonlinear traffic assignment problem—is similar to the one
proposed earlier by Gibert. The basic algorithm is of the form F"(Cr[D]); they choose
to augment the subset U(p,q)ec']%pq of the routes by one new route only, and propose to
use the equilibration operator approach of Dafermos and Sparrow [209] on the single-
commodity networks, modified to equilibrate only two routes per O-D pair and iteration.
Finite convergence is established for the column generation method, including the pos-
sibility of dropping routes with zero flows. For quadratic networks, they also propose a
finitely convergent quadratic programming method ([225, 926]). Experiments on small
quadratic networks with these algorithms indicate the drawback of the original algorithm
of Dafermos and Sparrow, due to the need to enumerate all the routes.

In the algorithms described so far, relatively few links (in the most disaggregated
formulation only the links defining two routes) receive an update of their flows in each
iteration, and one should expect that a large number of iterations is needed to obtain
an accurate solution. One is therefore led to consider algorithms, where more than two
routes are involved simultaneously in the flow updates.

Reduced gradient type approaches

To this end, we first consider extensions of the simplex method to nonlinear network flows,
and investigate their relationships to the above type of methods.

In the convexr simplex algorithm ([1002]), variables are partitioned into basic and non-
basic variables, as in the simplex method for linear programs, and in an iteration, only one
non-basic variable may change its value. Main differences to the case of linear programs are
that non-basic variables may assume non-zero values and that a basis change is performed
only if the resulting change forces a basic variable to a bound.

Introducing a partitioning of fI into (f%;, f3.), where B and N denote the basic and
non-basic links, respectively, and, correspondingly, of the node-link incidence matrix A
into (B, N) [B is assumed non-singular],?° suppressing the index k, and defining ¢(f;) =
T(fF _,f fZ-]Z+), the single-commodity problem may be written in terms of non-basic

Varizgl_)ie;ki’n the form
min g(B_ldi — B_leNZ-,fNZ-), (4.43a)
subject to
B~'d, - B"!Nfy; > o, (4.43b)
fn; > 0. (4.43c)

(Normally, the components fy; are assumed to be the variables with the largest values.)

200ne equation in the Constraints (4.42b) is deleted to ensure full row rank.
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The basis fg; defines a rooted spanning tree (if the index 7 corresponds to an origin),
or a simple route (if # denotes an O-D pair).
The reduced gradient (the gradient of ¢ in the space of non-basic variables) is

ry; = Vag(f)" — Vig(f;)"B7'N. (1.44)

If ry; = 0, then f; solves [TAP;]; otherwise, a direction py; defines a feasible descent
direction with respect to g if p,; > 0 when f,; =0, @ € N, and r},;pn; < 0. (Note that
in the space of basic variables the direction becomes —B™'Npy;.) In particular, if r,;,
a € N, is negative (positive), then e, (—e,) is an improving direction. The determination
of the largest value of |ry;| over the non-basic variables corresponds to finding the minimum
reduced cost of cycles that are formed by the tree (or route) and a non-basic link. A line
search then determines the amount of flow to send in the cycle formed.?

The convex simplex method is specialized and applied to nonlinear networks in [801,
163, 178, 486, 548], and applied to [TAP,] in a decomposition method of the form F"™(D2)
by Nguyen [713, 714, 715, 717], who also extends it to elastic demands, in [715, 717]. Simi-
lar algorithms are discussed in [226, 742]. Nguyen’s [714] algorithm is applied to a network
model of the city of Winnipeg in [360, 361], with encouraging results; the algorithm com-
pares favourably with the Frank—Wolfe algorithm with respect to its convergence rate,
but is considered equal when including memory costs.

To make the connection with the equilibration operator approach clear, let us apply
the convex simplex algorithm to the link-route formulation of [TAP;], where a subset
R; C R; of the total set of routes in O-D pair « € C is known. This restriction is given
by [cf. (2.6), where O-D pairs are denoted by (p, q)]

min g(f;), (4.45a)
subject to
> hy = di (4.45b)
reﬁi
hie > 0, VrewRs (4.45¢)
E Oirabir = fai, Va € .A, (445d)
reﬁi

where we use the definition of the objective as in (4.43).

We first observe from the Constraints (4.45b)—(4.45¢) that a basis is defined by one
route variable, h;,, say. The transformation corresponding to the one made above leads
to the equivalent problem

min g(d; — Z hir By ), (4.46a)
r#rp
subject to
d; — Z hi > 0, (4.46b)
r#rR
h,,, > 0; (4.46¢)

211t is to be noted that an iteration in any feasible-direction method for [TAP] corresponds to deter-
mining and sending flows in cycles of the networks, since

flc € Fn’ fk+1 — flc + lkplc = Jald — Aplc - 0.

Explicit determinations of cycles akin to Zoutendijk methods, are proposed for [TAP;] in [964].
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the reduced gradient equals

iy = VNg(hZ) - ng(hz)l (447&)
= CirN(hi) — CirB(hi)L (447b)

where 1 is a (|R;| — 1)-dimensional vector of ones, i.e., the reduced gradient equals the
difference in travel cost between the non-basic routes and the basic one.

Now, assume that given the current flows the basic route chosen is the cheapest in
R;. Clearly, r;,,, > 0, and its maximal element is defined by the most expensive route.
The direction defined by the convex simplex algorithm then is p;.; = +1, pir, = —1,
and p;, = 0, for all » # rg,r,, where r, is the most expensive route among those with
a positive flow, i.e., the transfer of flow from the most expensive route used to the least
expensive route. This is the search direction of the equilibration operator approach, which
can therefore be interpreted as a convex simplex method, where a basis is defined by a
cheapest route. Note that the shortest route can be a different one in the next iteration;
this corresponds to a basis change.

In reduced gradient methods ([986, 317, 698, 623, 43]) more than one non-basic variable
is allowed to change in each iteration, and this allows more rapid changes both in the
variables and in the basis. (The convex simplex algorithm is therefore a special case of
the reduced gradient algorithm.) As in the convex simplex algorithm, the search direction
is based on the negative of the reduced Gradient (4.44); in order to ensure the feasibility
of the direction, it is modified to

’ __{—TM-, if rg; <0or f; >0,
Pai = 0, otherwise,

Ya e N. (4.48)

The search Direction (4.48) is the steepest descent direction in the space of non-basic
variables, projected onto the nonnegativity constraints; the search direction of the convex
simplex algorithm can analogously be viewed as a steepest coordinate descent direction
(e.g., [623, p. 359]). In order to establish global convergence of the reduced gradient
algorithm, the search direction must be modified to yield a closed algorithmic map. The
modification consists of a deflection from the nonnegativity constraints according to

—Tais lf Tas § 0,
Pai =

_fairai, if Tai > 0, Va € N. (449)

The reduced gradient algorithm is specialized to nonlinear networks in [237, 46]. Appli-
cations to [TAP,] are considered by Nguyen [713, 715, 717] and Florian [352]. As already
mentioned, using the least-cost route to define the basis for the Constraints (4.45b)-
(4.45¢), the components of the reduced gradient defined by (4.47) are the differences in
route travel costs between the non-basic routes and the basic one. The search direction

defined by (4.49) becomes
Pir = hiT(CiTB - ci’l‘)) Yr S N7 (450)
and Pirg = — E’]"EN Pir-

Remark 4.2 The Expression (4.50) states that the swapping rate p; from route r € N
to route rp is proportional to the cost and to the flow of route r. This is reasonable from
a behavioural point of view: the more expensive a route is and the more drivers there are
on that route, the more inclined a driver is to swap to the less expensive route. It also
follows naturally from the Wardrop conditions, which may equivalently be formulated as

hisleir(h) = cis(h)] =0,  Vr,s€R:, VieC. (4.51)
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To solve the dynamic system associated with (4.51), Smith [848] (see also [63, Chap. III})
suggests adjusting a non-equilibrium flow using the swapping rate h;[cir(h) — ¢;s(h)]+
from route r to s; the swapping rate defined by (4.50) is indeed of this form.

The advantage over the convex simplex approach is immediate: the flows on all the
routes are simultaneously adjusted towards an equilibrium. The swapping rate is also
very reasonable. (It is important to note that the swapping rate defined by the search
direction of the Frank—Wolfe algorithm is proportional neither to the cost nor to the flow
on the routes.) This algorithm is proposed for the solution of [TAPZ] by Nguyen, in
decomposition algorithms of the form F"(Cr[DZ]) ([713]) and F"(DZ[Cr]) ([359, 717]);
Florian’s [352] method is the same as that given in [359, 717], with the exception that the
basic variable is defined by the route with the largest flow. Extensions to elastic demands
are discussed in [713, 717].

Reduced gradient algorithms have also been developed from intuitive ideas such as
those discussed in the above remark. Van Vliet (see [942, 957]) describes the cost dif-
ferences ¢;; — ¢, as a social pressure on the route flows that forces the routes towards
an equilibrium; this interpretation naturally leads to an adjustment process based on
the search Direction (4.50). The basic algorithm—as described in [957]—is of the form
F(DF[CR]). In order to enhance the practical efficiency of the algorithm, Van Vliet also
considers different normalizations of the social pressure. These normalizations actually
define special choices of scaled (or deflected) reduced gradients (e.g., [698]), i.e., the search
directions are defined by a premultiplication of the reduced gradient by a positive definite
square matrix. With the choice of a diagonal scaling matrix, S = diag (s;,), where s;, > 0
for all r € N, and with rp being the basic route, the search direction becomes

ir — SiT(CiTB(hi) - Cir,-(hi) ’ if ciT(hi) < Ci'I‘B(hi)v ¢
b= {S”hir(cira(hi) —en(hy), ifen(hy) > o (), TEN (4.52)

Gradient projection type approaches

Consider the problem [TAP;] of the form (4.45). Applying the deflected gradient projec-
tion algorithm amounts to finding, given h* € H;,

yi = P (hf — B3 Vg(h)), (4.53)

defining the search direction p¥ = y* — h¥ [cf. (4.25)]. If By is a diagonal matrix, then
the projection can be performed in linear time by dualizing the Constraint (4.45b) and
performing a line search with respect to its Lagrange multiplier (e.g., [129]). (Note that
it is much easier to perform projections onto the feasible set of the link-route formulation
of [TAP;] than onto that of the link-node formulation, since the former is defined by a
simplex.)

Let B, = diag (bf.), where b5 > 0 for all » € R;. Then, from (4.24), the Projec-
tion (4.53) is equivalent to minimizing

> (cir(hf-“)(hw —hi)+ Zb% (hir — hi-in)Q) (4.54)

7‘6721‘

over H;. The convergence of the sequence {h¥} to the solution of [TAP,] requires the
sequence {b% /(27;)} to be bounded away from zero and infinity. (When a line search is
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performed in the direction p¥ = y¥ — h¥ this condition suffices, but a stronger assump-
tion on the lower bound on bf./(2v;) is required when unit steps (h¥*!
[cf. Section 4.2.1].) An interesting choice of b¥ is
0? (
éZTCL a hk
PO 3 bt (10,

acA

= y¥) are used

i.e., By is a diagonal approximation of the Hessian of g at h¥.

Bertsekas [69] proposes approximate Newton methods of this type to optimal routing
problems in computer communication networks (see Section 2.6.5). Bertsekas argues that
with the above choice of the scaling matrix, the values of the parameters 7, can preferably
be chosen around unity, and he gives a method of the form F"(DZ[Cr]). He also discusses
the possibility of updating several O-D pairs simultaneously; see Section 4.3.3. (See also
[403], and [68, 81, 399, 80|, which also include discussions on the choice of the parameter
vk based on line search strategies such as those in [67].) This algorithm is extended to
asymmetric assignment models ([78, 594]); see Section 5.3.5.

This algorithm is (obviously) highly related to scaled reduced gradient algorithms. Let
rg be a basic route, and consider the transformed Problem (4.46). Let v > 0 and B;; be
a diagonal matrix in the non-basic variables. Then (4.53) reduces to

y* = max {0, hY, bk ( W(hk) cirb(hf))}, Vr € N. (4.55)

A diagonal approximation of a reduced Newton method is obtained from choosing

by = D (8ira = birga) 'ty (fa(hi)).
acA

Observe that if a route has a higher cost than the basic one, then its flow is reduced,
proportionally to the cost difference, and that if such a route has a zero flow, then its
flow will stay at zero. (For this reason, these routes need not be included in the updating
step.) Note, however, that the swapping rate is not proportional to the flow, as is normal
for reduced gradient methods. The result is that in practice, the algorithm may more
quickly identify the routes that should receive a zero flow, especially if the basic route
is chosen to be the cheapest one. (Using line search strategies for choosing 7, the line
search can actually continue beyond points at which some route receives a zero flow.)

Bertsekas [71, 82, 65] proposes this algorithm for a restriction of the optimal routing
problem in a decomposition scheme of the form F"(DZ[CRr]).

Although the algorithms discussed above are much more efficient than the Frank-—
Wolfe algorithm, their convergence rates are still only linear; in order to obtain rapid
convergence near the optimal solution, it is necessary to include off-diagonal terms of
the Hessian matrix to take into account the interactions among the routes within each
commodity and among the different commodities, and to introduce some form of line
search procedure. We are hence led to consider Newton type approaches.

Newton type approaches

Bertsekas and Gafni [79] present a superlinearly convergent projected Newton ([67, 70, 72])
algorithm for the solution of the link-route formulation of [TAP] embedded in a column
generation scheme. They propose solving each quadratic subproblem approximately with
a conjugate gradient algorithm, and show that computations can be performed directly
on the network without the need to store Hessian information explicitly; this is a crucial
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property for its applicability to large-scale problems. An application to a small example
is presented in [400].

To illustrate the possibility of improving the convergence rate of an algorithm by em-
bedding it in an algorithm with a higher convergence rate with only minor modifications to
the existing algorithm and increase in storage requirements, Dembo and Tulowitzki [241]
apply a truncated Newton algorithm to the link-node formulation of [TAP], in which the
quadratic subproblems are solved approximately using the Frank—Wolfe algorithm or its
PARTAN modification. (This is a special case of a truncated partial linearization algo-
rithm.) In the link-node formulation, the Hessian matrix is diagonal and easily computed
(provided of course that the link travel cost functions are differentiable). Applications to
the Hull and Winnipeg networks demonstrate a speedup of around 60 % or more compared
to the original algorithm; the best results were obtained when at most four iterations of
the Frank—Wolfe algorithm were applied on each quadratic subproblem. (Note that if only
one iteration of the Frank—Wolfe algorithm is used in each main iteration, then the overall
algorithm reduces to the Frank—Wolfe algorithm.) In order to obtain better asymptotic
behaviour, Dembo and Tulowitzki suggest replacing the Frank—Wolfe algorithm with one
more rapidly convergent.

Newton type methods have also been applied to link-node formulations of single-
commodity problems; such algorithms can be applied to solve each single-commodity prob-
lem in a decomposition scheme over commodities. Dembo and Klincewicz [237] present a
scaled reduced gradient approach, while Klincewicz [558, 559] (see also [545]) presents an
exact Newton algorithm, in which conjugate gradient techniques are used in the solution
of the quadratic subproblems. The algorithm exhibits a quadratic convergence rate, and
(similar to the algorithms of Bertsekas and Gafni [79, 400], applied to link-route formu-
lations) the computations may be performed using graph operations. Truncated Newton
methods are discussed in [235, 303, 236, 1011].

One common property of the methods for the solution of [TAP;] discussed so far is
their primal nature, that is, they are based on generating a sequence of primal feasible
solutions and improving search directions. This property, together with the fact that the
problem data for a certain commodity varies only slightly from one iteration to the next
(and then only in the objective function), facilitates and motivates the use of truncated
primal algorithms for each single-commodity problem, reoptimized from the solution to
the previous problem. When a single-commodity problem solution is terminated, a primal
feasible and near-optimal solution is then at hand.

In contrast, a dual algorithm generates a sequence of primal infeasible solutions, and a
primal feasible (and simultaneously optimal) solution is obtained only in the limit of this
sequence. On the other hand, dual algorithms are very easy to implement and use, and
they are well suited for parallel and distributed computations. In the next section, we shall
outline the basic algorithm approaches for the solution of [TAP;] using dual techniques;
we shall also discuss the possibility of finitely generating primal feasible solutions within
a dual algorithm, for use in criteria for finite termination.

Dual approaches

We consider the single-commodity Problem (4.42), where for simplicity of presentation
we drop both the iteration counter and the commodity index; further we let g(f) denote
the restriction of 7' to the commodity in question, and thus arrive at the problem (cf.
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Section 2.2.2)

min g(f) = > g;(fii), (4.56a)
(4.7)eA
subject to
Do fu=d fi = &, VieN, (4.56b)
JEW; JEV;
fii 2 0, V(i,j)e A (4.56¢)

Let m; be the multiplier for the flow conservation Constraint (4.56b) corresponding to
node 2, the Lagrange function be defined by

L(f,m) E g(f) + 7 (Af —d) = g(f) + > m ( > fii= 2 fi— dz‘) : (4.57)

ieN JEW; JEV:

and the dual problem by

max (), (4.58a)
where

f(w) = Ifnzlgl L(f,m) (4.58b)

= —dTﬂ' + Z min {gij(fij) + 7T — ’R'j}. (458C)

(i)eA 1920
We assume throughout this section that each function g;; and g;; is coercive on R,
[cf. (2.29)]; this ensures the existence of a (unique) solution to (4.58c) for any values of
7, and ultimately that the dual Problem (4.58) has an optimal solution.
The solution to the Subproblem (4.58¢) is denoted by f(ar); the solution to each strictly
convex single-link problem is given by

fia(m) = fij(m; = 7i) = max {0, gi;(m; —m:) 7'}, V(i,5) € A,

where gz’j(-)_l denotes the inverse function of the derivative of g;;. Some properties of the
dual problem are given below. (For proofs, we refer to [785, 83, 84].)

Theorem 4.3 (Properties of 6) The dual objective 0 is finite, continuous, concave and
differentiable, with

Vo(w) = Af(w) — d. (4.59)
Further, 0(w) < g(f*), for all @ € RV,

Theorem 4.4 (Relationships between (4.56) and its dual) Strong duality holds, i.e., for
any dual optimal solution w*, O(7*) = g(f*). Furthermore, f* = f(7*).

The dual optimal solution is not unique, due to the linear dependence of the Con-
straints (4.56b); the potentials 7% — 77, (7,7) € A, however, are unique.

The dual problem may be solved by any technique for unconstrained, differentiable
convex programs, but its special structure motivates the use of network-based methods.
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The set of optimal solutions to (4.58) is the set of solutions to the system of nonlinear
equations

V() = 0, (4.60)

which, from (4.59), is equivalent to determining node prices such that the divergence (or
imbalance) of each node,
def 00(7r)
bi(m) = —4 == Y fiilmi =) = Y2 fiilmi — m5) — di,

JEW; JEV;

is zero. A natural approach then is to iteratively choose an unbalanced node, and balance
it by adjusting its node price. In iteration k, let ¢ be the node chosen. Assume without
any loss of generality that &;, (w*) > 0. The function é;, is non-decreasing in 7;,; let
mF = 7k for all 1 # iy, and 775“:1 = wf — I for some I}, > 0 such that &, (7*1) ~ 0.
The solution of this equation amounts to adjusting the flows of the links initiated or
terminating at node ¢, so that the node receives a (approximately) balanced flow. [The
proper value of [;, is found for instance by defining an interval of / in which ¢;, changes sign,
and performing a (inexact) line search within this interval (e.g., [1009, 584]).] A search for
a solution to &;, (w**1) = 0 by an adjustment of 7;, is equivalent to performing a line search
along the coordinate 7;, with respect to #, and therefore this rather intuitive approach is
a Gauss—Seidel method for the solution of the dual problem. Since it is unconstrained,
the node prices may also be updated simultaneously, thus defining a Jacobi algorithm.

This simple scheme has a very long history in the solution of nonlinear flow prob-
lems, such as trip distribution (see Section 1.5.2), constrained matrix problems (e.g.,
[155, 817, 702]), and single-commodity flows (e.g., [1009, 77, 83, 1010]). (Surveys of such
methods are given in [735, 156, 614, 84, 909, 1007].) Under standard assumptions, the
sequence {f(7*)} is known to converge linearly, provided that the indices are chosen
according to either the essentially cyclic or the Gauss—Southwell node ordering ([627]).
Under additional assumptions on the dual optimal solution, the dual sequence {m*} con-
verges, and the ordering can be made arbitrarily, as long as each node is iterated upon
an infinite number of times ([77, 83, 909, 915, 914]); this enables the use of distributed
computations, whereby the node prices are simultaneously updated by several processors,
and asynchronous computations (see Section 4.2.2), for which major speedups have been
reported in applications to single-commodity flows ([77, 1010, 915, 159, 1008]).

It is of little advantage to balance a node very accurately at any given step of the
algorithm; indeed, its balance will later be destroyed when iterating on an adjacent node,
and, partly for this reason, each node must be iterated upon a large number of times.
(It was indeed observed in [584] that for well-conditioned problems the best results were
obtained from choosing the values of 775“:1 at the midpoint of the bracketing interval
discussed above.)

The efficiency of coordinate ascent approaches is known to be high initially, and slow as
an optimal solution is approached; its behaviour is also very sensitive to the conditioning
of the problem (e.g., [83, 584] and [43, Sec. 8.5]). In order to obtain rapid convergence near
an optimal solution, a Newton-type approach must be used (to which the coordinate ascent
procedure provides an advanced starting solution). In conjugate gradient approaches, the
network structure may be utilized efficiently (e.g., [21, 614, 514, 946, 447]).

In light of the fact that in the decomposition scheme a sequence of single-commodity
flow problems are to be solved, it is crucial for the efficiency of the overall algorithm that
the computational effort spent on solving an individual single-commodity problem is kept
low, and thus its solution must be truncated prior to finding its optimal solution. Even
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though it is not necessary to obtain a primal feasible solution from a single-commodity
problem in order to start solving the next one,?? it is of advantage computationally,
since with feasible solutions at hand, it is possible to devise effective termination criteria
for the solution of each single-commodity flow problem as well as the overall scheme
based on upper and lower bounds on the corresponding optimal value. A disadvantage
of a dual scheme then is that a primal feasible solution is obtained only in the limit
of the sequence {f(mw*)}, i.e., simultaneously to obtaining the optimal primal solution.
To obtain a near-optimal and primal feasible solution finitely, it is therefore necessary
to use a primal feasibility heuristic, whereby a subproblem solution is converted into a
primal feasible one. Such a heuristic is embedded in the dual scheme, and applied with
regular intervals. (This idea is very well known in applications of Lagrangean relaxation to
combinatorial optimization (e.g., [332, 333]), but has been studied and used surprisingly
little for continuous optimization problems.)

If w* is near-optimal, then f(a*) is both near-optimal and near-feasible to the primal
problem (e.g., [590, Sec. 8.3] and [43, Sec. 6.5]), and the manipulation needed in order
to obtain feasibility tends to zero. A heuristic procedure for converting a subproblem
solution into a feasible solution to (4.56) should fulfill two requirements. Firstly, in order
to obtain the optimal solution in the limit, the heuristic alteration of the subproblem
solution should be conservative in the following sense. Let = P(f¥) be a heuristic
projection of the subproblem solution f* = f(#*) onto the feasible set F of (4.56). If the

mapping P : %El — I satisfies

{IIP(f) — f||} — 0 when {||Ppn(f) - f||} — 0, (4.61)
then, from

ok * ok * D *

[ — £ < NIE° = £5) + I1E7 — £ = [[P(E") — £°)) + |1 — £7]],

{fk} — f* follows ([581, 617]). Hence, under the Requirement (4.61) the sequence of
solutions generated by the feasibility heuristic tends to the optimal solution. Secondly, in
order to make the heuristic procedure computationally cheap, the structure of the feasible
set must be exploited in its construction.

The first heuristic of this kind for nonlinear flows is given by Curet [190].2* The heuristic
adjusts an infeasible flow through the solution of a capacitated linear flow problem, which
essentially minimizes the maximal flow change in any link necessary in order to obtain
feasibility; it can be shown to fulfill (4.61). A recent study of primal feasibility heuristics
has been made by Marklund [648]. Embedded in a dual gradient method for quadratic
transportation problems, three heuristics are applied; the first is similar to Curet’s but
minimizes the total flow rerouted, the second uses a breadth-first search to reroute the
flow in a residual graph formed by the non-balanced nodes, and the third further takes the
travel cost into account by rerouting the flows along cheapest routes in the same residual
graph. All three heuristics are more efficient than Curet’s in computational comparisons,
and provide better primal solutions.

Non-cyclic decomposition algorithms

Choosing the sequence {ix} of indices according to the present conditions instead of to an
a priori defined ordering of the commodities [such as (4.28)] could lead to a significant

22This is clear if one views the decomposition scheme dually as a decomposition scheme over commodi-
ties for the solution of the Lagrangean dual formulation of the multicommodity problem [TAP].

23The heuristic applied by Ventura [946] to generate upper bounds in dual algorithms for quadratic
network problems does not fulfill (4.61).
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improvement in the practical performance of a decomposition scheme. Preferably, such
an ordering could be defined by the choice of an index 7 in iteration k corresponding
to the commodity which is, in some measure, farthest from an optimal solution. (Such
orderings define generalizations of the Gauss—Southwell (remotest) ordering ([155, 623]),
and may be viewed as block coordinate-wise steepest descent methods.) A number of
such measures are defined by the solution to the shortest route Subproblem (4.3) based
on the travel costs at the flow f*.

Petersen [751] defines a measure of the violation of the Wardrop conditions for each ori-
gin as a quadratic function of the node prices associated with the shortest route tree, and
chooses the index i; corresponding to the origin with the largest such measure. In order
to reduce these additional computations in the decomposition scheme, the shortest route
trees are reoptimized. The single-commodity flow problems are solved using a piecewise
linear approximation of the objective with few linear segments (e.g., [548, Sec. 8.1] and
[540]), and the resulting capacitated, linear single-commodity flow problems are solved
by an out-of-kilter method (e.g., [369, 548, 14]). In one of the algorithms proposed by
Migdalas [676], the index 7y is chosen corresponding to the O-D pair with the maximal
contribution to the value of the gap function,

. N P
i € arg max {;?EELF)? t(f") " (f; }Q)}a

or, in other words, the maximal difference between the total transportation cost in
a commodity and the total cost of transportation along a shortest route [cf. (3.14)].
Migdalas suggests and validates the application of the Frank—Wolfe algorithm to the
single-commodity problems [TAPfk], supplied with truncation strategies of the form (4.21);
this algorithm is a particular example of a truncated sequential partial linearization algo-
rithm.

4.3.3 Parallel decomposition algorithms

If the necessary computer facilities are available, then the sequential decomposition algo-
rithms discussed previously can be implemented such that each single-commodity problem
is solved simultaneously, followed by a global update of the commodity flows. Each such
problem, or a larger subset of the single-commodity problems, would then be solved by
an independent processor. (Since the single-commodity problems can be very large, these
processors need of course to be quite powerful.)

Jacobi type approaches

The natural parallel decomposition scheme is the block Jacobi method, in which the
structure of the original problem is kept, but the interactions between the commodities
are ignored; in iteration k, |C| problems [TAP¥] of the form (4.42) are solved in parallel
(at least conceptually). Note that the Jacobi algorithm is the result of choosing *(f) =

iec @i (fi), with [cf. (4.31)]

fai‘l'z fk
k _ k ek j#ilay
PhE) = T(EE £ E) = S [ ta

acA’0

(s)ds.

The algorithm of Feijoo and Meyer [321] is a Jacobi algorithm for the link-node for-
mulation. The subproblems are solved using piecewise linear approximation techniques.
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Numerical examples indicate an increased efficiency of the parallel algorithm with an in-
crease in problem size; this is natural, since the fraction of the total computational time
that is spent on the serial part of the algorithm (e.g., the line search) then decreases.
The algorithms of Chen and Meyer [168, 167, 169] resemble the Jacobi algorithm. Their
methods are based on a scaled separable approximation of 7', which may be derived from

choosing ([746])

) =X [

acA’0

Ufai+z ifak
P (s)ds, o >0,

i.e., the subproblem is an extension of that of Jacobi (which follows from choosing o = 1)
in which a diagonal dominance may be introduced (¢ > 1). The subproblems are solved
using a method similar to that of Feijoo and Meyer, but also include a trust region
approach for limiting the number of linear segments. Sequential and parallel versions of
the algorithm are considered, as well as a combination of the two, for which speedups
over serial implementations indicate a relatively small overhead of communication and
idle time of the processors.
The algorithm of Larsson et al. [584] results from choosing ([746])

()= X [ ta(e)ds

acA’0

the subproblems are solved using a dual coordinate ascent method. The above function
@ 1s not iteration dependent, i.e., in the subproblem of one commodity the flows of the
other commodities are removed from the network; the performance of the algorithm should
therefore be expected to be less efficient than of the Jacobi approach.

The algorithms given above are based on solving subproblems with an objective of the
same form as the original one. This is of advantage in the sense that the number of main
iterations that is needed in order to obtain an accurate solution is low; on the other hand,
each subproblem is difficult to solve, since the objective is highly nonlinear. Moreover,
the complexity of the subproblems corresponding to the different processors may be very
different, and hence the efficiency of the parallel algorithm may be degraded due to some
processors frequently becoming inactive.

One possibility for improving the efficiency is to introduce asynchronous computations
(see Section 4.2.2). Another possibility is to modify the Jacobi subproblems so that the
individual subproblems are of the same complexity. The approaches discussed next also
lead to much easier subproblems.

Gradient projection type approaches

Consider the link-route formulation of [TAP], and the corresponding Jacobi subproblem
[TAP;] of the form (4.45). A second-order approximation of the Jacobi subproblem cor-
responds to choosing each of the functions ¢ as

i) = 32 (eanthtyne, -+ 3270 0 - at ) (1.62)

reﬁi

each resulting subproblem objective is of the form (4.62), and therefore this linearized
Jacobi algorithm is equivalent to a diagonalized Newton algorithm [cf. (4.54)].

Bertsekas [69] suggests using such an approach for the solution of the optimal routing
problem in a decomposition algorithm of the form F"(DL[Cr]) (see also Section 4.3.2 for
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sequential versions); the possibilities for operating the algorithm in a distributed manner
are discussed particularly.??

A method related to the gradient projection methods is the projection method of
Rosen [789]. Schwartz and Cheung [821] apply it to the link-node formulation of the
optimal routing problem; they observe that the projection decomposes into independent
single-commodity problems, and find that the algorithm compares favourably with the
Frank—Wolfe algorithm for small networks. For larger networks, however, it is proba-
bly prohibitively expensive since the projection operation does not utilize the network
structure. Rosen’s projection method adapts much better to restrictions of the link-route
formulation. Such an approach is applied by Soumis [865] in a column generation algo-

rithm of the form F"(DZ[Cr]).

4.3.4 Aggregate simplicial decomposition algorithms

What is traditionally referred to as a simplicial decomposition algorithm for the traffic
assignment problem is, according to what has been said in Section 4.2.3, a column gen-
eration algorithm based on the Frank—Wolfe subproblem, and normally also based on an
aggregated representation of feasible link flows. Applied to traffic assignment, the basic
algorithm consists of the same steps as the Frank—Wolfe algorithm (see Section 4.1.1),
with the exception of Step 3, which is replaced by the addition of the all-or-nothing solu-
tion, yf“ , obtained from Step 2, to the set of previously generated all-or-nothing solutions
(i.e., X := X U {y*}), and the solution of the restricted master problem

[RMP]
min T(f), (4.63a)
subject to
f o= XfF 4+ 3 Myl (4.63b)
jex
A+ N =1, (4.63¢)
jex
AN >0, Vjiedx (4.63d)

to yield f*+1.

The feasible set of [RMP] is the convex hull of the previous solution f* and the convex
hull of the known subset X" of the set of extreme points of 7, i.e., the set of link flows
that can be described as convex combinations of the known all-or-nothing solutions. (Dis-
regarding the definitional Constraints (4.63b), there is hence only one linear constraint in
[RMP].) We note here that the maximum number of extreme points needed to describe
any feasible link flow solution to [TAP] is |A| + 1, while the number of columns in the
complete master problem is [](, ,yec |Rpal-

The distinction between two aggregate simplicial decomposition algorithms for [TAP] is
defined by the respective method used for solving [RMP], and the rules used for dropping
columns from X In terms of the taxonomy introduced in Section 4.2.5, all these methods
can be described as column generation methods of the form F"(C4). Below, we outline
the development of aggregate simplicial decomposition (ASD) methods for [TAP].

24The algorithm can also be executed in a partially asynchronous fashion (see Section 4.2.2); conver-
gence results for this algorithm may be found in [916, 917, 918, 84, 913].
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The first ASD scheme is due to Cantor and Gerla [420, 141], who develop the eztremal
flows method for the optimal routing problem. They propose solving [RMP] by using
Rosen’s [789] gradient projection method, which is easily applied because of the simple
structure of the constraints of [RMP]. They employ Carathéodory’s Theorem explicitly
in their column dropping rule, i.e., they allow a maximum of |A| + 1 extreme points in
X. Best [85] proposes to use a conjugate direction method for [RMP].

Florian [347] applies the away step procedure of Wolfe [987] to [RMP]. The away
step direction is similar to the Frank—Wolfe direction, but is directed from the worst
extreme point, and actually leads to a better convergence rate (see also [440]). (The
away step approach is not directly applicable to [TAP], since it involves calculating the
direction from the longest simple route pattern towards the current flow, and this is
an NP-complete problem (e.g., [411, p. 213]), due to the presence of cycles.) When
comparing directional derivatives to that of the Frank—Wolfe direction, the away step
direction was always chosen. It is interesting to note the resemblance between the away
step procedure and the class of equilibration operator approaches (which was interpreted
as convex simplex methods in Section 4.3.2). Let pky,, = y* — f* be the Frank-Wolfe
direction and p¥ = f¥ — z* the away step direction, where y* and z* are, respectively, the
shortest and longest route patterns given f¥. Then pk;, 4+ p% = y* — z*, i.e., the sum
of the Frank—Wolfe and away step directions, yields the direction from the longest route
pattern towards the cheapest one, and hence the direction of the equilibration operator
approach.

Dow [267, 941] applies two algorithms for [RMP], a Frank-Wolfe approach and a
method based on second derivatives. The latter produced better results, but in a limited
comparison with a heuristic quantal loading procedure (see Section 1.5.4), the results
were discouraging. He concludes, however, that the simplicial decomposition approach
is preferable from the viewpoint of solution analysis, since more information about the
optimal solution becomes available.

Guélat [439] presents a reduced gradient approach for [RMP]; the overall algorithm is
restarted at regular intervals by the dropping of all the extremal flows stored.

The fact that [RMP] may have relatively few variables enables the use of second-order
methods for its solution; von Hohenbalken [953] was the first to suggest such methods.
Pang and Yu [739] approximate each [RMP] by a quadratic program (as suggested in
[953]), for which they apply the algorithm in [931]. The algorithm shows good perfor-
mance, and is also extended to solve asymmetric models (see Section 5.3.5).

Hearn et al. [595, 480, 481] use the projected Newton method of Bertsekas [67, 70, 72]
to solve [RMP], and also consider a quadratic approximation as in [739]. They investigate
the result of [479], which states that finite convergence is obtained if the maximum number
of extreme points stored satisfies r > dim (F*)+1, i.e., if the maximum number of points
retained is higher than the dimension of the optimal face of F™ (see Section 4.2.3), by
varying the value of the parameter r. Results taken from experiments on traffic assignment
and other nonlinear network flow problems are very promising; the number of shortest
route calculations is small compared to most other ASD schemes and the overall algorithm
is more efficient, especially when the value of r is large.

In order to enable the use of second-order methods, the parameter value must be kept
small, but the lower it becomes, the larger number of restricted master problems will need
to be solved. It is therefore important to give the parameter a proper value; the difficulty
of estimating the dimension of the optimal face of ™ a priori, however, makes this choice
very difficult. The so called restricted simplicial decomposition (RSD) algorithm is still
considered as one of the state-of-the-art codes for traffic assignment.
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Montero [684] investigates many aspects of the implementation of an ASD scheme,
including the proper choices of the starting solution, shortest route algorithm, algorithms
and stopping criteria for each restricted master problem, and criteria for dropping columns
with small weights. Experiments are performed on most of the known test networks in
the literature and large networks modelling the cities of Barcelona and Madrid. In com-
parisons with different projection algorithms, projected Newton methods become more
efficient than fixed metric projection methods when the dimensions of the restricted mas-
ter problems are in the order of ten and above. Fixed projection methods are also shown
to be very sensitive to the choice of step length parameter. For larger networks, it is
clear that column dropping is necessary; moreover, a column with a zero weight in the
optimal solution of a restricted master problem can always be removed without affecting
the following main iterates.

4.3.5 Disaggregate simplicial decomposition algorithms
Relations between column generation and simplicial decomposition revisited

By combining the analysis made in Section 2.2.2 on the relations between the link-node
and link-route formulations of [TAP] and the analysis made in Section 4.2.3 on the con-
nections between column generation and simplicial decomposition, we here conclude the
analysis by providing the connections between column generation and simplicial decom-
position for traffic assignment problems.

The link-node formulation of [TAP] is a special case of the general Problem (4.33)
of Section 4.2.3; the Constraints (2.13) defining F'"™ are easily verified to be of the form
(4.33b)—(4.33c), where x; = f; and n; = | 4] for all 7 € C (i.e., m = |C|). The feasible sets
X;, 1 € C, correspond to the commodity flow conservation Constraints (2.13a)—(2.13b),
and the set 7 to the link flow definitional Constraints (2.13c). Each extreme point of X;
is a feasible single-commodity flow solution defined by the demand d; of flow carried on
one simple route. The internal Representation (4.34) of the set X; thus corresponds to the
set of commodity link flows defined by all convex combinations of such route flows, and
hence all feasible commodity route flow solutions. The complete master Problem (4.35)
is hence equivalent to an inner representation of the link-node formulation of [TAP]. This
relationship is well known in applications of decomposition methods to multicommodity
network flows ([368, 369, 904, 905, 906, 32, 548, 785, 586, 14, 316, 531]). (Note that the
cycle flows that are present in the link-node formulation are eliminated.)

The restricted master Problem (4.36) corresponds to the case where the sets A; of the
routes in commodity 7 is replaced by a known subset AA?Z-, and is the disaggregated for-
mulation of a restricted master problem in a simplicial decomposition scheme for [TAP].
An aggregated restricted master problem is obtained by defining the columns according
to the Aggregation (4.39) of the extreme points of the individual sets X;; this is equiva-
lent to aggregating individual route flows into all-or-nothing solutions, and results in the
aggregated restricted master Problem (4.63).

To make the relationships to the link-route formulation clear, we substitute the index
i for the O-D pair (p, q), the sets A; for the subsets ﬁpq C R,, and the index j for r, and
introduce the route flow variables h,,, through ([586])

Bopgr = Apgrdpg, Vr € Ryy, Y(p,q) €C. (4.64)

From this substitution, it follows that the internal representation of X; given by (4.34) is
equivalent to the demand feasibility Constraints (2.6b)—(2.6¢) of the link-route formulation



138 The Traffic Assignment Problem

(2.6) of [TAP], and that the disaggregated restricted master problem is equivalent to a
restriction of this formulation to the known subsets 7A?,pq of the routes. This is the familiar
formulation of the restricted master problem of the column generation methods for [TAP],
and we have thus shown that the aggregate simplicial decomposition scheme for [TAP]
is nothing but an aggregate version of the general column generation scheme for the
link-route formulation.

The link between the two algorithm classes is the disaggregate simplicial decomposition
(DSD) algorithm, i.e., a simplicial decomposition scheme where extreme points are stored
individually for the different feasible sets in the Cartesian product [];cc X;; each such set

is hence given an internal representation, which results in using one convexity constraint

for each set X; in [RMP].

Disaggregate simplicial decomposition

The term disaggregate simplicial decomposition is due to Larsson and Patriksson [586],
who also establish its relationships to column generation methods. In their algorithm, each
restricted master problem is solved using a combination of two decomposition methods
over O-D pairs; a reduced gradient algorithm is employed to reach a near-optimal solution,
after which a diagonalized Newton method is used. Shortest route columns are generated
after the solution of each restricted master problem, and thus the overall method is of the
form F"(Cr[DF]). Numerical tests performed on most known test networks indicate a
very rapid convergence, and in particular that the number of shortest route calculations
are minimized in this approach. (This is due to the fact that routes are stored individually,
and that shortest routes are not calculated until a restricted master problem has been
solved sufficiently accurately.)

We next discuss some important consequences of the choice of aggregation in simplicial
decomposition.

4.3.6 Comparisons between aggregated and disaggregated rep-
resentations

Size of master problems and finite convergence

We first note that a complete aggregated master problem has only one linear (convexity)
constraint, while the number of columns, which is the number of possible all-or-nothing
solutions, is [T, g)ec | Rpql; the maximum number of columns needed to express any feasible
solution and an optimal one is |A| + 1 and dim (F*) + 1, respectively, where dim (F™)
is the dimension of the optimal face of F”. Correspondingly, a complete disaggregated
master problem has |C| linear (convexity) constraints, while the number of variables is
2 (paa)eC IRy, which is much smaller than in the aggregated version; the maximum number
of columns needed to express any feasible commodity flow solution and an optimal one in
particular is [C|(|A| 4 1) and 3, yec(dim (Fy,) + 1), respectively.

As was noted in Section 4.3.4, it is very difficult to estimate a prior: the dimension
of the optimal face of F", and consequently the maximum number of extreme points
of F" to be retained in the restricted master problems. In the DSD scheme, let r,, be
the maximum number of routes retained for commodity (p,¢). The minimum value of
this parameter that ensures the finite convergence of the algorithm is, from the above,
dim (F,) + 1. The dimension of the optimal face of the commodity link flow polyhedron
F,4 1s the number of routes actually used within the commodity in an equilibrium solution,
minus one. It follows that in order to yield finite convergence, the value of the parameter
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rpe must not be less than the number of routes used. This is perhaps an obvious result,
but it illustrates that in a disaggregated version of the simplicial decomposition scheme,
the storage requirements needed can be estimated from, for instance, knowledge of the
level of congestion of the traffic network being studied.

Levels of aggregation

From the tests performed with the DSD algorithm in [586], it is reported that the number
of main iterations needed is, approximately, bounded by the maximal number of routes
utilized in any O-D pair. This implies that the total number of shortest route calculations
needed is very limited, and that the DSD algorithm seems to be optimal with respect to the
number of shortest route calculations. (It is well known that in ASD schemes for large
networks, the vast majority (around 80%-90% according to [481]) of the calculations
is spent in the shortest route subproblem phase. In the disaggregated version, these
portions are essentially reversed.) Among the optimal route flow solutions, the DSD
algorithm seems to provide that which utilizes the minimum number of routes. Larsson
and Patriksson [586] conclude that in the disaggregated approach, column dropping is
unnecessary. (The advantages of using a disaggregated representation in decomposition
methods is therefore supported both by applications to nonlinear ([586]) and linear ([531])
network flow problems.)

Because each route flow may be adjusted independently in the disaggregated version,
an optimal solution may be reached much faster in terms of numbers of iterations than in
the aggregated version, where one route may be present in several extreme points. (One
may say that the routes have a greater striving for the optimum.) The difference becomes
even more pronounced with a smaller value of the r parameter in the aggregated version.

This is illustrated below, where we also compare the generation of the iterate f**! to
that defined by the Frank—Wolfe algorithm. For simplicity of presentation, we assume
that no column dropping has been used, and that the initial solution is given by an

all-or-nothing solution.
In the Frank-Wolfe algorithm, f**! is given by [cf. (4.5)]

k=1
fk+1 _ (1 _ )\k) (Z Xfyj) + /\k k’ )\k c [0’1],
7=0

where

Xj _ Hf;ol(l - )\l)v j: 07
Rt f;j1+1(1—/\l), j=1,...k—1.

In the ASD algorithm,
k
£ — )\jyj’
where
SN =1, M >0, V€ {0,...,k}.

Finally, in the DSD algorithm,

k‘pq

fzic;-l = Z )\;qy;q = Z 6pgraAperdpq, Y(p,q) €C,
7=0

reﬁpq
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where

kpq

SX =1, A, >0,¥5€{0,.... k), Y(p,g) €C,
7=0

and where we let ky, = |R,,| — 1 and use the Substitution (4.64).
The DSD algorithm reduces to the ASD algorithm when /\%q = M for all (p,q) € C,

which further reduces to the Frank-Wolfe algorithm by letting A = X’ for all j < k —
1. (The Frank-Wolfe algorithm is therefore an ASD algorithm where the previously
generated all-or-nothing solutions are given weights according to earlier line searches.) It
is clearly seen how an aggregation imposes interactions among the individual routes.

The reader should note that, although search directions in an iterative algorithm for
[TAP] may be described in terms of individual commodity flows, (inexact) line searches
should always be performed with respect to total link flows, since the evaluations of the ob-
jective then involves fewer operations; it is always possible to translate a commodity-based
search direction to one in the space of total link flows, by the use of the Relations (2.6d)
and (2.13c). (The step length obtained is then used in the original direction.) Special
care may need to be taken in order to guarantee that the nonnegativity constraints are
satisfied in the space of commodity flows, since a feasible step in the space of total link
flows may not correspond to a feasible step in the space of commodity flows.??

Effective termination criteria based on lower bounds on the optimal objective value are
not only available in the Frank—Wolfe algorithm. A lower bound on the optimal value
of each restricted master problem of a simplicial decomposition scheme is determined
automatically when we evaluate a value of the gradient, from the lowest value among its
components; this is in fact the lower bound that the Frank—Wolfe subproblem, applied to
the restricted master problem, would produce at the given point.

Reoptimization facilities

It is necessary for an assignment algorithm to have a good reoptimization capability when
traffic assignment problems arise as subproblems in, for instance, the solution of a time-
sliced traffic assignment problem or an equilibrium network design problem, and also
when intercity freight flows or origin-destination matrices are to be estimated.

Larsson and Patriksson discuss the reoptimization capabilities of the DSD algorithm
with respect to changes in link performance functions, travel demands and network topol-
ogy. The disaggregated representation enables these perturbations to be much more
efficiently handled than in an aggregated formulation. Consider, for instance, a change in
the demand vector; because the solution is described in terms of individual route flows,
through a simple scaling of these flows, the optimal solution to the unperturbed problem
is a feasible solution to the perturbed one. In an aggregated formulation, however, a per-
turbation of the demand vector destroys the feasibility of the previous solution. Topology

25 Assume that [TAP] is solved with a truncated partial linearization algorithm in the space of total
link flows. In iteration k, let the subproblem [TAP%,] be solved approximately with aj, iterations of a
descent algorithm, and assume that the search direction generation step of this algorithm yields auxiliary
flows y¥ € F?, i =1,..., ay, that all correspond to commodity-feasible flows. (If, for instance, [TAP’;k]

is solved using a truncated Frank—Wolfe algorithm, then the solutions y* correspond to all-or-nothing
solutions, which are clearly commodity-feasible.) The maximum step in the obtained search direction,
y* —f* such that the commodity flows are nonnegative is the maximum step I such that £¥ 4 [(y* —f¥) is
in the convex hull of the points y¥ € F™, i =1,..., ar, and can easily be calculated by only keeping track
of the step lengths taken in the subproblem phase. Indeed, if the step lengths used in the subproblem
phase are a;, i = 1,..., ag, then the maximum step is 1/(1 — [[/2,(1 — a;)).
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changes are also more easily handled because of the fact that more information is stored;
the removal of links only affects the individual routes that utilize these links, while in an
aggregated representation of feasible flows, all columns must be removed. The excellent
reoptimization capabilities of the DSD algorithm have been utilized in extensions to ca-
pacitated traffic assignment (see Section 4.6.1) and stochastic user equilibrium problems
(see Section 4.5.2), as well as to solve O-D matrix estimation problems ([273]).

With modern computer technology at our disposal, route-flow based algorithms have
become practical tools for the analysis of traffic networks. This is important for two main
reasons. Firstly, it is increasingly important to obtain route flow information, and link-flow
based algorithms do not provide this information automatically; route flow information is
crucial for the estimation of pollutant emissions and induced origin-destination flows in
subareas, and of the potential uses of route guidance strategies. Secondly, the excellent
reoptimization capabilities of route-flow based algorithms provide the means for analyzing
different scenarios quickly.

A unified description of column generation methods for [TAP]

We conclude our discussions on column generation algorithms for the solution of traffic
assignment problems by providing a list of references for such methods.

The list is given in an increasing order of the number of shortest route calculations
that can be anticipated to be needed to yield an optimal solution. (A majority of these
methods can be viewed as methods in which the solution of each restricted master problem
is truncated very early; the total number of routes generated, and possibly also the total
number of routes used in the equilibrium solution obtained, then increases significantly.)

Fr(Cr[DE]): [586]

Fr(Cr[DS]): [611, T13]

FT(D3[Cr]): [424]

FT(DE[Cr]): [359, 717, 865, 69, 71, 82, 352, 813, 65, 608]
Fr(DE[CR]): [69, 957]

F"(C4): [420, 141, 85, 347, 267, 941, 439, 739, 595, 480, 481]

4.3.7 Dual algorithms

The fundamental property of a traffic system in equilibrium, as described by Wardrop’s
first principle, is characterized in terms of travel times. The natural basis for mathematical
models for the analysis of tratfic equilibria would therefore be travel time variables, instead
of flow variables which is the predominantly utilized modelling basis. In Section 2.3.3 we
developed a mathematical model for finding the equilibrium travel times as an inverse (or
dual) problem to the standard traffic assignment problem. In this section, we outline the
methods proposed for the solution of this inverse problem, and show how it can be used
to indirectly solve the traffic assignment problem.

Consider the program [DTAP-E], that is, the Problem (2.38). According to Theo-
rem 2.6, it is a convex program with a subdifferentiable objective, and can therefore be
solved using any algorithm for nondifferentiable convex programs. Its nature as a dual
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program, however, would seem to suggest our using dual ascent or subgradient optimiza-
tion approaches; the latter applies to [DTAP-E] as follows.

Given a tentative travel cost, u* > t(0), a subgradient of § at p* is computed. Ac-
cording to Theorem 2.6, the subdifferential of § at p* is the convex hull of the values of
the function defined by the link flow definitional Constraint (2.27d) at the solution set of
[SR] and [SC]. Hence, a subgradient is given by

& =y"—f(p");

the vector y* is an all-or-nothing solution which is formed by the shortest routes given
the link travel cost vector p* and carrying the demand d* = d(mw(u*)) given by (2.33),
and f(p*) is the (unique) solution to [SC]. The new solution is defined by

W = max {t,(0), uf + 166k}, Vae A, (4.65)

where [, is a step length which guarantees convergence (e.g., [247, 836]). If, for instance,
the sequence {l;} satisfies the divergent series condition

lim [ =0, Z lp = 400, and Z [} < +o0, (4.66)
k=1

k—oo0 el

then the sequence {u*} is bounded and converges to the unique solution p* of [DTAP-E]
([582]). An alternative is to use the well-known modification of Polyak’s [759] step length
formula

0 — 0(p")
lesl®
where the (unknown) optimal value 6* of [DTAP-E] (and [TAP-E], from the strong duality

result of Theorem 2.7) usually is replaced by an upper bound. To obtain an upper bound
on 0*, a feasible solution to [TAP-E] must be generated from the subproblem solution;

Zk:'}/k 0<€1§’}/k§2—€2<2, (467)

in applications of Lagrangean relaxation in general, this is a difficult problem, but in the
application to [TAP-E], the relaxed constraints are definitional, and a feasible solution
is obtained directly from the all-or-nothing solution y*. Hence, with #* replaced by
T(y*,d*), the Formula (4.67) may be used. The use of this formula is questionable,
however, since this upper bound does not converge to #* when {p*} — p*.

Fukushima [389] applies the Method (4.65), (4.67), with 6* replaced by upper bounds
given by all-or-nothing solutions, to [DTAP-E] and shows in limited experiments that it
is at least comparable to the Frank-Wolfe algorithm. In [388], the subgradient optimiza-
tion procedure is replaced by a proximal point type dual ascent algorithm, where each
subproblem is solved using a cutting plane method (see [386, 553, 497, 263]); the basic
algorithm component still is the calculation of shortest routes, and a computational test
performed on the Sioux Falls network shows a behaviour similar to that of the Frank—
Wolfe algorithm.

Goffin [428, 429] applies an ellipsoid algorithm and also subgradient optimization to a
problem of the form [DTAP] which arises from a dualization of an optimal routing prob-
lem. He concludes that both algorithms are sensitive to the choice of tuning parameters
(in the case of subgradient optimization: the step length parameters), but are efficient
when parameters are properly chosen.

The above approaches will provide equilibrium travel costs in the limit of {g*}; the
sequence of upper bounds will not, however, converge to the optimal value (and in general
not even come close), and therefore primal optimality is obtained only when f(u*) becomes



Algorithms for the basic model and ils extensions 143

feasible, which occurs in the limit only. In order to yield a (near-)optimal primal feasible
solution to [TAP-E], the dual algorithm must be supplied with an additional scheme for
calculating primal feasible solutions that tend to optimal ones.

Larsson et al. [582] develop a simple scheme for generating primal feasible flows which
optimize in the limit. [This is based on primal convergence results for linear programs
([836, 581]).] In one version of the algorithm the primal feasible solutions are given by

{
f(l)=->y" vi>1, (4.68)
k=1

i.e., as simple averages of the all-or-nothing solutions obtained when calculating the sub-
gradients of #; the sequence of demand flows is constructed analogously. Convergence of
{f(1),d(l)} to the primal optimal solution is guaranteed when the step lengths in (4.66)
are chosen according to Iy = a/(b+ ck), where a,¢ > 0 and b > 0.

Note that the sequence {f([)} given by (4.68) is similar to that given by the Frank—Wolfe
algorithm, and in particular to that given by the MSA algorithm (see Section 4.1.6). The
main difference is that the travel times upon which the generation of the all-or-nothing
solutions are based, in those algorithms are given by t(f*) for some feasible flow f*, while
in the dual algorithm they are given by the values of the dual variables. The experiments
conducted in [582] indicate that {u*} converges more rapidly to the optimal travel times
than {t(f*)} does in the Frank-Wolfe or MSA algorithms.

The dual Procedure (4.65), (4.66) has the nice property that after a finite number of
iterations, the routes solving [SR] are among the equilibrium routes (R,,(u*) C R:,)-
Since the dual method is memory-less, the averaging Process (4.68) may be postponed
until some iteration L, and if the value of L is chosen sufficiently large, then all the routes
defining f(!) will be equilibrium routes. This may accelerate the convergence of {f(I)}
towards f* significantly, and is a major improvement over the Frank—Wolfe algorithm, in
the sense that the weights of the non-equilibrium routes generated early in the Frank-
Wolfe algorithm tend to zero very slowly (see Section 4.1.5).

In contrast to most primal methods for traffic assignment, such as the Frank—Wolfe
algorithm, dual algorithms are quite easily extended to more complex models. (Larsson
et al. [582] show how their method easily extends to traffic assignment models with link
flow observations, capacitated assignment, combined distribution and assignment, and
stochastic models.) Furthermore, an estimate of the equilibrium travel times (which may
be available from either travel time measurements or flow observations) can be used as
an advanced start in dual algorithms, and thus facilitate the generation of a near-optimal
primal feasible solution in a few iterations only; such information can not, however, be
as easily utilized in primal methods, since the information may very well be inconsistent
with respect to the flow conservation constraints.

The cutting planes generated in the methods of [388, 428, 429] are supporting hyper-
planes of the epigraph of 6; these can be used to obtain a sequence of primal feasible
solutions which optimize in the limit. Hearn and Lawphongpanich [476, 477] apply a cut-
ting plane algorithm (which may be interpreted as a nonlinear Dantzig—Wolfe algorithm)
to the dual program of a capacitated traffic assignment problem. (The upper bound con-
straints on f, are appended to [CS].) The evaluation of 6(u*) through the solution of [SR]
and [SC] yields a cut which is included in a linear restricted master problem of the form

max w, (4.69a)

Hw
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subject to
fa(ug)
w < ) {/0 ta(s)ds + pa(ys — fa(ﬂfi))} ., VE, (4.69D)
a€A
e > 0, Va € A. (4.69¢)

It is well known that a primal feasible solution is obtained from the linear programming
dual of this problem, and that this solution optimizes in the limit (e.g., [43, Sec. 6.5]). In
the method of [476, 477], an approximate line search is made in the dual space towards
the solution of (4.69) in order to obtain dual ascent. The algorithm is also extended to
asymmetric models; see Section 5.3.6. Convergence towards the optimal primal solution
can be expected to be faster in terms of numbers of iterations than in the simple averaging
technique of [582]; whether the smaller number of iterations required amortizes the need
to solve a linear restricted master problem in each iteration is uncertain, however.

4.3.8 Network aggregation algorithms

The high computational cost for solving large-scale traffic equilibrium problems has promp-
ted the use of techniques, in which a network is aggregated in some way. An aggregated
network may be defined through the combination of nodes and links into supernodes and
superlinks, but it is more common to extract an interesting subnetwork from the original
one for separate study; the subnetwork usually consists of the main arterials and centroids.

To compensate for the loss of detail, so that the resulting flows and costs that are ob-
tained in the subnetwork are (approximately) consistent with those of the larger network,
it 1s essential that both the level of aggregation and the characteristics of the nodes and
links of the subnetwork (i.e., the O-D matrix and the link travel cost functions) are chosen
appropriately. It is, however, neither possible to define a general aggregation policy that
retains the characteristics of the original network, due to the congestion effects, nor to
derive measures of accuracy of the output from the aggregated model. [This is in con-
trast to linear flow models, where such measures are available ([1015]).] Empirical results
([618, 472, 522, 99, 100, 287]) also confirm that the quality of the results deteriorate with
the level of aggregation.

Although aggregated models are interesting in themselves, iterative aggregation can
also be used as a means for solving large problems. Decomposition algorithms, highly
related to generalized Benders decomposition techniques ([419]), have been proposed by
Dantzig et al. [226] and Hearn et al. [472, 40, 475, 41], and extended to asymmetric
models in [593, 596]. In these algorithms, a network is divided into, for example, two
subnetworks, which are analyzed alternately; through a set of artificial links, the solution
to one subnetwork problem defines an O-D matrix for the other subnetwork, and in the
limit the flows on the subnetworks are consistent with the equilibrium flows of the original
network. These algorithms do not, however, result in a true aggregation of the original
network.

In the heuristic of Haghani and Daskin [448], links where small amounts of flow are
anticipated are iteratively removed from the network. To compensate for the resulting
loss of capacity, the O-D matrix is also updated. Bovy and Jansen [99, 100] consider
aggregating the network while retaining primary links. The network obtained is then
analyzed with the travel cost functions unaltered. As pointed out by Hazelton [470], the
smaller network is required to carry nearly as much flow as the original one, but with
a drastically reduced capacity; this results in an overestimation of the flows and travel
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times on the links. Hazelton investigates the changes of the travel cost functions required
in order to obtain consistent results, for networks of simple structure.

The problem of network aggregation has also been studied from the viewpoints of ap-
plied statistics (e.g., [525, 526]), and of the continuous representation of networks (e.g.,
[192, 215, 217, 834, 808]). See Hearn [472, 475] for comprehensive reviews of the aggre-
gation problem, and an account of aggregation practices.

4.3.9 Other algorithms

Kuhn [570, 571] applies a fixed point technique to the link-route formulation of [TAP].
The algorithm is based on Scarf’s [810] labeling method, which was originally proposed for
economic equilibrium problems. The algorithm is found to work well for small examples;
however the need to enumerate routes makes it inapplicable to larger networks. Similar
fixed point methods are proposed in [827, 410, 1005].

A few attempts have been made to solve the tratlic equilibrium problem by addressing
the Wardrop conditions directly. Although this is of course possible, the solution of
the primal-dual system of optimality conditions by any method for systems of nonlinear
equations would probably not utilize the network structure and thus be applicable only
to very small networks. A Newton-Raphson method is applied to this system by Wilkie
and Stefanek [975]. Kulash’s [573] method is applicable only to linear cost functions, and
involves the inversion of network-based matrices.

The methods of Snell et al. [1000, 860] are based on Pontryagin’s maximum principle.

We finally mention that algorithmic approaches for the basic model and its extensions
have been surveyed earlier in [359, 717, 69, 71, 82, 352, 813, 65, 608, 713, 798, 799, 412,
416, 774, 972, 32, 631, 941, 370, 351, 630, 381, 352, 656, 110, 675, 894, 358].

We now turn to study some algorithms specialized for elastic demand problems.

4.4 Algorithms for elastic demand problems

The development of algorithms for the elastic demand problem has, to a large extent,
been parallel to that of algorithms for the fixed demand model; this is true also for
the heuristics first suggested for use in traffic assignment. In addition, through the fixed
demand reformulations outlined in Section 2.2.4, any method applicable to a fixed demand
problem can be used for the solution of elastic demand problems.

The first convergent algorithms specialized for use in elastic demand models are due
to Gibert [423] and Bruynooghe et al. [132]; the algorithms are essentially adaptations of
the equilibration operator approach. The convex simplex method (embedded in a cyclic
decomposition scheme over origins) is applied by Nguyen [715, 716, 717], and the reduced
gradient algorithm is considered in [713, 717].

In Wigan’s [971] elastic demand algorithm, fixed demand problems are solved itera-
tively using the Frank—Wolfe algorithm. The Frank—Wolfe algorithm may, however, be
extended to solve elastic demand problems directly ([423, 697, 715, 362, 226, 716, 717,
412, 414, 603]).

Assuming that each demand function g¢,, is lower and upper bounded (by l,, and u,,,
respectively), given a tentative flow and demand, (f*,d*), the Frank-Wolfe subproblem
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yields an auxiliary demand

o[l > )
“pg = dpq’ ?f W]}iq = Ypq (dgq)’ V(p,q) €C, (4.70)
Upg, if 7wy, < gp_ql(dpq)a
k
pq . . - .
the shortest routes, and a line search is made simultaneously in the spaces of flows and

where 7¥ is the shortest route cost at the flow f*. The flow demands are assigned to
demands.

Essentially the same algorithm would result from an application of the Frank—Wolfe
algorithm to the fixed demand reformulations of Section 2.2.4; such applications are dis-
cussed in [697, 226, 414]. Ferland [324] applies a Zoutendijk-type algorithm ([555]) to a
minimum-cost flow circulation reformulation similar to that of Murchland [697].

The elastic demand version of the Frank—Wolfe algorithm thus consists of the same
steps as those in the fixed demand case, and has roughly the same convergence behaviour.
Nguyen [716] compares the algorithm to the convex simplex approach of [715, 717], and
shows that it is inferior with respect to solution time.

It is apparent from the form of the subproblem Solution (4.70) that the demand updates
are unstable, since the subproblem solution oscillates between the lower and upper bounds,
depending on the circulation cost W;fq - g;ql(d’;q). This oscillating behaviour is observed
in [443, 604]; to reduce the oscillating behaviour, LeBlanc and Farhangian [604] suggest
an iterative updating of the lower and upper bounds on the demand function.

The oscillating behaviour originates in the linear approximation of the demand func-
tion. A possible means to avoid this unwanted property would therefore be to linearize
only the part of the objective that corresponds to the original link flow variables. In other
words, the linear Frank—Wolfe subproblem objective is replaced by

THE, ) = T(,d) + X e~ 1= X [ 0 (s)ds.

acA (p,9)€C

The function T* is obtained from a partial linearization of T', and may be derived from
the general partial linearization algorithm by the choice ¢*(d) = — > (p)eC [pa 9o (8)ds
for all k. This special choice of partial linearization algorithm is given by Evans [304, 305,
306] (who actually uses the term partial linearization to describe it). The algorithm is
applied to a combined trip distribution and assignment model, which may be viewed as
a special elastic demand problem with additional marginal total constraints.

Each subproblem separates into |C| shortest route and strictly convex single-variable
problems. The shortest route subproblems are solved given the link costs t(f*); the
auxiliary demands are then calculated from the demand function given the shortest route
costs ¥ . (p,q) € C, i.e., they are given by max {0, gp(7%,)}, (p,¢q) € C. The auxiliary link
flows are obtained by assigning this demand to the shortest routes, and a simultaneous
line search in the link flow and demand space then yields the next iterate. (Note that
the calculations involved in Evans’ algorithm are the same as those in the dual algorithm
of Section 4.3.7 as applied to [TAP-E], with the only exceptions being that the travel
costs are given by dual variable values and that the line search is replaced by a simple
flow and demand averaging.) Since the demand functions are not linearized, the auxiliary
demands will not oscillate as in the Frank—Wolfe approach; since each iteration requires
essentially the same amount of work, the overall efficiency should therefore be much better.
This is indeed observed (e.g., [373, 603]). In addition, the solution to each subproblem
provides a lower bound on the optimal value, as does in the Frank—Wolfe algorithm
([304, 305, 306]); it can in fact, be proved from the strict convexity of the demand part
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of the objective of [TAP-E], that given a feasible flow, the lower bound provided by the
partially linearized subproblem is strictly better than that provided by the Frank—Wolfe
subproblem (e.g., [583]). [The convergence of the link flows may however suffer from
the zig-zagging behaviour of the Frank—Wolfe algorithm, and alternatives to the simple
linearization of the link flow part of the objective should be considered.]

Florian and Nguyen [359] apply a generalized Benders decomposition scheme, embed-
ded in a cyclic decomposition scheme over O-D pairs, to [TAP-E]; a basis for this scheme
is the recognition that the demand variables are the complicating ones. The fixed demand
Benders subproblems are solved using the column generation/reduced gradient method
of Nguyen [713] (see Section 4.3.2). Here, the reoptimization capabilities, enabled by
the disaggregated representation, are utilized in the sense that the solution to a previous
Benders subproblem is scaled to yield a demand-feasible (and eventually near-optimal) so-
lution to the next one. Their computational results are encouraging, but the comparative
experiments with the convex simplex and Frank—Wolfe algorithms made by Nguyen [716]
show that it may be quite slow, probably due to the need to solve many fixed demand
subproblems.

4.5 Algorithms for stochastic assignment models

4.5.1 Stochastic network loading

The fundamental subproblem in the basic, deterministic, assignment model is that of
finding an all-or-nothing solution given fixed travel costs; this problem may be solved
using any method for solving shortest route problems. In the field of non-deterministic cost
models this problem is known as the stochastic network loading problem, which is to find
the probabilities with which a given route is chosen. The main difficulty with stochastic
network loading is the fact that calculating perceived travel costs on competitive routes
and the corresponding probabilities are prohibitive because of the vast number of possible
routes in large-scale networks. To avoid route enumeration, stochastic network loading
procedures are therefore based on link flows, the calculation of which often involves either
a simulation process or a procedure for (implicitly) reducing the number of routes that
may contribute to these link flows.

In order to calculate the route choice probabilities, the probability function of the
perceived travel times on each route must be specified. The two models most frequently
applied are the logit and probit models.

The logit model

Given actual route costs ¢ = c(h), the route choice probability in the logit model is
e—@cpqr
Elequ e~ Ocpar’

The corresponding route flow solution, obtained by letting h,yr = dpFPogr, 7 € Ry,
(p,q) € C, is characterized as the minimizer of

1
Z Z 6hpq7" 108 hipgr + Cpgrhipgr (4.72)
(p,q)EC TERpq

over the Constraints (2.60b)—(2.60c) (cf. [336]). This objective is the result of partially
linearizing the objective (2.60a) of [TAP-SUE-L], in the sense that the link flow part

Py = Vr € Ryq, Y(p,q) € C. (4.71)
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is linearized ([221]); in the context of partial linearization, it corresponds to choosing
p(h) = (1/0) X (p0)ec 2reRpq Ppar 108 hpgr. Tt is also easy to show that the optimal solution
to this subproblem defines a lower bound on the optimal value of [TAP-SUE-L] and that
the solution to the subproblem defines a descent direction with respect to the objective
of [TAP-SUE-L].

The fact that the probabilities can be given a closed expression singles the logit model
out among the probability models used. The constant O is a positive scaling factor used to
remove the dependency of the units of travel time measurements, and should be calibrated
for different applications. We see from the travel cost perception Formula (2.59) that a
smaller value of © corresponds to a larger perception error, and, by (4.71), the distribution
of flow among competitive routes will be equal in the limit of @ — 0 regardless of the
actual travel times.

From (4.71) we can also see that all routes will receive a positive flow in the stochastic
network loading, regardless of their actual travel costs. If it is of interest to obtain
the route flows resulting from the stochastic network loading, it becomes necessary to
enumerate all the routes of the network or to extract a number of routes, 7A2pq C Rygs
(p,q) € C, according to some specified criterion, and to apply Formula (4.71) to the given
subsets. The need to enumerate the routes is one main difference from the all-or-nothing
assignment problem in the deterministic case.

If a rough link flow solution to the stochastic network loading problem is sufficient, then
by (implicitly) restricting the number of routes used to fulfill some regularity conditions it
is possible to perform the network loading directly on the links, and the resulting algorithm
is not much more complicated than performing an all-or-nothing assignment. If, however,
all routes are to be included, the resulting link flows from the stochastic network loading
may also be calculated (arbitrarily accurately) by performing simulations.

The most well known method for stochastic network loading is Dial’s [254] link-flow
based method. The method implicitly defines the subsets 7A2pq, (p,q) € C, of the routes of
the network, and assigns link flows according to Formula (4.71) to them. The restricted
route sets considered by the algorithm are given by the following definition.

Definition 4.1 (Efficient route) Let (p,q) € C and for each node i € N let p; denote the
shortest route cost from p to v, and q; the shortest route cost from v to q. Then a route
r € R,, is efficient if and only if for all links (i,7) belonging to route r, p; < p; and
qi > q; holds.

In other words, a route is efficient if by traversing any link of the route a traveller
comes further away from the origin and closer to the destination. Note that the set of
efficient routes is dependent on the prevailing actual travel costs.

Dial [254] shows that a stochastic network loading can be performed in terms of link
flows on a network defined by this implicit restriction of the routes with a computational
effort equivalent to two all-or-nothing assignments, and devises the STOCH algorithm
for its solution. By slightly redefining the concept of efficiency, he shows how such an
assignment can be performed in a computational time equivalent to one all-or-nothing
assignment only. The assignments obtained by either one of these algorithms will of course
not be the link flow solution of a true stochastic network loading of the original network;
Dial argues, however, that the number of travellers that would choose non-efficient routes
is small enough to justify the use of the model.

The STOCH algorithm is incorporated into the UMTA Transportation Planning Sys-
tem ([924]).
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Sheffi [831, Sec. 11.1] remarks that the first version of the STOCH algorithm is not
efficiently implementable together with tree-building shortest route methods, since each
O-D pair must be considered separately. The second version (the single-pass algorithm)
is, however, implementable together with such algorithms.

The probit model

In the probit model, the perceived route travel costs are normally distributed. An im-
portant consideration for the practical use of probit models is the fact that it is possible
to derive the route travel cost perception distribution from the probability distribution of
the perceived link travel costs, and therefore a Monte Carlo simulation of the perceived
travel costs can be based on link flows.

The simulation technique, which is due to Sheffi and Powell [832], is quite simple. The
density function of the perceived link travel cost of each link is sampled once. This results
in a set of realizations of perceived travel costs which is then used in an all-or-nothing
assignment. The process of sampling and assignment is repeated, and the tentative link
flow solution is defined as the average of the individual assignments. The process is
terminated either after a fixed number of iterations or when the variance of the average
link flows is small enough.

The above simulation process is applicable to the stochastic network loading problem
phase in any stochastic user equilibrium problem of the form [TAP-SUE] ([832, 831]).

4.5.2 Stochastic user equilibrium

A Frank-Wolfe type algorithm for [TAP-SUE] would involve (a) a stochastic network
loading based on the given flow and the corresponding actual travel costs and the given
perception distribution, and (b) an update of the current flow towards the flow resulting
from the network loading. Step (b) of this algorithm can not be performed through a
line search in the non-deterministic case, for two reasons. Firstly, in general stochastic
network loading can not be done exactly, and the resulting direction, which is a random
variable, is only a descent direction on the average. Secondly, it is in general very difficult
to evaluate the objective of [TAP-SUE] since it requires a route enumeration.

Standard methods applied to [TAP-SUE] and its special cases are therefore mainly
based on taking predetermined steps in the directions defined by the stochastic network
loading.

The logit model

The first algorithm proposed for the solution of [TAP-SUE-L] is the incremental assign-
ment type method of Dial [254]. Portions of the demand are assigned iteratively to the
network based on the current travel costs, according to the output of the STOCH algo-
rithm. Florian [346] suggests updating the costs in the process of Dial’s algorithm to take
congestion into account.

The method of successive averages (MSA) (see Sections 1.5.4 and 4.1.6) has been ap-
plied to [TAP-SUE] in several versions. In the MSA algorithm, a search direction is
obtained through a stochastic network loading, and the step taken towards that solution
corresponds to taking the average of all the previously generated solutions, i.e., the step
length in iteration k is 1/k. The MSA algorithm is discussed in [218, 764, 219]; Tobin [898]
suggests applying Dial’s algorithm in place of a stochastic network loading. A dual algo-
rithm for [TAP] (see Section 4.3.7) is extended to the solution of [TAP-SUE-L| by Larsson
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et al. [582]; the main difference of the above algorithms lies in the usage of dual variable
values as the actual travel costs.

Chen and Alfa [165] suggest improvements to the MSA algorithm, where the predeter-
mined weighting is replaced by a line search with respect to either the deterministic part
of T or to a restricted form of the entire objective. This latter line search is performed in
terms of link flows through the use of a pseudo-inverse of the link-route incidence matrix;
this approach is not applicable to large networks, since it requires the enumeration of the
routes, and, furthermore, may result in inconsistent flows ([55]).

The above algorithms all operate in the space of link flows. It can be argued that
since all routes are utilized in the stochastic user equilibrium solution, it is impractical to
(approximately) solve the problem in terms of route flows. There are, however, motives
for developing such algorithms. Firstly, it is difficult to investigate the amount of overlap
present in an equilibrium solution if the routes are not available explicitly. It is also of
interest to obtain explicit route flow information, for instance in the evaluation of route
guidance systems ([940, 96, 221]). Secondly, if subsets of the total set of routes in the
network are generated algorithmically by some column generation approach, the user can
limit the number of routes that are generated within the method, and what is more,
control the amount of overlap present in the network in a rather straightforward manner
([221]) by dropping routes that overlap previously generated routes more than a maximal
allowed measure.

A descent algorithm based on a column generation approach is given by Damberg et
al. [221]. Routes are generated through shortest route calculations based either on actual
costs or on a single drawing of perceived travel costs. The algorithm may be thought
of as an extension of the MSA approaches, where instead of averaging the all-or-nothing
solutions, the routes generated are stored and utilized in a restricted master problem.
Each restricted master problem is solved using the restriction of the stochastic network
loading Formula (4.71) to the subsets 7A2pq in order to generate descent directions and
lower bounds on the optimal value of the restricted master problem; a line search is then
made in the direction obtained. The resulting route flow solution solves the restriction
of [TAP-SUE-L] to the known subsets of the routes. Damberg et al. also show that
the problem of overlap can be managed effectively within the method; this is done by
introducing column dropping rules based on different measures of overlap. They present
computational results for the network of Winnipeg.

Bell et al. [55] improve on the algorithms of Chen and Alfa [165] by introducing both
a route generation process and a balancing scheme in order to ensure that link and route
flows are consistent.

The probit model

The only practical approach to the solution of the probit model is the application of
an MSA type approach ([213, 832, 679, 831]). The question of the proper number of
drawings in the inner loop in each main iteration is addressed by Sheffi [831, Sec. 12.3]
(see also Mimis [679]); the conclusion is that the overall best result is obtained by a
streamlined approach where a single drawing of the perceived travel costs is made in each
main iteration. This approach is extended to an asymmetric stochastic user equilibrium
model in [831]. For further reading on stochastic user equilibrium models and methods,
see, e.g., [214, 831, 728, 894].
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4.6 Algorithms for side constrained assignment mo-

dels

The side constrained assignment model [TAP-SC] introduced in Section 2.8.2 constitutes
a generalization and an improvement over the basic assignment model. As was demon-
strated in that section, very little study has been devoted to side constrained models
however, either from the modelling point of view or computationally. The only side
constrained assignment model computationally studied is the capacity side constrained
model, which we discuss below.

4.6.1 Algorithms for capacity side constrained assignment mo-
dels

Consider the link capacity side constrained assignment model

[TAP-C]
: def fa
min T'(f) = Z/ tq(s)ds, (4.73a)
acA”’0
subject to
Z thT = dpqv V(p,q) EC, (473b)
r€Rpq
hygr 20, Vr € Ryq, V(p,q) €C, (4.73c)
Z Z Opgrahpgr = fa, Va € A, (4.73d)
(p,q)EC TERpq
Jo < us,  Va€ A, (4.73¢)

where u, € [0,+00] is the upper bound on the flow of link a € A.

From a modelling point of view, it is preferable to use explicit upper bounds than to use
link travel cost functions with asymptotes at their respective bounds. A disadvantage of
imposing explicit link capacities is that they destroy the Cartesian product structure of the
uncapacitated problem, and thus make the problem more demanding computationally. In
particular, the linear subproblems of the Frank—Wolfe and simplicial decomposition type
methods will become linear multicommodity minimum cost network flow problems ([557]),
which are computationally burdensome. Under strong assumptions on the travel time
functions and the choice of the initial solution, the multicommodity flow subproblem of the
Frank—Wolfe method may be relaxed into shortest route subproblems while maintaining
convergence to an optimal flow pattern ([211, 212, 485]).

Computationally, the asymptotic travel time functions have the disadvantage that they
may result in numerical difficulties. In addition, whenever the problem is solved by a
feasible-direction algorithm (e.g., the Frank—Wolfe method), these travel time functions
make it necessary to initialize the algorithm through the calculation of a flow pattern
which is strictly feasible with respect to the implicit upper bounds on the link flows
([212]); this task is however non-trivial (e.g., [516]).

Solution methods proposed for [TAP-C] are often based on the recognition of the fact
that linear multicommodity flow subproblems ([557]) are prohibitively expensive to solve
repeatedly, and may be divided into two categories. In the first, attempts are made to
use shortest route subproblems to generate search directions. In the second approach,
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the capacitated problem is converted into a sequence of uncapacitated problems through
a penalization/dualization of the capacity Constraints (4.73e), so that efficient methods
for [TAP] may be applied for the solution of [TAP-C]. We outline below these two lines
of development.

Frank—Wolfe type algorithms

In the first approach to [TAP-C], attempts are made to use shortest route subproblems to
generate search directions. The algorithm is initialized at an inner point with respect to
the link capacities, and to ensure convergence the travel cost functions must satisfy the
coercivity condition

lim /O T (s)ds = 400, Vae A (4.74)
which effectively reduces the problem to an uncapacitated problem with asymptotic cost
functions ([211, 212]). Hearn and Ribera [485] instead assume that the sequence {l;} of
step lengths is bounded from below by some positive number. One sufficient condition for
this assumption to be fulfilled is that the initial point is strictly better (in terms of the
objective value) than any feasible solution at which some capacity constraint is active; the
existence of such an initial point is not guaranteed for the travel time formulas most often
used, but is however implied by Condition (4.74). One possible way to ensure convergence
when using general travel time formulas is to invoke a Frank—Wolfe subproblem (a linear
multicommodity flow problem) whenever the shortest route solution does not yield a
sufficient progress (i.e., when a step length [; falls below some prespecified parameter
[ > 0); see the dissertation by Stefek [872].

Stefek’s main theme is the development of simplicial decomposition type algorithms
for the capacitated problem. In these algorithms, the line search step of his Frank—Wolfe
type method is replaced by a multi-dimensional search over the intersection of the convex
hull of the hitherto generated subproblem solutions and the set defined by the capacity
constraints. The safe-guarding strategy of the Frank—Wolfe type algorithm is also used in
these methods; whenever the extreme points corresponding to the shortest route patterns
do not provide sufficient descent in the master problem, a linear multicommodity flow
subproblem is invoked. (In a direct application of simplicial decomposition, subproblems
would always be multicommodity flow problems and the master problem would not include
the capacity constraints; such a scheme would not, however, be efficient, because of the
high computational cost of the subproblems.) Stefek also presents a variation in which
Lagrange multipliers for the capacity constraints of the master problem are used to price-
out those constraints in the subproblem, thereby reducing the number of iterations in
which a multicommodity flow subproblem has to be invoked. Computational experiments
with three medium- and large-scale problems show that for lightly capacitated problems
these extensions of the simplicial decomposition principle are superior to a straightforward
application of this principle (where the multicommodity flow subproblems are solved by
a Dantzig-Wolfe decomposition, i.e., a column generation, approach), but that they are
inferior for heavily capacitated ones.

Dualization/penalization algorithms

In the second approach, the capacitated problem is converted into a sequence of uncapaci-
tated problems through a penalization/dualization of the capacity Constraints (4.73e), so
that efficient methods for [TAP] may be applied for the solution of [TAP-C]. (Of course,
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[TAP-C] may be relaxed in alternative ways; in [476, 582], the definitional constraints
(4.73d) are Lagrangean dualized, and in [516], all constraints but (4.73d) are augmented
Lagrangean dualized.)

For the case of constant travel times, Jorgensen [533] suggests applying the Dantzig—
Wolfe decomposition method (which may be interpreted as a cutting plane method applied
to a dual problem), but does not give any computational results. For the case of flow-
dependent travel times, he suggests using approximating piecewise constant travel time
functions; the approximate problem may then be restated as a problem with constant
travel times in an enlarged network. Miller et al. [678] present a column generation
approach for the case of constant travel costs, in which the restricted master problems
are solved using a generalized upper bounding technique (e.g., [590]).

Letting U/ = {f € R4 | gu(fa) & fu —ua <0, Va € A}, the feasible set of [TAP-C] is
FrnU. In an exterior penalty method (e.g., [329]) for [TAP-C], the Constraints (4.73e) are
included in an extended objective function by means of a penalty function P : RMI — R
satisfying

(1) P(f)>0forall fe F",
(2) P(f)=0ifand only if f € F" N U,
(3) P is continuous on F”.

An example of such a penalty function is

P(f) = Z pa(fa), (4.75a)
acA
where
Pa(fa) = ralga(fa)]T* = ra max {0, g4(fa)} ™, 10 >0, my > 2. (4.75D)

By introducing a penalty parameter ¢ > 0, the penalized objective
the penalty subproblem

P. = min P.(f),
feFr

which amounts to solving an uncapacitated traffic assignment problem, and its solution
f(c) = in P.(f),
(¢) = arg min F(f)
one may show that
(1) P. < T(f%), for all ¢ > 0, and
(2) limeqoo f(c) = £*.

For a differentiable and separable penalty function, like (4.75), optimal Lagrange mul-
tipliers for the penalized constraints may be estimated using the result (e.g., [473])

. dp,
m c
c—+0o0 dfa fa=fa(c)

— B, VaeA
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Hearn [473] proposes to include the explicit link flow capacities in an extended objective
function by means of an exterior penalty function of the form (4.75), thereby obtaining
an uncapacitated traffic assignment subproblem (which is solved by the Frank—Wolfe
method). The behaviour of the overall penalty method is illustrated through small-
size numerical examples. Inouye [516] applies an interior penalty method in which the
subproblems are solved using the Frank—Wolfe method, and presents results for a small
example.

In order to avoid the ill-conditioning inherent in the penalty approach, one may intro-
duce a Lagrangean term in the extended objective, thus creating an augmented Lagrangean
function ([491, 763, 781, 66, 70]). Letting p denote the vector of Lagrange multipliers for
the dualized constraints and using the penalty Function (4.75) with r, = 1/2 and m, = 2
for all a € A, the augmented Lagrangean function becomes ([780])

LC(f’ﬂ') = T(f) + Z ﬁa(faa,uaac)a
acA

where

1

pa(fanuaac) = %([Hd + Cga(fa)]?}- - ;ui)

Defining the augmented Lagrangean dual objective function through the solution of the
uncapacitated traffic assignment subproblem

Le(p) = min L.(f, )

and denoting the subproblem solution with
f = in L.(f, p),
(p,0) arg min L.(f, u)
we have that for any ¢ > 0 ([780]),
(1) Le() < L(8) = T(£°) for all >0,
(2) lim”_ﬁ f(p,c) =1(8,¢c) =1~

Hence, the augmented Lagrangean dual objective function is, for any ¢ > 0, maximized
by arbitrary optimal values of the Lagrangean multipliers, and the optimal flow pattern
may be obtained for finite values of the penalty parameter. Moreover, although the flow
pattern f(g,c) is in general infeasible in [TAP-C] unless g = 3, it will become near-
feasible for near-optimal values of the multipliers.

The choice ¢ = 0, which gives the ordinary Lagrangean dualization scheme, is feasible
because of the strict convexity of T'; see, e.g., the discussion following Theorem 6.5.1 in
[43]. In general, however, the augmented Lagrangean schemes have superior convergence
characteristics, and from now on, we thus presume that ¢ > 0.

Optimal multipliers may be found by solving the augmented Lagrangean dual problem

max L.(p),
ax Le(p)

where L. is concave and differentiable, with

IL:(p)
Oltg

= max {g.(fu(,c). =7}, Va€ A
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A steepest-ascent multiplier update with step length ¢ yields (see [70, p. 162])
fa := [fta + cga(fa(p, €))l4, Va € A,

if ¢ is sufficiently small, then the value of L. will ascend. (One may also show ([70,
Prop. 5.8]) that if g is sufficiently close to an optimal dual solution, the value of the
Lagrangean dual function, Lg, will also ascend.)

Although convergence is ensured for any positive value of ¢, a good practical perfor-
mance demands for a careful choice (e.g., [492, 70]). In particular, there is a trade-off
between a high rate of convergence in the multiplier space and the degree of ill-conditioning
of the Lagrangean subproblem; see [623, Chap. 13]). Usually, the parameter c is initially
given a low value, and then increased whenever a measure of the total infeasibility in the
dualized constraints does not improve sufficiently rapidly (e.g., [763]). We thus introduce
a non-decreasing sequence {ci} of positive penalty parameters, and define a sequence of
primal-dual iterates through the formulas

fF = f(u* ), (4.76a)
pE = bt gl ()], Va€ A, (4.76b)
where k = 1,2,..., and with p' being some initial guess.

Vanderstraeten-Tilquin [944], Hearn and Ribera [484], Polak [758], and Larsson and
Patriksson [587] all employ iterative augmented Lagrangean schemes. In Vanderstraeten-
Tilquin’s scheme, the uncapacitated subproblems are solved by the application of a non-
linear version of the out-of-kilter method to single-commodity problems obtained in a
cyclic decomposition manner. In the scheme of Hearn and Ribera, the subproblems are
solved by the Frank—Wolfe method. They consider two types of augmented Lagrangean
functions and apply one of them to a small numerical example. Vanderstraeten-Tilquin
also gives two other solution principles for the capacitated problem. The first is a subgra-
dient optimization procedure for finding optimal allocations of the total link capacities
to the separate commodities; this is essentially the same algorithm as the one for linear
multicommodity network flows proposed by Kennington and Shalaby [547]. The second
involves the solution of a sequence of lower-dimensional subproblems obtained through
partitionings of variables and relaxations of nonnegativity constraints (see also, e.g., [590,
Chap. 5]). From some experimentation with small-scale test problems, Vanderstraeten-
Tilquin concludes that the latter method is unfeasible for larger problems, and that the
augmented Lagrangean scheme is the most viable of the two others, at least in the ab-
sence of an a priori knowledge of a good estimate of the optimal objective value. Larsson
and Patriksson [587] apply the disaggregate simplicial decomposition (DSD) algorithm
(see [586] and Section 4.3.5) to each traffic assignment subproblem; in comparisons with
ordinary Lagrangean dualization and a penalty approach, the augmented Lagrangean ap-
proach (which may be viewed as a combination of them) is clearly superior. The efficiency
and very good reoptimization capabilities of the DSD algorithm motivated its choice for
use in solving the sequence of uncapacitated traffic assignment subproblems; indeed, the
computational effort needed for solving the subproblems was observed to decrease signif-
icantly for every iteration of the augmented Lagrangean method.

Because of the dual character of augmented Lagrangean schemes, feasible solutions to
the original problem will generally be found in the limit only, even though the primal
solutions’ infeasibilities will in later iterations be small. Larsson and Patriksson [587]
therefore introduce a procedure, of the type described in Section 4.3.2, which heuristically
constructs feasible solutions by carefully manipulating the (slightly) infeasible solutions
to the augmented Lagrangean subproblems; this is done by repeatedly shifting flow from
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a route in an origin-destination pair utilizing over-saturated links to routes within the
same pair that are strictly feasible with respect to the capacities. They also construct
an advanced starting solution for the dual algorithm. Together with the efficiency of the
DSD algorithm and the good performance of the feasibility heuristic, they are able to
conclude that the introduction of link capacities increased the computing times by no
more than a factor of four.

As stated in Section 2.8.2, the optimal Lagrange multipliers for the capacity constraints
may be seen as link tolls which, when imposed upon the travellers, yield an uncapaci-
tated user equilibrium traffic flow pattern that fulfills the link capacities. The iterative
search Procedure (4.76) may thus be interpreted as a mathematical simulation of a real-
life process in which a traffic engineer attempts to limit link flows by introducing link
tolls and modifying them until the travellers’ behavioural response is the intended one.
Moreover, the traffic engineer employs the very natural strategy of modifying the link
tolls in proportion to the violations of the link flow limitations that he/she is trying to
impose. (Of course, this strategy for finding suitable link tolls can not be implemented
in the real-life traffic system.) It is also possible to show (see [587]) that under some
additional assumptions on the way in which this dual search procedure is carried out, the
sequence {p*} converges to the vector 8 of multipliers of minimum Euclidean norm. The
simulation of the traffic engineer’s strategy thus automatically yields the minimal link
tolls. A similar nice interpretation is obtained by instead viewing the multipliers 3 as
equilibrium queueing delays.

We finally note that the above augmented Lagrangean approach is applicable to the
general side constrained model [TAP-SC].

4.7 Discussion

In this chapter we have given a unified description of methods proposed for the solution
of the basic user equilibrium problem and some of its extensions. With the Frank—Wolfe
algorithm as the starting point, we outlined the development made based on the concepts
of partial linearization, decomposition and column generation.

The decomposition and column generation methods presented are not only very sim-
ilar (nearly all of them are based on a block Gauss—Seidel iteration) but some of them
have been rediscovered several years after their first publication. That the methods were
rediscovered is not surprising, since the methods are intuitively natural; another reason
is that the methods were developed in two different areas of nonlinear network optimiza-
tion (equilibrium in traffic networks and optimal routing in computer communication
networks), between which little communication took place for a number of years. It is
still surprising though, considering the availability of nonlinear programming methods
in the literature, that the development of methods for traffic assignment exhibits such a
one-sidedness.

The comparative efficiency of algorithms for traffic assignment have unfortunately not
been thoroughly examined. The few studies which exist (e.g., [716, 717, 498, 439]) include
only limited comparisons of a few algorithms, and due to the enormous development of
computer technology and the increasing size of traffic problems routinely being solved,
the conclusions drawn are not necessarily valid any more. This is particularly true with
regard to the conclusions made about methods based on route generation, which were
considered impractical until only a few years ago.

We do not believe that there is one best algorithm for traffic assignment. The algorithm
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to recommend depends on many factors:

(1)

(2)

(3)

(4)

(5)

(6)

(Computer facilities available) The internal memory capacity, and also the speed of
the processor(s), determine which algorithms it is possible to apply to an assignment
model of a given size. Considering multiprocessor systems, very little experience of
the use of such algorithms for traffic equilibrium problems is available in the open lit-
erature; we believe, however, that such implementations should be considered closely,
since the inherent structure of the model makes it possible to utilize different lev-
els of parallelism, and the growing need for real-time solutions of traffic assignment
problems, for instance in the use of traffic management and route guidance systems,
makes it necessary to explore high speed computations of equilibrium solutions.

The availability of subroutines for the efficient solution of shortest route problems,
quadratic network flow problems, etc., could also naturally lead to the consideration
of certain types of algorithms.

(Size of problems) The algorithms that it is possible to use are also determined by the
size of the problem to be solved. Several algorithms proposed for traffic assignment
in the past were believed to be efficient because of results based on tests performed
on very small networks; for the solution of a large-scale model, however, the recom-
mendable algorithm must utilize the problem structure.

(A priori information available) Any a priori information available about the so-
lution to a traffic assignment problem should of course be utilized. Most types of
information, such as estimates of travel times and link flows, naturally lead to the
consideration of dual algorithms, in particular if the information contains measure-
ment errors and are inconsistent, since they make it difficult to immediately utilize
the information in a primal algorithm.

(Information required)

(a) (Travel costs) If equilibrium travel costs are sought, then the inverse (dual) prob-
lem should be addressed, for which simple algorithms are available.

(b) (Link flows) If equilibrium link flows are sought, then any of the algorithms
presented in the chapter are applicable. If commodity link flows are sought,
however, some decomposition scheme is to be preferred. The equilibrium com-
modity link flows are not unique, and the result is therefore greatly influenced
by the algorithm chosen.

(c) (Route flows) If an equilibrium route flow solution is sought, then a disaggregate
simplicial decomposition/column generation scheme should be used. As in the
case of commodity link flows, the solution obtained depends on the choice of
algorithm.

(Accuracy required) If a rough solution is sufficient, then there is little to gain in using
second-order methods, since, for instance, the Frank—Wolfe algorithm may reach a
sufficiently accurate solution just as quickly. If, however, for some reason, a very
accurate solution is required, then a second-order method should replace a method
with a lower convergence rate when approaching the solution. It should, however,
be noted that a very high accuracy is of little value if—which is often the case—the
input data is inaccurate.

(Reoptimization capabilities) If there is a need to repeatedly solve a traffic assignment
problem with slightly varying data, for instance when traffic assignment problems
arise as subproblems in more complex models, then the algorithm used must be able
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to utilize the optimal solution to a previous problem as an advanced start when a
perturbed one is to be solved; this becomes a crucial point when real-time applications
are considered. From the discussions in Section 4.3.6, we conclude that the more
information that an algorithm keeps about the problem, the more effective it can be

for reoptimization purposes.

(7) (Extension capabilities) At first sight, it seems a good idea to make an implementation
amenable to an easy extension to more complex models. There is, however, the danger
that the algorithm may be used on models that it is not meant to solve or, even worse,
in theory can not possibly solve; the user of a system must be made very much aware

The Traffic Assignment Problem

of the limitations of the given model and method.

Since the circumstances under which assignments are to be carried out may vary,
mobility may also become important. (This does not favour very sophisticated imple-

mentations.)

A few algorithms are available for public use; the RSDNET code ([482]) is perhaps the
most recent example. For the benefit of the field, a library of both state-of-the-art codes

and test networks should be set up in the near future.
We conclude by supplying a list of references to known test networks.

City |V | Al IC]  # Centroids Reference
410 12 ]

9 13 4 4 [719]

9 18 4 4 [40]

9 24 10 [724]

9 36 12 [871]

20 28 2 [699]

4 2 23 [42§]

61 148 122 [428]

Sioux Falls 24 76 528 24 [607)
Hull 155 376 690 27 [714]
Hull 501 798 142 23 353]
Dallas 584 1462 55 [605]
Winnipeg 1035 2789 140 [360]
Winnipeg 1052 2836 4344 147 353]
Barcelona 1020 2522 7922 [39]
Barcelona 930 2522 7922 110 [684]
Leeds 1352 37536 589 [941]
Du Page County 9400 29000 999 [288]
Madrid 3201 8659 26037 956 [684]

Table 4.1: Test networks



Chapter 5

Algorithms for general traffic
equilibria

5.1 Introduction

In the general formulation of traffic equilibrium models, the assumption of the separability
of the travel cost and demand functions is relaxed. As a result, a solution to the Wardrop
user equilibrium conditions can not be found by solving a convex program of the form
[TAP] or [TAP-E]. Instead, they are transformed into a variational inequality, a nonlinear
complementarity or a fixed point problem, for which standard algorithms are applied.

A main difference between this and algorithms for separable traffic equilibrium prob-
lems is that here no merit function is directly available for monitoring the convergence.
Convergence is instead often based on a guaranteed monotone decrease of an artificial
merit function, such as the (unknown) Euclidean distance to the equilibrium solution,
which it is not possible to evaluate and utilize in termination criteria or in line search
procedures for the acceleration of the convergence.

In general, in order to establish convergence theoretically, these algorithms also require
stronger monotonicity assumptions on the travel cost and demand functions than they do
in the separable case, and frequently knowledge of the values of certain parameters of the
model which are difficult to estimate.

The need for these strong assumptions to hold in order to guarantee the convergence
of algorithms is very unfortunate, in view of the fact that a traffic equilibrium model may
fail to satisfy them, as shown by Heydecker [193].

Recently, reformulations of variational inequalities such as, in general nonconvex, non-
linear programs have been shown to naturally lead to convergent descent algorithms; in
such methods, an asymmetric model is supplied with a specially constructed merit func-
tion which is utilized both in line searches and for monitoring the convergence. (These
merit functions are outlined in Section 3.1.5.) Some of these algorithms are theoretically
convergent under weaker conditions on the problem data than the traditional ones, and
the introduction of the line search may also lead to a higher practical convergence rate.
We will show that these algorithms may be viewed as simple modifications of the tradi-
tional approaches where a predetermined step length (usually a unit step) is replaced by
a line search with respect to a merit function.

We shall concentrate our discussions on variational inequality formulations of the
Wardrop conditions, since they are the predominant modelling basis.

Algorithms applied to general traffic equilibrium problems are extensions of the itera-
tive algorithms for separable models that were presented in the previous chapter, and may
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be given the same uniform description in terms of partial linearization, decomposition and
column generation. In this chapter, we shall make such a unified presentation, and also
show how, through a simple modification, traditional algorithms may be enforced to yield
convergence under mild monotonicity assumptions.

5.2 Algorithm concepts

The three algorithm concepts for the solution of nonlinear programs introduced in Sec-
tion 4.2 are here extended to the solution of monotone variational inequality problems.
The concept of partial linearization is generalized to that of cost approximation, which
was introduced by Patriksson [747], while those of decomposition and column generation
are immediately applicable to variational inequality problems.

5.2.1 Cost approximation algorithms
The general algorithm

Consider the variational inequality problem of finding an x* € X such that
[VIP]
F(x)'(x=x)>0, VxeX, (5.1)

where X C R” is a nonempty, closed and convex set, and F' : X — R" is a continuous
and monotone mapping on X. We let {2 denote the set of solutions to [VIP].

One iteration of the cost approximation algorithm consists of the following two main
steps:

(1) Given a feasible point, a feasible search direction is defined through the (possibly
inexact) solution of an approximation of the original problem, in which the mapping
Fis approximated by a monotone mapping.

(2) The direction defined by the solution to the above described subproblem is a feasible
direction of descent with respect to a merit function whose minima coincide with the
set of solutions to [VIP]. A (possibly inexact) line search is made with respect to this
merit function in the direction obtained, and the resulting step length defines a new
point with a reduced value of the merit function.

Formally, in iteration k& we introduce a monotone cost approzimating mapping ®* :
X +— R". If, at x* € X, the mapping F is replaced by the mapping ®* in [VIP], then the
error made in the approximation obviously is F' — ®*. This error is taken into account by
adding to ®* the fixed error term F(x*)— ®*(x*). [Alternatively, the approximation made
can be seen as a fixation of the second term of an equivalent reformulation, ®* +[F'— ®*], of
the original cost mapping, at x*.] Thus, we arrive at the variational inequality subproblem
in which a point y* € X is sought such that

[VIP%,]
[@F(y") + F(x") = 0" ()] (y —y") >0,  VyeX, (5.2)

We let Y (x*) denote the set of solutions to [VIP,].
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By its construction, the value of the problem defining mapping of [VIng] coincides
with that of the original cost map at the point of approximation. This fact is important,
since it provides a termination criterion for the algorithm: if x* solves the subproblem
[VIP%,], defined at x*, then it immediately follows that x* also solves the original problem
[VIP]. (The converse is also true.)

If ®* is chosen as the gradient mapping of a continuously differentiable convex function
©F + X — R, then the subproblem [VIng] amounts to solving the convex minimization
problem

min {¢*(y) + [F(x") = V&' (") Ty} (5.3)

yex

Thus, by applying the cost approximation concept, [VIP] can be solved as a sequence of
optimization problems. Indeed, in most of the iterative methods for the solution of [VIP]
that we will identify as special cases from the class of cost approximation algorithms,
subproblems of the form (5.3) are solved.

We then make two important observations. Firstly, the symmetric Subproblem (5.3)
is equivalent to the inner problem of (3.18) which defines one class of merit functions for
[VIP] (see Section 3.1.5), and hence symmetric cost approximations form the building
block of descent algorithms for variational inequalities. Secondly, if F' is the gradient
mapping of a continuously differentiable convex function T : X — ¥, then the objective
of the Subproblem (5.3) is equivalent to an approximation of T obtained by linearizing
the second term of ¥ 4 [T — ©*] at x*, i.e., a partial linearization of T'; hence, the concept
of cost approximation is a direct extension of that of partial linearization from nonlinear
programs to variational inequality problems.

We can not generally expect the original problem to be solved by y*. A new iteration
point is therefore defined by taking a step in the direction of y* — x* such that a merit
function, v : X — R U {400}, whose minima coincide with the set of solutions to [VIP],
is decreased sufficiently. In symmetric models of traffic equilibria, the problem [VIP]
corresponds to a mathematical program, i.e., the map F'is the gradient of a function T
it is then natural to choose ¥» = T as the merit function. In asymmetric models, this is
not the case, and another merit function must be identified; one natural merit function
for [VIP] is inherent in the subproblem corresponding to (5.3) and can, under certain
conditions, be utilized for the solution of this problem.

At the new point, the original mapping is again approximated—now perhaps with
a different mapping ®**!'—and the algorithm proceeds until some stopping criterion is
fulfilled.

Below, we summarize the different steps of the general algorithm.

A sequence {®*} of monotone cost approximating mappings and a merit function
are assumed to be given. (Note that each mapping may be chosen adaptively, given x*.)

Step 0 (Initial guess) Choose an initial point x° € X, and let k = 0.

Step 1 (Search direction generation) Find a y* € X that solves [VIP,]. The resulting

search direction is p* = y* — x*.

Step 2 (Convergence check) If x* solves [VIPE,] — Stop (x* solves [VIP]). Otherwise,
continue.

Step 3 (Line search) Find a step length, [, which solves the one-dimensional problem

min {¢(x* + Ip*) | x* +IpF € X, 1 > 0}.
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Step 4 (Update) Let x*+! = x* + [;p*, and k := k + 1.

Step 5 (Convergence check) If x* is acceptable as a solution — Stop. Otherwise, go to
Step 1.

Although both the subproblem solution (Step 1) and the line search (Step 3) are
performed exactly in the above description, under certain assumptions they can both be
performed inexactly, while still ensuring convergence of the algorithm.

By appropriately choosing {®*} and 1, many well known algorithms for [VIP] can be
identified as special cases from the class of cost approximation methods. A vast majority
of the algorithms proposed for asymmetric traffic equilibria are included in this framework,
and may therefore be given a unified description.

There is no obvious choice of merit function to be used in the line search in Step 3,
due to the nonexistence of an unambiguous integral of the form (3.2b). In the traditional
variational inequality methods that can be identified as special cases from the class of
cost approximation algorithms, Step 3 is normally executed by taking a predetermined
step in the direction of p* in order to yield a decrease in an artificial merit function, i.e.,
a merit function which is known to exist but which it is not possible to evaluate. The
convergence often relies on the monotone decrease of the Euclidean distance to the set
of solutions to [VIP], in which case the merit function is

$(x) = do(x) = inf Ix -], (5.4)
where || - || is some appropriate vector norm. Clearly, a line search can not be made

with respect to this merit function, since the set 2 is unknown. Convergence is ensured,
however, by showing that the underlying algorithmic mapping, x**! € A(x*), satisfies
the two conditions:

(1) The algorithmic map is a fixed point map, i.e.,
x € () &= x € A(x), (5.5)

(2) A is contractive with respect to the norm defined in (5.4) [see Definition A.2.c].

It will subsequently be shown that the majority of the methods applied to asymmetric
traffic equilibrium problems can be identified by A =Y and [, = 1, where x — Y/(x) is
the map that defines the set of optimal solutions to [VIP%,], that is, they can be seen
as methods where the algorithmic map corresponds to a cost approximation subproblem
followed by a unit step.

The validity of the fixed point Property (5.5) is immediate for the mapping A = Y.
(The corresponding result in the case where Y denotes a convex programming subproblem
is given in Theorem 3.13.g.)

Algorithms in which [ = 1 is chosen are usually called successive approzimation algo-
rithms; the sequence of iterates in such algorithms are defined by a sequence of solutions
to approximations of the original problem, where the original mapping F' is replaced by
monotone mappings F'*, k = 0,1,.... [In the case of cost approximation, the mapping F*
has the form ®* + F(Xk) - (I)k(xk).] As discussed above, there are two main motives for
considering cost approximation algorithms with step lengths chosen through line searches
instead. First, convergence can generally be established under weaker conditions; second,
introducing a line search may enhance both the theoretical and practical convergence rate
of the algorithm.
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The convergence of most of these algorithms have been analyzed both locally (in which
case one assumes that the initial solution is chosen in a neighbourhood of the solution)
and globally (when such an assumption is not made). Although the global convergence
results are the most interesting, local convergence results are of interest in the convergence
rate analysis and in the context of reoptimization.

In the next section, we present instances of the successive approximation version of the
class of cost approximation algorithms.

Instances of successive cost approximation algorithms

The fact that cost approximation generalizes partial linearization implies that the exten-
sion to [VIP] of all the algorithms discussed in Section 4.2.1 are instances of the general
cost approximation scheme; these extensions are obtained simply by replacing VT with
the more general mapping F'.

Traditionally, successive approximation algorithms for [VIP] are divided into linear
and nonlinear approximation algorithms, distinguishing between affine and non-affine
approximating mappings F'*.

Linear approximation algorithms

In linear approximation algorithms, given an iterate x* € X, the next iterate is defined
as the solution to an approximation of [VIP], where the original mapping F' is replaced
by an affine mapping F*, i.e.,

F¥(x) = F(x") + (1/%)Br(x = x*),  Vx € X, (5.6)

where v, > 0 and B, € £"*" is a positive semidefinite matrix. This class of subproblem is
obtained from the general cost approximation subproblem [VIP%,] by choosing ®*(x) =
BkX, x € X.

Whenever Bj is symmetric, the resulting variational inequality reduces to the convex
quadratic minimization problem

mig { POy =)+ 5ty x4 Buty <)}, (5.7

which further reduces to the well-known scaled projection problem [cf. (3.6) and (4.25)]
yh = PPr(x" — 3By F(xF)) (5.8)

whenever By, is positive definite. Note that x**!' = y* for all k.

In Table 5.1 we list some well known instances of linear approximation algorithms.
Assuming that F' € C' on X, we let its Jacobian, VF, at x* € X be decomposed as
VF(x*) = Ly + Dy, + Uy, where D, = diag (VF(x*)) and L, and U}, are the lower and
the upper triangular part of VF(x*), respectively. Further, we let v, = 1, 0 < w < 2,
and B be a symmetric and positive definite matrix in R"*".

The convergence of linearization algorithms has been studied extensively. A general
global convergence result is given by Pang and Chan [738] for continuous mappings B
[i.e., By = B(x")]: letting G denote the symmetric part of G, i.e., G = (1/2)[G + GT], if
there exists a positive definite matrix G € %" and a scalar b < | such that B(x) — G
is positive semidefinite on X and

IGTF(x) = F(y) -B(y)(x=y)llg < bIx-yle — VxyeX,
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Choice of By Resulting method Basic references
V F(xF) Newton [290, 537]
~ VF(xt) Quasi-Newton [538]
VF(x*) + VF(x*)']  Symmetrized Newton [192, 458]
L; + Dy /w or
SOR; Linearized Gauss-Seidel (w = 1) [727, 738]
U, + Dk/w
Dy Linearized Jacobi [738]
B Projection (838, 192]

Table 5.1: Examples of linear approximation methods

then {x*} converges to a solution to [VIP].

Local convergence results for Newton’s method are given in [776, 291, 537, 538, 536,
535], for quasi-Newton methods in [538] and for the symmetrized Newton method in
[457, 458]. The Newton algorithm can be made globally convergent by replacing the unit
step by a line search with respect to the primal gap function; see Section 5.2.5.

The projection algorithm was one of the first algorithms studied for the solution of
variational inequalities; see, e.g., [444, 401, 561, 838]. Convergence results are given in
[838, 244, 34, 9, 192, 310, 78, 284, 738, 196|; convergence is ensured if F' is strongly
monotone on X (with modulus mp) and Lipschitz continuous on X (with modulus Mp),
and the smallest eigenvalue, up, of B is larger than M%/2mp. (This result is developed
from the results of Cohen [176]; see also [747, 588].) In this result, convergence is based on
the merit Function (5.4); convergence proofs, based on contractive arguments, are given
in [192, 738, 196]. (In the latter results, the above condition is replaced by the stronger
condition that uh/||B| > M?/2mp, which, on the other hand, implies a linear rate of
convergence. )

The projection algorithm of Korpelevich [567] completely obviates the strong mono-
tonicity assumption on F', to require only monotonicity. This extragradient algorithm is

given by
X" = Py(xF — 4 F(xF)), (5.9a)
XM = Py(xf — yF(xF7)),  k=0,1,..., (5.9b)

where v € (0,1/Mp). A modification of this method, where the parameter v is allowed
to be chosen adaptively, is given by Khobotov [549] (see also Marcotte [643], who applies
the algorithm to [TAP-VIP-F"]).

Nonlinear approximation algorithms

The class of regularization algorithms ([123, 38, 434]) is obtained by letting ®* = F +
1/(274;)RF, where 43 > 0 and R*¥ : X — R" is a strongly monotone mapping. Special
cases of regularization algorithms are the proximal point algorithm ([651, 783]), which
is obtained by choosing R* as the identity mapping, and splitting algorithms ([396, 397,
910, 911, 294]) [see also Section 4.2.1].

5.2.2 Decomposition algorithms

Let the constraints defining the feasible set X of [VIP] be defined by (4.26), i.e., define a
Cartesian product of sets X;. As in the case of nonlinear programming (see Section 4.2.2)
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sequential and parallel decomposition algorithms that utilize this problem structure can
be devised for the solution of [VIP].

Let the ith block component of ®F be of the form ®* : X; — R™, where ® is a
monotone mapping which depends only on the variable block component x;. The resulting
variational inequality subproblem [VIng] then decomposes into m independent problems

[VIPE,]

[@F(yF) + Fi(x") — oF(x)]T(yi —y}) >0,  Vyi€ X (5.10)

Sequential decomposition algorithms

In the sequential version of the decomposition algorithm, in iteration k the index 7z, €
{1,...,m} is chosen (for rules for selecting these indices, see Section 4.2.2), and the
corresponding subproblem [VIP’%E | is solved, with the solution yfk. We then let

'k

! xF, otherwise,

k B kY i
FH = {Xi + h(yi = Xi), 1=,

where the value of [ is chosen such that convergence is guaranteed.

The cyclic version of the cost approximation algorithm includes a block variant of the
Gauss—Seidel method. One iteration of this method is defined through the following m
subproblems, solved in sequence:

[G-S*]

Fi(xM xM xF Ty, —xF) > 0, Vy; € X, i=1,2,...,m. (5.11)

7 7 T4

This algorithm is also known as the relazation method, and as the diagonalization
method.

To show that the Gauss—Seidel algorithm is a special case of cyclic cost approximation,
let

k — I (~F - ‘
7 (xi) = Fi(xi_, X, X, ). (5.12)

Then ®%(x¥) = Fi(x¥) holds, and it follows, with the choice of [, = 1 for all k, that the
solution to [VIPL,] is the same as the solution to [G-S}].

Convergence results for the Gauss—Seidel scheme are given in [12, 737, 738, 736, 84].
Convergence results for essentially cyclic cost approximation algorithms, where the step
lengths [ are chosen through line searches with respect to a merit function, are given
in Patriksson [747]. Convergence results for cyclic linear and nonlinear approximation
algorithm are given in [736] and [84, Sec. 3.5].

Parallel decomposition algorithms

If the necessary computer facilities are available, then the independent problems [VIP](%,F]

can be solved simultaneously, thus defining a parallel decomposition algorithm; the iter-
ates are defined in exactly the same manner as in the basic cost approximation algorithm.
If asynchronous computations are introduced, then the updating is made individually
for the different variable blocks; see Section 4.2.2 for descriptions of different parallel
implementations of partial linearization algorithms.
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The Jacobi algorithm is a special case of the parallel cost approximation approach, in
which the cost approximating mapping is given by (5.12), and unit steps [ are chosen.
Among the first applications of the Jacobi algorithm to variational inequalities we find
non-cooperative games ([427, 398]), the PIES model ([502, 517, 11]), and multiclass-user
traffic equilibria ([823, 348, 6]).

Convergence properties of the Jacobi algorithm are found in [13, 737, 738, 194, 196,
736, 84]; the convergence rate depends on the amount of interaction in F' among the
independent variables, and increases with a lesser dependency.

5.2.3 Column generation algorithms

The principle of column generation described for nonlinear programming problems in
Section 4.2.3 extends immediately to variational inequality problems, since it involves only
inner representations of the feasible set. Care must be taken, however, when developing
column generation algorithms supplied with column dropping rules; for instance, the
Frank—Wolfe algorithm—which is obtained by choosing the parameter value r = 1 in a
restricted simplicial decomposition scheme—is not convergent when applied to variational
inequalities (e.g., [630]).

A column dropping rule based on the value of the primal gap function is given by
Lawphongpanich and Hearn [594].

5.2.4 Algorithmic equivalence results

Below, we show that two well-known classes of successive approximation algorithms are
included in the framework of cost approximation.

The algorithm class of Cohen

In our notation, the auziliary problem principle of Cohen [176] generates a sequence {x*}
where, given x* € X, x**! is the solution to

min {¢(y) + [eF(x") = Ve(x")]"y}. (5.13)

where ¢ : X — R is a strongly convex function in C! on X, and & > 0.

The algorithm class of Dafermos

Let T': X x X — R" be a continuous mapping satisfying

(1) I'(x,x) = F(x) for all x € X,

(2) VxI'(x,y) is symmetric and positive definite for any fixed x,y € X.

In the algorithm framework of Dafermos [196], given x* € X, the point x**! is obtained
by solving the variational inequality subproblem

I(x" 1, xF) T (x — x>0, Vx € X. (5.14)
Theorem 5.1 (Algorithmic equivalence results)

(a) Given x* € X, let ® be given by ®F(x) = (1/e)Vip(x), where ¢ : X — R is a convex
function in C' on X and ¢ > 0. Then the resulting subproblem [VIng] s equivalent
to the Subproblem (5.13) of [176].
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(b) Given x* € X, let ®F be given by ®F(x) = Vxp(x,x*), where p: X x X — R is a
continuous function on X x X, and convex and in C' on X with respect to its first ar-
gument. Then the resulting subproblem [VIPL,] is equivalent to the Subproblem (5.14)

of [196].

Proof

(a) See [747, 588].
(b) See [746, 747, 588]. 0

Based on these algorithmic equivalence results, we are now in the position to establish
the convergence of instances of the successive cost approximation algorithm, i.e., the cost
approximation algorithm using unit step lengths.

Theorem 5.2 (Convergence of successive cost approximation algorithms)

(a) Let F be strongly monotone and Lipschitz continuous on X, and let ¢ : X — R be
a strongly convex function in C' on X. Let the sequence {x*} be generated by the
successive cost approxrimation algorithm, where ®* = V. If ¢ is chosen such that

M}
2m, > —L, (5.15)

mpg

then {x*} — x*, where X* is the unique solution to [VIP].

(b) Let X be bounded and F in C' on X, and let Vo : X x X — R™ be in C' on
X x X. Further, let Vip(x,y) be positive definite for any fived x,y € X. Let the
sequence {x*} be generated by the successive cost approrimation algorithm, where

(I)k(x) = thp(x,xk). If

[ Vae ', y) 2 Vaye(x®, ¥%) + VE(y?) = Vige(y®, vl
-vfcgo(x?’,y?’)—l/?m <1 (5.16)

for all x',y',x%,y%, x3,y3 € X, then {xF} — x*, where x* is the unique solution to

[VIP].

Proof

(a) Follows from [176, Th. 2.2] and Theorem 5.1.a, where we choose ¢ = 1.
(b) Follows from [196, Th. 2.1], Theorem 5.1.b, and by identifying T'(x,y) = Vxe(x,y) + F(y) —
Vxe(y,y)- o

The above results require the mapping F' to be at least strictly monotone, and it is
difficult to verify the conditions for convergence in practice. This is in contrast to the
mild (and in many cases easily checked) conditions that guarantee the convergence of this
type of algorithm in the case of nonlinear programming.

Remark 5.1 It is well known that the route cost function ¢ is not strictly monotone
even when the corresponding link travel cost function t is strongly monotone. The con-
sequence is, of course, that algorithms which require strong monotonicity in order to be
convergent can not be applied to traffic equilibrium problems in the space of route flows.
Recently, however, Zhu and Marcotte [1012] showed that the auxiliary problem principle
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of Cohen [176] is convergent under conditions similar to that of Theorem 5.2.a, but where
F'is assumed to be co-coercive only (see Definition A.2.d). As opposed to the strong
monotonicity property, the co-coercivity property (which is implied by strong monotonic-
ity) is preserved under affine transformations; as a result, this class of successive cost
approximation algorithms may be utilized for solving traffic equilibrium problems in the
space of route flows, provided that the link travel cost functions are strongly monotone.

In the next section, we introduce descent algorithms based on specially constructed
merit functions. Subsequently, we will show that a modification of the above algorithms
yields convergence both under mild monotonicity assumptions and under conditions that
are much easier to verify.

5.2.5 Descent algorithms for variational inequalities

The direct extension of the line search Step 3 of the general descent algorithm of Sec-
tion 4.2.1 to variational inequalities amounts to solving the one-dimensional variational
inequality

F(x* + 4p")Tp (1= 1) >0, Vi€ |0, (5.17)

where [12% is the maximum feasible step length in the direction of p*.

This direct extension of nonlinear programming methods does not define convergent
algorithms in general (see, e.g., [630] for a counter-example using the extension of the
Frank-Wolfe algorithm.) It can be used, however, at regular intervals in successive ap-
proximation algorithms for [VIP], as shown by Harker [463]; he introduces this strategy in
Step 3 in every second iteration of Dafermos’ [196] scheme, establishes convergence under
some additional technical assumptions, and shows through tests performed on the special
cases of the Jacobi and projection algorithms that it may enhance the efficiency of the
scheme significantly.

Algorithms based on the primal and dual gap function

Algorithms for [VIP] based on the minimization of (calculable) merit functions have been
considered by Russian scientists since at least the late 1960s.

The primal gap function, and the corresponding optimization Formulation (3.13), was
first studied in an algorithmic context by Zuhovickii et al. [1019, 1020] (see also [244, 766]).
In an extension of the Frank—Wolfe algorithm to [VIP], the step lengths are chosen accord-
ing to an inexact line search with respect to the primal gap function. The convergence,
however, relies on properties of the feasible set which precludes applications to polyhedral
feasible sets, and therefore to traffic equilibrium problems.

Marcotte [641] shows how a descent direction with respect to the primal gap function
can be obtained from the set of solutions Y(x) to (3.12) by using a polyhedral approx-
imation technique similar to those used in bundle methods in nondifferentiable convex
optimization.

In [644, 645, 286, 646] the Newton subproblem is shown to yield a descent direction with
respect to the primal gap function whenever F' is monotone; under additional monotonicity
and regularity assumptions, this descent algorithm is shown to act locally like the original
Newton algorithm, thereby obtaining quadratic convergence. (Demyanov and Pevnyi [244]
discuss a descent algorithm based on the Newton algorithm, but do not provide any
convergence results.)
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Hearn [472, 474] adopts Polyak’s [759] subgradient algorithm to the non-differentiable
Program (3.13), in the case of nonlinear programming. The use of Polyak’s method [see
(4.67)] is advantageous, since the optimal value is known.

Turning to the dual gap function, methods proposed for the Program (3.16) are mostly
applied to the equivalent semi-infinite linear program

max 2, (5.18a)
st. < Fx)TI(x-y), Vx € X, (5.18b)
y € X. (5.18¢)

Zuhovickii et al. [1017, 1018, 1020] apply a cutting plane approach in which (5.18b) is
replaced by constraints z < F(x/)T(x?—y), j = 0,1,..., k; in iteration k, the solution, y*,
to the corresponding restriction of (5.18) defines x**! and a new cutting plane. Dem’yanov
and Pevnyi [244] derive x**! from the evaluation of g at y*. Auslender [34, Sec. VIL5]
considers applying other cutting plane approaches to (5.18). Nguyen and Dupuis [718, 719]
and Hearn and Lawphongpanich [476] suggest performing a line search [i.e., the one-
dimensional variational Inequality (5.17)] in the direction of p* = y*—x*, and show that it
yields a descent step with respect to the objective z of (5.18). Hearn and Lawphongpanich
investigate the convergence of the algorithm under different step length rules.

As in the case of the primal gap function, subgradient optimization approaches have
been suggested for the solution of the non-differentiable Program (3.16); see [284, 282,
458].

Algorithms based on differentiable gap functions

Smith [845, 846, 847] develops a descent algorithm for [VIP] based on the differentiable gap
function GG* [see (3.17)]; convergence is ensured under a monotonicity and differentiability
condition on F'; the algorithm, however, requires the knowledge of the extreme points of
the feasible set X and must therefore be embedded in a simplicial decomposition scheme.

A number of descent algorithms based on differentiable gap functions of the form
defined in (3.18a) and special cases from the class of cost approximation algorithms have
been proposed for the solution of [VIP].

The algorithm of Fukushima [391] is based on solving projection subproblems, which
are obtained from choosing ®*(x) = Bx for all k, where B is a positive definite and sym-
metric matrix. Line searches are performed in the resulting directions with respect to the
gap function defined by the corresponding choice of p(x) = (1/2)xTBx in (3.18a). Con-
vergence is guaranteed under the assumptions that X is bounded and that the Jacobian
of F'is everywhere positive definite; under an additional strong monotonicity assumption,
line searches can be made with an Armijo-type inexact rule. Under strong monotonicity
assumptions, the Newton subproblem is shown in [885] to yield descent directions with
respect to the same merit function.

Larsson and Patriksson [588] develop a descent algorithm based on the gap function
defined by (3.18a) [cf. Theorem 3.13.e]; convergence is established under conditions that
imply that F' is at least strictly monotone; they show that the algorithm also converges
when the subproblems are solved inexactly. This approach is further studied in [747],
and applied to variational inequality problems over Cartesian product sets; convergence
is established for both parallel and essentially cyclic decomposition versions of the descent
algorithm, and for predetermined step length rules.

Wu et al. [994] solve symmetric subproblems that can be identified as special cases of
cost approximation subproblems with ®*(x) = Vxp(x,x") for all k; this subproblem is
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equivalent to an extension of the regularized Frank—Wolfe Subproblem (4.22) to [VIP].
The corresponding merit function defined in (3.18a) is utilized in exact and inexact line
searches, and convergence is established under conditions that include strong monotonicity
on F, but also includes technical assumptions that are very difficult to verify.

Zhu and Marcotte [1014] consider descent algorithms which may be identified by the
choices ®*(x) = ®(x, x*) for all k, i.e., by the choice of the sequence {®*} as a fixed, con-
tinuous mapping, and two different merit functions: the one proposed by Fukushima [391],
and the one given by Wu et al. [994]. Convergence is ensured for a version employing an
inexact line search rule, under strong monotonicity assumptions and additional nonstan-
dard technical assumptions.

We conclude the discussions on descent algorithms for [VIP] by providing an instance
of the above general scheme which is convergent under very mild assumptions on the
problem and does not require any knowledge of constants of the problem (such as the
Lipschitz constant).

The subproblem of the algorithm of Zhu and Marcotte [1013] is shown in [748] to be
a cost approximation subproblem, given the choice ®*(x) = (1/a;)Vxp(x,x*) for all k,
where aj, > 0. In iteration k, the corresponding merit function, v,,, is evaluated at x*.

If

o) £ o (Tl YT ) -l ).

(1=~

where v € (0,1), then the value of ay is increased by a fixed amount, x*t1 = x* is set,
and '¢ak+1(xk) is calculated; otherwise, azy; = ay is set, and either the point y* defines
x*t1 or an Armijo-type line search is made in the direction of y* — x*
Yo, -

We next make some interesting observations. Firstly, the symmetric cost approxima-
tion subproblems defined in this algorithm are simple modifications of those that define,
for instance, the general framework of Dafermos [196]; indeed, the sequence of cost ap-
proximating mappings is {®*} = {(1/ax)Vxe(-,x*)} (cf. Theorem 5.1.b), which differs
from Dafermos’ scheme only in the introduction of the constants (1/ay). Secondly, dis-
regarding the line search step, which is only considered when it is necessary in order to
guarantee global convergence, the algorithm contains the same steps as the successive
cost approximation algorithms, and therefore amounts to minor changes of most existing
codes for variational inequality problems.

with respect to

The interest in this algorithm lies in the facts that it is convergent under both mild
and simple assumptions and that it may be implemented by slightly modifying an existing
(successive) cost approximation algorithm. Moreover, it is not necessary to have estimates
of problem parameters (typically strong monotonicity and Lipschitz constants), which
are normally needed when step length rules are implemented in variational inequality
algorithms.

The convergence of this algorithm is given by the below theorem.

Theorem 5.3 [1013] (Convergence of a descent algorithm) Let X be bounded and F be in
C' on X, monotone and Lipschitz continuous on X. Let the sequence {x*} be generated
by the above algorithm. Then, any accumulation point of this sequence is a solution to

[VIP].



Algorithms for general traffic equilibria 171

5.3 Algorithms for general traffic equilibria

The non-existence of an equivalent convex problem of the form [TAP] and [TAP-E] to the
equilibrium Conditions (2.1) and (2.3), respectively, is due to the asymmetry of the travel
cost and demand functions. The asymmetries arise from the modelling of interaction
among vehicles at intersections, and of different user classes by using multiple copies of
the traffic network (see Section 2.5).

The most natural algorithmic approach to an asymmetric user equilibrium problem
perhaps is to iteratively replace the asymmetric cost and demand functions with symmet-
ric (and preferably separable) ones; the resulting problem can then be solved using any
of the algorithms in Chapter 4. Nearly all of the algorithms proposed for the solution
of asymmetric traffic models are of this type; the most popular one is an adaptation of
the Jacobi approach, in which the asymmetry is iteratively removed by ignoring the cost
and demand interactions between the link and O-D flows, thus obtaining separable sub-
problems. (This algorithm is known also as the diagonalization algorithm, as well as the
relazation algorithm.)

Below, we outline the development of algorithms for asymmetric user equilibria.

5.3.1 Linear approximation algorithms

The projection algorithm was first considered by Dafermos [192] for [TAP-VIP-F"], and
for a two-mode model in [193]. Convergence results are given in [9, 192, 310, 340, 195];
the iteration

fErl = PR(fF —yB7lt(f%),  k=0,1,..., (5.19)
defines a contraction whenever v € (0,2m¢/v), where

def TR-1
v = max p(Vt(f)" B™ Vit(f))

is the maximum eigenvalue of Vt(f)TB~1Vt(f) over all feasible link flows.

This condition implies that the method is allowed to take very small steps only, and
the convergence, although it is linear in theory, is often quite slow. Furthermore, the
projection onto F” (which is equivalent to a quadratic network flow problem) is time
consuming. (It is, of course, possible to partially reduce the computational burden through
efficient reoptimizations of previous subproblem solutions.) The accelerating line search
step of Harker [463] (see Section 5.2.5) may enhance the convergence in practice.

Dafermos [192] also proposes using a quasi-Newton approach for the solution of [TAP-
VIP-F7]. This amounts to replacing the fixed matrix B in (5.19) with a sequence {B;}
of symmetric and positive definite matrices defined, for instance, by the symmetric part
of the Jacobian of t at the points f*. This algorithm is later investigated by Fisk and
Nguyen [340], who also discuss the proper choices of values of the step length parameter v
for both the projection and quasi-Newton algorithms. Limited tests, where the quadratic
network flow problems are solved using the Frank—Wolfe algorithm, show that the pro-
jection algorithm is slow for most choices of the matrix B; this is particularly the case
when the Jacobian Vt varies significantly on F7, i.e., when t is highly nonlinear, since
no fixed matrix then can be a good approximation of the Jacobian of t on large subsets
of F" (see also [283]). Both the projection and quasi-Newton algorithms were found to
generate negative cycles in the subproblem phase.

As in the case of separable costs (see Section 4.3.1), projection algorithms are more
easily applied to the link-route formulation; see Section 5.3.5 for examples.
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5.3.2 Sequential decomposition algorithms

Surprisingly, considering the popularity of sequential decomposition schemes for the sep-
arable model (see Section 4.3.2), such algorithms are discussed relatively scarcely for
asymmetric models. The reasons for using a sequential decomposition approach as com-
pared to a parallel decomposition algorithm for example are just as valid here, and the
interactions in the costs and demands are even more pronounced.

A point in favour of decomposition algorithms in general is that it may be much
more difficult to evaluate the cost and demand functions in the nonseparable case; in
a decomposition algorithm, the number of evaluations of the original cost and demand
mappings are kept down to a minimum.

Fisk and Nguyen [338] discuss the application of the Gauss—Seidel approach to a
multiclass-user network equilibrium model formulated as a system of nonlinear equations.

Dafermos [194] establishes the convergence of a cyclic decomposition scheme over
modes, and in [195] over O-D pairs.

5.3.3 Parallel decomposition algorithms

Parallel decomposition algorithms of the Jacobi type were the first methods proposed for
the solution of multi-modal networks ([823, 348, 6, 94, 355, 453, 939]). After the intro-
duction of variational inequality formulations of traffic equilibrium problems, nonlinear
Jacobi methods were again studied.

Florian [349, 350] extends the algorithm of Florian [348]; local convergence results, and
a global result for the affine cost case, are given in [363].

The first general convergence results are due to Dafermos [194, 195, 196], who presents
results for both the single-mode and multi-mode cases with elastic demands. In the
single-mode case, the cost and demand functions are diagonalized simultaneously over
O-D pairs. In the multi-mode case, a diagonalization is made also with respect to the
different modes. The intuitive convergence condition is that the interactions are small
enough; the weaker the interaction is, the faster the algorithm converges.

The subproblem of a Jacobi type approach is a standard traffic assignment problem.
Since many such subproblems may have to be solved before the algorithm stabilizes in the
vicinity of a solution, it is important not to spend too much effort on each subproblem, and
therefore to terminate their solutions prior to reaching a solution. (The use of truncated
subproblem algorithms is discussed in more detail in Section 4.2.1.) Sheffi [831, Sec. 8.2]
presents a Jacobi algorithm, in which each separable subproblem is solved using one
iteration of the Frank—Wolfe algorithm. The computational effort is similar to that of the
Frank—Wolfe algorithm for the separable model, and the algorithm is easily implemented
based on such a scheme. Mahmassani and Mouskos [634] perform numerical experiments
with a Jacobi algorithm using the truncated Frank—Wolte algorithm for the solution of the
subproblems. Their conclusion is that not more than four Frank—Wolfe iterations should
be performed in each subproblem.

Harker [463] applies the accelerating line search Procedure (5.17) to the Jacobi algo-
rithm, and shows that it may yield a substantially lower computational cost when applied
to some small examples.

Computational comparisons between nonlinear Jacobi approaches and linear approx-
imation algorithms are made by Fisk and Nguyen [340] and Nagurney [699, 700]. Fisk
and Nguyen found that a linearized Jacobi algorithm was superior to the projection algo-
rithm for all choices of fixed matrices tried in the latter method. [Note that the linearized
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Jacobi algorithm is a linear approximation algorithm where the matrices By are cho-
sen as diagonal approximations of the Jacobian of t, and therefore may be viewed as
a single iteration Newton approach to the nonlinear Jacobi algorithm; cf. (4.62).] The
nonlinear Jacobi approach was found to be even more efficient. In all these experiments,
the symmetric subproblems were solved using a few steps of the Frank—Wolfe algorithm.
Nagurney studies several small networks with different travel cost and demand functions.
The overall best performance of the linear approximation algorithms tested were obtained
from the linearized Jacobi approach. (Although choosing non-diagonal matrices resulted
in convergence in fewer iterations, the total computing time was found to be higher.)
The comparative performance of the linear and nonlinear approximation algorithms was
found to vary with the nonlinearities of the cost and demand functions. In these tests,
both the Frank—Wolfe algorithm and the equilibration operator approach were used for
the solution of the symmetric subproblems; of the two, the latter was always found to be
more efficient.

A parallel algorithm based on Douglas-Rachford splitting ([616, 294]) is described in
[392].

5.3.4 Algorithms based on the primal and dual gap functions

In the algorithms for the Problem (3.13) presented by Zuhovickii et al. [1019, 1020] (see
Section 5.2.5) step lengths are taken in the direction defined by the solution to the Frank—
Wolfe subproblem. Hearn [472, 474] discusses the use of Polyak’s [759] method, where the
step length is given by (4.67), and the optimal value is zero. Fisk and Nguyen [340] use
an averaging procedure, which corresponds to using step lengths 1/k, and hence defines
a direct extension of the MSA algorithm (see Section 4.1.6) to variational inequalities.
Results obtained from limited tests are promising.

Marcotte [641] discusses the application to [TAP-VIP-F"] of the bundle-type algorithm
described in Section 5.2.5. In this application, all-or-nothing solutions are retained and
combined in order to yield a descent direction with respect to the primal gap function;
this idea of combining all-or-nothing solution to obtain a good search direction is similar
to that of Fukushima [387] (see Section 4.1.6). The algorithm of Arezki [22, 23] is based
on a similar idea.

5.3.5 Column generation algorithms

In this section we trace the development of column generation algorithms for general traffic
equilibria. As for the separable models, we divide the presentation between algorithms
based on aggregated and disaggregated representations of the feasible set.

For a background to the principles of column generation and simplicial decomposition,
see Section 4.2.3; column generation and simplicial decomposition algorithms are discussed
for the separable model in the Sections 4.3.4 and 4.3.5.

Aggregate simplicial decomposition algorithms

An aggregate simplicial decomposition algorithm for [TAP-VIP-F"] is the extension of
that for the separable model, where the restricted master Problem (4.63) is replaced by
the variational inequality problem of finding f**! € F™™ such that

t(FHOT(F — 5 >0, Vfe B (5.20)
where ™™ is given by (4.63b)—(4.63d).
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Using the taxonomy of Section 4.2.5, the algorithms may be described in the form
F(Cy).

Smith [845] presents an ASD scheme for monotone [TAP-VIP-F"], where each restricted
master Problem (5.20) is solved using a descent algorithm for the merit function G* (see
Section 3.1.5). He shows that convergence is ensured also when the Problems (5.20) are
solved inexactly, but he does not present any computational results.

Hearn et al. [593, 594, 480] apply both a linearized Jacobi and a projection algorithm
to (5.20). (This latter algorithm is a special case of the former, since the matrices chosen
are always diagonal; this choice of matrices ensures that the quadratic subproblems are
analytically solvable.) They show that convergence is guaranteed under the conditions
that (a) the restricted master problems are solved accurately in the limit,' and (b) that
columns with zero weights are only dropped when the value of the primal gap function has
decreased sufficiently. A disaggregated version of the algorithm (F™(D5[Co])), similar to
that given by Bertsekas and Gafni [78], is also tested. Experiments on small-scale networks
indicate that the aggregated version is superior to the disaggregated one; each restricted
master problem of the latter algorithm is, however, solved very roughly, which might
explain this conclusion.

Pang and Yu [739] approximate each restricted master problem by replacing the orig-
inal cost mapping by the diagonal part of its Jacobian evaluated at the solution to the
previous restricted master problem; that is, each restricted master problem is solved using
one iteration of a linearized Jacobi algorithm. (The algorithm is therefore an aggregated
version of the algorithm of Bertsekas and Gafni [78].) Each separable quadratic network
flow problem is solved using a pivoting algorithm ([734]). Tests on various small networks
show promising results; for larger networks, the need to solve a large number of short-
est route problems due to the crude approximation used suggests that a more accurate
solution of each restricted master problem is preferable.

Marcotte and Guélat [647] apply the modified Newton algorithm of Marcotte and Dus-
sault [644, 645, 286, 646] (see Section 5.2.5) to each restricted master problem. Compar-
isons with a cutting plane approach ([718, 719]; see Section 5.3.6) and a Jacobi approach
(in which the separable problems are solved using the PARTAN algorithm) are performed
on networks with varying degrees of cost asymmetry. For nearly symmetric problems, the
Jacobi approach was found to be the most efficient for the accuracy required, but both the
cutting plane and simplicial decomposition/Newton approaches were found to be much
more robust when solving highly asymmetric problems.

Montero [684] investigates the performance of ASD algorithms with respect to the
choices of starting solution, shortest route algorithm, algorithms and stopping criteria
for each restricted master problem, and criteria for column dropping. Experiments are
performed on the small networks reported in the literature as well as on some large bi-
modal networks resulting from the modelling of route guidance systems. (The two modes
correspond to guided and unguided vehicles, respectively.) Variable metric projection
algorithms are the most efficient among the projection methods tested; projection algo-
rithms with fixed matrices are sensitive to the choice of step length parameter, and in
some applications fail to converge.

'The condition is that
t(EFOT(E —F5Y) > ¢, Ve 7,

where {e} | 0 [cf. (4.21)].



Algorithms for general traffic equilibria 175

Disaggregate simplicial decomposition algorithms

A disaggregated representation of the feasible set leads to a restricted master problem of
the form [TAP-VIP-F"] where the sets R,, are replaced by subsets ﬁpq, (p,q) €C.

Aashtiani and Magnanti [2, 3, 5] apply an algorithm of the form F"(D®[Cz]) to the
nonlinear complementarity model [TAP-E-NCP]. The level of decomposition they use
depends on the size of the problem and the nature of the demand function. Each sub-
problem of the sequential scheme involves the generation of new routes (and the deletion
of routes with zero flows) and the solution of, for example, a single-commodity nonlinear
complementarity problem; each such problem is solved with a Newton algorithm, where
the linear complementarity subproblems are solved using Lemke’s [609] algorithm. In [5],
only tests performed on separable models are reported.

Bertsekas and Gafni [78] extend the scaled gradient projection algorithms of Sec-
tion 4.2.2 to the solution of [TAP-VIP-F"]. The overall scheme is of the form F"(D¢[Cr]),
where the decomposition is either parallel (or all-at-once) or cyclic (or one-at-a-time).
New routes are generated after each iteration of the projection scheme. Although the
restricted master problems are not strongly monotone in the space of route flows, they
are able to establish convergence of the projection algorithm under strong monotonic-
ity assumptions on the link flows, and also establish the convergence of a more general
projection algorithm, where the matrix B is allowed to change from one iteration to the
next whenever sufficient progress has been made. (This convergence result is a special
case of that for the auxiliary problem principle under co-coercivity; see Remark 5.1.) In
their numerical experiments, the condition for allowing the matrix to change is fulfilled
in every iteration of both the parallel and the sequential implementations. In this case,
their algorithm turns into a linearized Jacobi approach, which in the case of sequential
decomposition may be viewed as a simplified version of that of Aashtiani and Magnanti, in
the sense that each restricted master problem is solved less accurately before new routes
are generated. The sequential approach can not be shown to converge, but is found to
be more efficient than the parallel implementation in experiments on small networks. An
implementation is described in [82].

Smith [846] describes a column generation algorithm for [TAP-VIP-F"] of the form
F(Cr[DF]), which extends the aggregated version in [845].

5.3.6 Dual algorithms

Fukushima and Itoh [393] apply the projection algorithm of Fukushima [390] to [DTAP-
E-VIP-FJ]]. Given an iterate (p*, %) € RMIFICI the following iterate is

(me )= () m (506h))

where H* C 11, is a halfspace defined by the most violated constraint at (u*, w*) among
those defining the feasible set II, of [DTAP-E-VIP-FJ]. This most violated constraint
is identified by a shortest route at the given cost p*. This algorithm is similar to the
dual algorithms presented in Section 4.3.7 for the separable model, and has the same
inherent property of providing a feasible flow in the limit only. Moreover, the calculation
of the demand and inverse travel cost functions is very time consuming; in numerical
experiments, Fukushima and Itoh find that the portion of the total computation that is
spent on these calculations is as high as around 95 %.

The inherent dual character of the algorithm can be circumvented by introducing a
simple scheme for generating primal feasible flows from the shortest route subproblem
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solutions, as suggested by Larsson et al. [582]. Such a scheme is described for the separable
case in Section 4.3.7. An alternative is to algorithmically generate the constraints of I, in
a cutting plane algorithm and solve master problems over those subsets of constraints; the
optimal multipliers of these constraints define a feasible route flow solution, and such an
approach is therefore a dual representation of a disaggregate column generation /simplicial
decomposition algorithm (see Section 5.3.5). Itoh et al. [520] propose such an algorithm
for [DTAP-E-VIP-FJ].

The Reformulation (5.18) of [VIP] is utilized in the development of cutting plane al-
gorithms for [TAP-VIP-F"] by Nguyen and Dupuis [718, 719]. Given cutting planes
2+ t(f)Ty < t(f9)™7, 5 € {0,1,...,k}, the auxiliary solution y* is obtained by solving
the corresponding restriction to (5.18); this solution is obtained from a special simplex
algorithm. The new iterate—which also defines the new cut to be added—is obtained
by approximately solving the one-dimensional variational Inequality (5.17) over the in-
terval [f*, y*]. When formulating the next linear master problem the currently inactive
constraints are dropped, and the problem is reoptimized from the solution of the previous
master problem. Numerical experiments performed on medium-scale separable models as
well as on small affine asymmetric ones indicate that the number of cuts needed is very
limited and that the reoptimization of the restricted master problems is efficient. The
algorithm compares favourably with the Frank—Wolfe algorithm on the separable mod-
els, and with a Jacobi approach where the separable subproblems are solved using the
Frank—Wolfe algorithm on the asymmetric models.

5.3.7 Other algorithms

Among the first algorithms considered for the solution of general traffic equilibria were gen-
eral algorithms for computing fixed points (e.g., [901, 410]). For example, Asmuth [30, 31]
applies the Eaves—Saigal [292] algorithm to a fixed point model of the Wardrop condi-
tions. Such pivoting algorithms can only solve very small problems efficiently, since they
do not utilize the network structure. The same conclusion is drawn by Aashtiani [2] from
experiments on a pivoting algorithm for a nonlinear complementarity formulation.

Maugeri [657, 658] develops an algorithm which identifies the optimal face of the poly-
hedron H of feasible route flows by successively reducing its dimension. In [231] it is
extended to elastic demand problems through a reformulation of the Wardrop conditions
into a quasi-variational inequality problem ([61, 689]).

5.4 Discussion

The development of algorithms for separable models of traffic equilibria followed that for
general nonlinear programs and network optimization. The development of algorithms for
asymmetric models was, however, a driving force for the development of the whole field
of iterative methods for variational inequality problems.

For two main reasons, knowledge about the most efficient algorithms for the solution
of traffic equilibrium problems is relatively limited. Firstly, the lack of applications means
that most networks applied are small ones constructed for illustration purposes only. The
result is that the algorithms have not been tested or compared with regard to their ability
to solve large-scale models.

Secondly, the types of algorithms tested are very limited. Decomposition algorithms
of the nonlinear Jacobi type, along with projection algorithms, are the two predominant
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classes of algorithms proposed and tested. Moreover, several algorithms have not been
implemented in the most efficient manner possible. The implementations of disaggregate
simplicial decomposition (DSD) schemes is a good example: in the implementations,
which are commonly of the form F"(D¢[Cr]), new routes are generated after only a few
steps of an iterative algorithm for a given restricted master problem, which implies that
the total number of shortest route calculations is much higher than necessary.

As discussed in Section 2.7, research into the efficient solution of asymmetric traffic
equilibrium problems has been motivated more by the scientific challenge than the ap-
propriateness of the models; general network equilibrium models should perhaps be seen
more as a basis for idealized descriptions of equilibrium states than as models for actually
computing equilibrium flows. Algorithms are most often proposed without any investi-
gations as to whether the restrictions imposed upon the network data by the conditions
for convergence or the algorithms are realistic or not, or even if it is possible to collect or
estimate the data required.

Interesting to note is that in some experiments, the network data has been shown not to
satisfy the conditions for convergence of the algorithm used, especially in the applications
of diagonalization approaches (e.g., [6, 340, 966, 385, 634]), although the algorithm has
been successful in obtaining an equilibrium solution. One conclusion may be that in
some cases, the theoretical convergence conditions are too strong, and that it may be
possible to weaken them significantly. Some progress has been made in the development
of algorithms for variational inequalities which require weak monotonicity assumptions;
an especially interesting algorithm class is the modified descent algorithm of Zhu and
Marcotte [1013] (see Theorem 5.3), which is obtained from a minor adjustment of the
well known algorithm class of Dafermos [196] and therefore includes simple modifications
of a majority of the iterative algorithms applied to traffic equilibria as special cases.

We conclude by supplying a list of references to known asymmetric test networks.

City INT A |C|  # Centroids Reference
9

13 4 4 [719]

7 %6 6 [393]

20 28 8 [699]

22 36 12 [340]

25 40 5 5 78]

95 37 6 [699]

0 66 6 [699]

Hull 501 798 138 23 [647]
Barcelona 930 2522 7922 110 [684]
Barcelona 2199 5022 7286 90 [684]
Winnipeg 1017 2976 4345 154 [684]

Table 5.2: Asymmetric test networks
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Appendix A

Definitions

In this appendix we collect the definitions and abbreviations of various concepts used in the
book. In all definitions, X is a nonempty, closed and convex subset of R, T a function from X
to ¥ and F' a function from X to R".

Properties of functions

Definition A.1 (Convexity)

(a)

(b)

(d)

T € C! on X is pseudoconver on X if

VI(y)' (x-y)>0=T(x)>T(y), Vx,yeX. (A1)
T is convex on X if

TAx+ (1= XNy) < AXT(x)+ (1 - MT(y), Vx,y € X, YA €]0,1]. (A.2)

If T € C' on X, then (A.2) is equivalent to both the following statements (see [43, Th.
3.3.3] and [43, Th. 3.3.4], respectively).

T(x)>T(y)+VT(y)'(x-y), VxyeX (A.3)

[VT(x) - VT(y)]' (x-y) >0, Vx,yeX (A.4)
If T € C? on X, then (A.2) is equivalent to the following [43, Th. 3.3.7].

yIVT(x)y >0, VxeX, VyeR" (A.5)
T is strictly conver on X if

T(Ax+(1-Ny)<AT(x)+(1-MT(y), Vx,yeX,x#y, VA€ (0,1). (A.6)

If T € C! on X, then (A.6) is equivalent to both the following statements (see [43, Th.
3.3.3] and [43, Th. 3.3.4], respectively).

T(x)>T(y)+VT(y)'(x-y), VYx,yeX,x#y (A7)
VI(x)-VT(y)]  (x-y)>0, Vx,yeX,x#y (A.8)

T is strongly (uniformly) convex (with modulus mr) on X if there exists a positive constant
mr such that

TOx+ (1= A)y) € XT() + (1 = VT(y) = 51 = ) Jx — (A.9)

Vx,y € X, YA €[0,1].
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IfT € C' on X, then (A.9) is equivalent to both the following statements (see [760, Sec.
1.1.4, Le. 3] and [612], respectively).

T(x)>T(y)+VT(y)"(x—y)+ % Ix-ylI*, Vx,yeX (A.10)

[VT(x) - VT(y)]" (x-y) > mrlx-y[*, VxyeX (A.11)
IfT € C? on X, then (A.9) is equivalent to the following [760, Sec. 1.1.4].
y' (VIT(x) = mrl)y >0,  Vx€X, vy e R (A.12)

Definition A.2 (Monotonicity)
(a) F is pseudomonotone on X if
Fiy)lix—-y)>0= F(x)I(x-y) >0, Vx,y € X. (A.13)
(b) F is monotone on X if
[F(x)- F(y)]" (x-y) >0, Vx,yeX. (A.14)
If F is in C' on X, then (A.14) is equivalent to the following [727, Th. 5.4.3].
yIVF(x)y >0, VxeX, VyeR" (A.15)
(¢) F is strictly monotone on X if
[F(x) - F(y)]" (x—y)>0, V¥x,yeX,x#y. (A.16)
(d) F is co-coercive on X if there exisls a positive constant ap such that
IF(x) = F(y)I* < ar[F(x) - F(y)I' (x—y),  Vx,y€X. (A.17)
(e) F is strongly (uniformly) monotone on X if there exists a positive constant mg such that
F(x) - Fo)T (x—y) > mellx—y|?,  VxyeX. (A.18)
If Fis in C' on X, then (A.18) is equivalent to the following [727, Th. 5.4.3].

y (VF(x) - mpl)y >0, Vx € X, Vy e ®" (A.19)

Definition A.3 (Coercivity)
(a) T is weakly coercive on X if

lim 7T (x)=+4oc. (A.20)
xeX
[Ix|| =00

(b) T is coercive on X if

T
lim (x) = 4o0. (A.21)
xeX x|
lIx[| =00

(c) F is coercive on X if there exists a vector x° € X such that

lim F(X)T (x — xo)
x€e X [Ix||
[1%(|—=+eco

= +o00. (A.22)
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Definition A.4 (Lipschitz continuity) F is Lipschitz continuous (with modulus Mp) on X if
there exists a nonnegalive constant Mr such that

IF) - Fy)ll < Mrllx -y, ¥xyeX. (A.23)

Definition A.5 (Nonexpansiveness) Let F' be a mapping from X to X, and let x* be a fized
point of F.

(a) F is nonexpansive if

IFx) - F)l < x—yl,  ¥xyeX. (A.24)
(b) F is firmly nonexpansive if

IF(x) - P’ < [F(x) - F(y)]" (x—y), Vx,yeX. (A.25)
(¢) F is pseudocontractive with modulus o € [0,1) if

|F(x) —x*|| < ax—x", Vx € X. (A.26)
(d) F is contractive with modulus o € [0,1) if

IF) -~ Fy)l <alx -yl VxyeX. (A.27)

Definition A.6 [779] (Semicontinuity) Let T : R" — R U {—o0, +oo} be a given function.
(a) T is lower semicontinuous (l.s.c.) on R" if

T(x)= li§n inf T(y), Vx € R".

b) T is upper semicontinuous (u.s.c.) on K" ¢
(b) pp

T(x) = limsup T(y), Vx € R™.
y—x

Definition A.7 [722, 501] (Closedness) Let F : X +— 2Y be a point-to-set map.
(a) F is closed at x € X if

{xF} = x

vt e P(xM), {y"} =y

(b) F is upper semicontinuous (u.s.c.) at x € X if for any neighbourhood N(F(x)) there is a
neighbourhood N(x) with

}—_—>yeF(x).

z € N(x) = F(z) C N(F(x)).

Algorithmic definitions

The following line search rules are discussed in the text (listed in the order of increasing com-
putational simplicity). Assume that p* is the search direction in iteration k, and that I} is the
chosen step length. The line search rules are given for the case where the feasible set X = R”.
When the set X is bounded in the direction p* (assumed locally feasible), an upper bound on
[, must be introduced.

Rule M (Exact minimization) Choose I}, such that

T(x* + lxp*) = Ilrl>iél T(x* + ip*).
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Rule G (Goldstein [431]) Let 0 < g1 < pg < 1 and choose [}, such that

T(Xk + lkpk) — T(xk)
VT (xF)Tp*

p1 < < 2.

Rule A (Armijo [26]) Let a € (0,1) and I = £57, where 8 € (0,1),e > 0 and 7 is the smallest
nonnegative integer ¢ such that

o T(x* +ep'ph) - T(xY)

- gﬁiVT(Xk)Tpk '

(A.28)

Rule P (Predetermined steps) Let 0 < w < €. Choose I arbitrary in the interval [w, Q — w].
(A particular example is the fixed step length formula, [, =1 € (0,Q),Vk.)

Definition A.8 [623, 43] (Convergence rate) Let the sequence {x*} converge to x*. The rate
of convergence of the sequence is the supremum of the nonnegative numbers p satisfying

ka—}-l — x*
lim sup

m su W =q < +o0. (A.29)

(a) Ifp=1 and q < 1, the sequence has a linear rate of convergence (or the rate of geometrical
progression) with ratio q.

(b) Ifp>1,0rifp=1andq=0, the sequence has a superlinear rate of convergence (or faster
than any geometric progression).

(¢) If p =2 the sequence has a quadratic rale of convergence.
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Lagrangean dual function, see Dual function
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Braess’ paradox, 48

practical, 19

traffic control, 48
Link interactions, 59, 66, 72, 171-172
Link performance functions, 19-20
Link-node formulation, 37

difference to link-route formulation, 37
Link-route formulation, 36

advantage, 38

difference to link-node formulation, 37
Link-route incidence matrix, 34
Lipschitz continuity

definition, 181
Logit-based stochastic model, 63-65

calibration, 63

network loading, 147

optimization formulation ([TAP-SUE-L]), 63
Lower bound, 96, 98, 108, 132, 140, 142, 146, 148
Lower semicontinuity

definition, 181

Marginal cost pricing, see Congestion pricing
Marginal travel cost, 30, 50
Master problem
complete, 115
restricted, 105, 116
Merit function, see Gap functions for variational
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Method of successive averages (MSA), 22-23, 96,
102-103, 143, 149-150, 173
Modal split, 13-16
Model output, 5, 6, 16, 79, 144, 157
Monotonicity, 44, 53, 75
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Multiclass-user networks, 51-54

Nash equilibrium, 32, 51, 54-56
Network aggregation, 144-145
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Network design, 48, 92
Network representation, 36—38
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164, 168-169, 174
diagonalized, 134-135, 138, 173
projected, 128, 136-137
Node balancing, 131
Node potential, see Node price
Node price, 38-39, 130
Node-link incidence matrix, 37
Non-basic variable space, 124
Non-cooperative games, b4-56, 78, 122
Non-deterministic models, see Stochastic models
Nonexpansiveness
definition, 181
Nonlinear approximation algorithm, 164
Nonlinear complementarity problem
elastic demand traffic assignment, 85-86
formulation, 76
Nonseparable travel cost, H1-54
Normative assignment, 31
NP-complete problem, 123, 136
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Optimal routing, 58

Optimal value, 142

Origin-destination (O-D) matrix, 3
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surveys, 8, 16

Parallel decomposition algorithm, 113-114, 133-
135, 165-166, 172-173
PARTAN algorithm, 103
Partial linearization algorithm, 104-114, 120-129,
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convergence, 107-108

description, 106

Evans’ algorithm, 146
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parallel, 113-114

sequential, 112-113
Partially asynchronous computations, 114
Penalty algorithm, 110, 152-154
Perceived travel cost, 6062
Practical capacity, 19
Predetermined step length rule, 182
Prescriptive assignment, 30
Primal feasibility heuristics, 132, 155-156
Private cost, 50
Probit-based stochastic model, 65

network loading, 149
Problem structure, 96, 110-111
Projected Newton algorithm, 128, 136-137
Projection algorithm, 163-164, 171
Proximal point algorithm, 110
Pseudocontractive

definition, 181
Pseudoconvexity

definition, 179
Pseudomonotonicity

definition, 180

Quadratic convergence rate, 182
Quantal loading heuristic, 21, 23, 103
Quasi-Newton methods, 109, 164, 171
Queueing delay, 71

Reduced gradient, 125
Reduced gradient algorithm, 110, 124-127, 138
Regularization algorithm, 109
Relaxation method, see Gauss—Seidel algorithm
Reoptimization, 101, 129, 140-141, 157
Representation Theorem, 37, 116
Restricted master problem, 105, 116, 135
aggregated, 135
Route choice
factors affecting, 20
Route flow solution, 43, 47
nonuniqueness, 44, 47

Saddle function, 80, 81
Saddle point problem, 78, 80
Semicontinuity
definitions, 181
Separable travel cost, 34, 51
Sequential decomposition algorithm, 96, 112-113,
123-133, 165, 172
cyclic rule, 112

essentially cyclic rule, 112
game interpretation, 122
Shortest route problem, 17-18, 97
algorithms, 100-101
Side constrained models, 53, 66-72
calibration, 70, 72
dual formulation, 69
equivalent standard model, 68
generalization of the user equilibrium prin-
ciple, 67
link flow capacities, 70-72
optimization formulation ([TAP-SC]), 67
Simple route, 32, 38
Simplex set, 38, 115
Simplicial decomposition, 118-121, 135-141, 173-
175
aggregate, 135-137, 173-174
column generation, 118-120, 137-138
disaggregate, 137-138, 175
finiteness, 119-120, 136, 138—-139
for [TAP-C], 152, 155
for [TAP-SUE-L], 150
restricted master problem, 119
Simulation, 149-150
Single-commodity flow problem, 96, 104, 111,
122-135
dual formulation, 130
formulation, 122, 124, 130
primal-dual relationships, 130-131
Smoothing heuristic, 22-23
Social cost, 50
Social pressure, 127
Spanning tree, 38
Spatial price equilibrium, 57-58
Splitting algorithm, 110
Stochastic models, 60—65
Stochastic network loading
logit model, 147
probit model, 149
Stochastic traffic assignment, 60-65
logit model, 63-65
optimization formulation ([TAP-SUE-L]),
63
optimization formulation ([TAP-SUE]), 62
probit model, 65
Stochastic user equilibrium, 61-63
Stopping criteria, 96, 98, 132, 137, 174
Strict convexity
definition, 179
Strict monotonicity
definition, 180
Strong convexity
definition, 179
Strong monotonicity
definition, 180
Strongly connected network, 35
Subgradient optimization, 142-143
Superlinear convergence rate, 182
Swapping rate, 126-128
Synchronization, 113
System optimum, 30
involuntary approach, 30, 51
voluntary approach, 31, 51
System optimum traffic assignment
equivalent user equilibrium problem, 50
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Taxonomy of algorithms, 121-122
Test networks, 158, 177
Traffic assignment
breakthrough in, 17-19
continuous relaxation, 34
elastic demand, 33
fixed demand, 32
heuristics, 16-26
in transportation planning, 16-26
link-node formulation, 37
link-route formulation, 36
validation, 59, 99
Traffic control, 48
Traffic planning, see Transportation planning
Transportation planning, 3-28
criticism of methodologies, 28
inventory, 7-9
model analysis, 9-26
model calibration, 5
network evaluation, 27
organization, 6-7
process, 4—6
travel forecast, 26
Travel costs
additivity, 34-35, 53
asymmetric, 53
generalized, 66-71
link performance functions, 19-20
separability, 34, 51
symmetric, 52-53
Trip distribution, 10-13
balancing methods, 10-13
growth factor methods, 10
synthetic methods, 11
electrostatic models, 13
gravity model, 11-12
opportunity models, 12
Trip generation, 9-10
Trip rates, 31

Upper semicontinuity
definition, 181

Urban traffic planning, see Transportation plan-

ning

User equilibrium, 30

elastic demand, 33

fixed demand, 32

Nash equilibrium, 32, 51, 54-56

stochastic, 61
User optimum, see User equilibrium
User vs. system optimum, 30, 49-51

Validation, 59, 99
Variable demand, see Elastic demand
Variational inequality problem
elastic demand traffic assignment, 85
existence, 74
fixed demand traffic assignment, 83-84
fixed point problem, 76-77, 79, 82-83
formulation, 74
gap functions, 77-83
optimization, 75—82
uniqueness, 75
Voluntary system optimum, 31, 51
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Wardrop conditions, 29-34, 83-86
game interpretation, 32, 51, 54-56
system optimum, 31
user equilibrium, 18, 29-34, 83-86

Weak coercivity, 45
definition, 180

Zones, 7, 36



