
07 Static Traffic Assignment:
Extensions

CIVIL-477 Transportation network modeling & analysis

Spring 2025



▪ Static traffic assignment (TA)

• Predict aggregate traffic flows (link and path flows) on a given transportation
network and demand pattern

• Depending on the routing principle, lead to different type of equilibrium states
(UE and SO) with diverse system efficiency (PoA)

• The equilibrium states are transferable by changing the link cost function
(congestion pricing)

▪ Q: What are the key assumptions?
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▪ Assumptions and extensions of TA

• Traffic flows are assigned at one shot

▪ Dynamic traffic assignment (DTA)

• Travelers are rational and have perfect information about traffic conditions

▪ Stochastic traffic assignment (STA)

▪ Day-to-day traffic assignment

• Travel demand is fixed

▪ Elastic demand

• Travelers are the same

▪ Heterogeneous users

• Link flows are unbounded

▪ Side constraints
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⇒ not covered in this course

⇒ next lecture

⇒ this lecture

⇒ not covered in this course



▪ Elastic demand

▪ Side constraints

▪ Heterogeneous users
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▪ Recall the mode choice problem of daily commute

• When the highway gets congested, travelers would switch to train

• Driving demand is elastic with respect to the traffic condition

• Q: What would happen if a toll is charged on highway?

Elastic demand
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▪ Recall the mode choice problem of daily commute

• When the highway gets congested, travelers would switch to train

• Driving demand is elastic with respect to the total travel cost

Elastic demand
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▪ Let 𝐷𝑤 ⋅ be the demand function of OD pair 𝑤 ∈ 𝑊. Given the min
travel cost 𝜇𝑤, the travel demand is

𝑞𝑤 = 𝐷𝑤(𝜇𝑤)
• Bounded between 0 and max demand 𝑄𝑤
• Non-increasing with 𝜇𝑤
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▪ Let 𝐷𝑤 ⋅ be the demand function of OD pair 𝑤 ∈ 𝑊. Given the min
travel cost 𝜇𝑤, the travel demand is

𝑞𝑤 = 𝐷𝑤(𝜇𝑤)
• Bounded between 0 and max demand 𝑄𝑤
• Strictly decreasing with 𝜇𝑤, then the inverse exists 𝜇𝑤 = 𝐷𝑤

−1(𝑞𝑤)

Elastic demand
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▪ Traffic equilibrium conditions

• A path flow 𝐟∗ ∈ Ω𝐟 such that ∀𝑤 ∈ 𝑊, 𝑘 ∈ 𝑃𝑤 ,

𝑓𝑘
∗ 𝑐𝑘

∗ − 𝜇𝑤
∗ = 0, 𝑐𝑘

∗ ≥ 𝜇𝑤
∗

where

▪ 𝑐𝑘
∗ : cost of path 𝑘 at 𝐟∗

▪ Ω𝐟: set of feasible paths

▪ Q: How to integrate elastic demand into the equilibium conditions?
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▪ Traffic equilibrium conditions with elastic demand

• A path flow 𝐟∗ ∈ Ω𝐟 such that ∀𝑤 ∈ 𝑊,

▪ if 𝑞𝑤 > 0, then 𝜇𝑤
∗ = 𝐷𝑤

−1(𝑞𝑤) and ∀𝑘 ∈ 𝑃𝑤

𝑓𝑘
∗ 𝑐𝑘

∗ − 𝜇𝑤
∗ = 0, 𝑐𝑘

∗ ≥ 𝜇𝑤
∗

▪ otherwise, 𝜇𝑤
∗ > 𝐷𝑤

−1(0) and 𝑓𝑘
∗ = 0, ∀𝑘 ∈ 𝑃𝑤

where

▪ 𝑐𝑘
∗ : cost of path 𝑘 at 𝐟∗

▪ Ω𝐟: set of feasible paths

▪ Q: Is there an equivalent optimization as the classic model?
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▪ Traffic equilibrium conditions with elastic demand

• A path flow 𝐟∗ ∈ Ω𝐟 such that ∀𝑤 ∈ 𝑊,

▪ if 𝑞𝑤 > 0, then 𝜇𝑤
∗ = 𝐷𝑤

−1(𝑞𝑤) and ∀𝑘 ∈ 𝑃𝑤

𝑓𝑘
∗ 𝑐𝑘

∗ − 𝜇𝑤
∗ = 0, 𝑐𝑘

∗ ≥ 𝜇𝑤
∗

▪ otherwise, 𝜇𝑤
∗ > 𝐷𝑤

−1(0) and 𝑓𝑘
∗ = 0, ∀𝑘 ∈ 𝑃𝑤

▪ Equivalent KKT conditions

Elastic demand
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(𝐟∗)𝑇 𝐜∗ − Λ𝑇𝛍∗ = 0
𝐜∗ − Λ𝑇𝛍∗ ≥ 𝟎

Λ𝐟∗ = 𝐪∗

𝐟∗ ≥ 𝟎
(𝐪∗)𝑇 𝐷−1 𝐪∗ − 𝛍∗ = 0

𝛍∗ − 𝐷−1 𝐪∗ ≥ 𝟎
𝐪∗ ≥ 0

∇𝐟ℒ = 𝐜∗ − 𝛌∗ − Λ𝑇𝛍∗ = 0
𝛌∗ ≥ 0, 𝛌∗ 𝑇𝐟∗ = 0

Λ𝐟∗ = 𝐪∗

𝐟∗ ≥ 𝟎
∇𝐪ℒ = −𝐷−1 𝐪∗ − 𝛒∗ + 𝛍∗ = 0

𝛒∗ ≥ 0, 𝛒∗ 𝑇𝐪∗ = 0

⇔



▪ Equivalent optimization problem

▪ Q: Can you prove it yields the same KKT conditions?

Elastic demand
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min
𝐟,𝐪

𝑍 𝐟, 𝐪 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 − ෍

𝑤∈𝑊

න
0

𝑞𝑤

𝐷𝑤
−1 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟, 𝐪 ≥ 𝟎

Δ𝐟 = 𝐱



▪ Alternative formulation I

• Similar to link flow 𝐱, demand flow 𝐪 is an intermediate variable that can be
represented as a linear combination of path flow 𝐟

where

▪ 𝑃𝑤: set of paths connecting OD pair 𝑤 ∈ 𝑊

▪ 𝑃: set of all paths

▪ 𝛿𝑎𝑘: binary indicator of link-path relationship (element in Δ)
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min
𝐟

𝑍 𝐟 = ෍

𝑎∈𝐴

න
0

σ𝑘∈𝑃 𝛿𝑎𝑘𝑓𝑘

𝑡𝑎 𝑢 d𝑢 − ෍

𝑤∈𝑊

න
0

σ𝑘∈𝑃𝑤 𝑓𝑘

𝐷𝑤
−1 𝑢 d𝑢

𝑠. 𝑡. 𝐟 ≥ 𝟎



▪ Alternative formulation II

• A VI formulation also exists

Find 𝐱∗, 𝐪∗ ∈ Ω𝐱 × Ω𝐪 such that

where

▪ Ω𝐱 = 𝐱 Δ𝐟 = 𝐱, Λ𝐟 = 𝐪, 𝐟 ≥ 0 : feasible set of link flows

▪ Ω𝐪 = 𝐪 𝟎 ≤ 𝐪 ≤ 𝐐 : feasible set of OD demand

Elastic demand
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𝐭 𝐱∗ , 𝐱 − 𝐱∗ − 𝑫−𝟏 𝐪∗ , 𝐪 − 𝐪∗ ≥ 0, ∀𝐱 ∈ Ω𝐱, 𝐪 ∈ Ω𝐪



▪ Alternative formulation III

• Instead of solving the realized demand 𝐪, solving the residual demand

𝐞 = 𝐐 − 𝐪,

where 𝐐 is the max demand flow

▪ Q: How to present the second integral in a different way?
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min
𝐟,𝐞

𝑍 𝐟, 𝐞 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 − ෍

𝑤∈𝑊

න
0

𝑄𝑤−𝑒𝑤

𝐷𝑤
−1 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 + 𝐞 = 𝐐

Δ𝐟 = 𝐱

𝐟, 𝐞 ≥ 𝟎



▪ Alternative formulation III

• Instead of solving the realized demand 𝐪, solving the residual demand

𝐞 = 𝐐 − 𝐪,

where 𝐐 is the max demand flow
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න
0

𝑄𝑤−𝑒𝑤

𝐷𝑤
−1 𝑢 d𝑢

= න
0

𝑄𝑤

𝐷𝑤
−1 𝑢 d𝑢 − න

𝑒𝑤

0

𝐷𝑤
−1 𝑄𝑤 − 𝑢 d −𝑢

= න
0

𝑄𝑤

𝐷𝑤
−1 𝑢 d𝑢 −න

0

𝑒𝑤
ǁ𝑡𝑤 𝑢 d𝑢

𝐷𝑤
−1(𝑞𝑤)

𝑞𝑤0
𝑄𝑤

where ǁ𝑡𝑤 𝑢 = 𝐷𝑤
−1 𝑄𝑤 − 𝑢

▪ strictly increasing when 𝐷𝑤
−1 is strictly decreasing

න
𝑄𝑤−𝑒𝑤

𝑄𝑤

𝐷𝑤
−1 𝑢 d𝑢



▪ Alternative formulation III

• Instead of solving the realized demand 𝐪, solving the residual demand

𝐞 = 𝐐 − 𝐪,

where 𝐐 is the max demand flow
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min
𝐟,𝐞

𝑍 𝐟, 𝐞 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 − ෍

𝑤∈𝑊

න
0

𝑄𝑤

𝐷𝑤
−1 𝑢 d𝑢 −න

0

𝑒𝑤
ǁ𝑡𝑤 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 + 𝐞 = 𝐐 constant, thus safely dropped

Δ𝐟 = 𝐱

𝐟, 𝐞 ≥ 𝟎



▪ Alternative formulation III

• Instead of solving the realized demand 𝐪, solving the residual demand

𝐞 = 𝐐 − 𝐪,

where 𝐐 is the max demand flow

▪ Q: What is the physical meaning of ǁ𝑡𝑤?
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min
𝐟,𝐞

𝑍 𝐟, 𝐞 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 + ෍

𝑤∈𝑊

න
0

𝑒𝑤
ǁ𝑡𝑤 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 + 𝐞 = 𝐐

Δ𝐟 = 𝐱

𝐟, 𝐞 ≥ 𝟎



▪ Alternative formulation III

• Instead of solving the realized demand 𝐪, solving the residual demand

𝐞 = 𝐐 − 𝐪,

where 𝐐 is the max demand flow

• Equivalent to create a “virtual” link between each OD pair and link cost ǁ𝑡𝑤

▪ reduce to classic TA with extended link and path sets and link cost functions

Elastic demand
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min
𝐟,𝐞

𝑍 𝐟, 𝐞 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 + ෍

𝑤∈𝑊

න
0

𝑒𝑤
ǁ𝑡𝑤 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 + 𝐞 = 𝐐

Δ𝐟 = 𝐱

𝐟, 𝐞 ≥ 𝟎



▪ Alternative formulation III

where

▪ ሚ𝐟: extended definition of path flow

▪ ෩Δ, ෩Λ: extended definitions of link-path and OD-path matrices

▪ Q: Is this optimization problem convex? Is the solution unique?

Elastic demand
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min
𝐱

𝑧 𝐱 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 + ෍

𝑤∈𝑊

න
0

𝑥𝑤
ǁ𝑡𝑤 𝑢 d𝑢

𝑠. 𝑡. 𝐱 ∈ Ω𝐱 = {𝐱|෩Δሚ𝐟 = 𝐱, ෩Λሚ𝐟 = 𝐐, ሚ𝐟 ≥ 0}



▪ Alternative formulation III

• Feasible set Ω𝐱 is convex

• Hessian matrix 𝐻𝐱 = ∇2𝑍 𝐱 is definite positive

▪ diagonal matrix with all positive elements

Elastic demand
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min
𝐱

𝑧 𝐱 = ෍

𝑎∈𝐴

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 + ෍

𝑤∈𝑊

න
0

𝑥𝑤
ǁ𝑡𝑤 𝑢 d𝑢

𝑠. 𝑡. 𝐱 ∈ Ω𝐱 = {𝐱|෩Δሚ𝐟 = 𝐱, ෩Λሚ𝐟 = 𝐐, ሚ𝐟 ≥ 0}

𝜕2

𝜕𝑥𝑤
2
𝑍 𝐱 =

𝜕

𝜕𝑥𝑤
𝐷𝑤
−1 𝑄𝑤 − 𝑥𝑤 = −

𝜕𝐷𝑤
−1 𝑞𝑤

𝜕𝑞𝑤
> 0

𝜕2

𝜕𝑥𝑤𝑥𝑤′
𝑍 𝐱 =

𝜕2

𝜕𝑥𝑤𝑥𝑎
𝑍 𝐱 = 0



▪ Solution method

• Given the similarity of link-based formulation (Alt. III), same solution
algorithms for standard traffic assignment (e.g., FW, PG) can be utilized

• PG can be more easily implemented with path-based formulation (Alt. I) as
there is no more demand conservation constraint

• Revised FW algorithm with demand update

▪ Update direction (𝐲, 𝐩)

• Solve shortest-path between each OD 𝑤 ∈ 𝑊 and get min path cost 𝜇𝑤 , 𝑤 ∈ 𝑊

• Compute 𝑝𝑤 = 𝐷𝑤
−1 𝜇𝑤 , 𝑤 ∈ 𝑊 to get targe demand 𝐩

• Perform all-or-nothing assignment with demand 𝐩 to get target link flow 𝐲

Elastic demand
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Questions?



▪ Recall the link cost function (e.g., BPR)

• Link flow only has a lower bound 0 that
corresponds to the free-flow travel time

where

• 𝑡0: free-flow travel time (hr)

• 𝑠: saturation flow, or “capacity” (veh/hr)

• Roads do have physical capacities

• Jointly capacity constraints also exist

▪ e.g., intersections

Side constraints
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𝑡 𝑥 = 𝑡0 1 + 0.15
𝑥

𝑠

4

𝑡0 = 1, 𝑠 = 1

𝑡0 = 0.5, 𝑠 = 1

𝑡0 = 1, 𝑠 = 2



▪ Capacitated traffic assignment (CAP)

• Consider independent link capacity 𝐂 = 𝐶𝑎 ∀𝑎∈𝐴

▪ Q: What are the KKT conditions of this problem?

Side constraints
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min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 ≤ 𝐂

𝐟 ≥ 𝟎



▪ Capacitated traffic assignment (CAP)

• Consider independent link capacity 𝐂 = 𝐶𝑎 ∀𝑎∈𝐴

▪ Lagrangian

▪ KKT conditions

▪ Q: How to interpret dual variable 𝜈∗?

Side constraints
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∇𝐟ℒ = 𝐜∗ − 𝛌∗ − Λ𝑇𝛍∗ + Δ𝑇𝛎∗ = 0
𝛌∗ ≥ 0, 𝛌∗ 𝑇𝐟∗ = 0

Λ𝐟∗ = 𝐪
𝐟∗ ≥ 𝟎

𝛎∗ ≥ 0, 𝛎∗ 𝑇(Δ𝐟∗ − 𝐂) = 0
Δ𝐟 ≤ 𝐂

ℒ 𝐟, 𝛌, 𝛍, 𝛎 = 𝑍 𝐟 − 𝛌𝑇𝐟 − 𝛍𝑇 Λ𝐟 − 𝐪 + 𝛎𝑇(Δ𝐟 − 𝐂)



▪ Capacitated traffic assignment (CAP)

• Consider independent link capacity 𝐂 = 𝐶𝑎 ∀𝑎∈𝐴

▪ Lagrangian

▪ KKT conditions

• Consider 𝑣𝑎 as queueing delay at link 𝑎 ∈ 𝐴

• Define ҧ𝐜 = 𝐜 + Δ𝑇𝛎 as general path costs

Side constraints
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∇𝐟ℒ = ҧ𝐜∗ − 𝛌∗ − Λ𝑇𝛍∗ = 0
𝛌∗ ≥ 0, 𝛌∗ 𝑇𝐟∗ = 0

Λ𝐟∗ = 𝐪
𝐟∗ ≥ 𝟎

𝛎∗ ≥ 0, 𝛎∗ 𝑇(Δ𝐟∗ − 𝐂) = 0
Δ𝐟 ≤ 𝐂

ℒ 𝐟, 𝛌, 𝛍, 𝛎 = 𝑍 𝐟 − 𝛌𝑇𝐟 − 𝛍𝑇 Λ𝐟 − 𝐪 + 𝛎𝑇(Δ𝐟 − 𝐂)

(𝐟∗)𝑇 ҧ𝐜∗ − Λ𝑇𝛍∗ = 0
ҧ𝐜∗ ≥ Λ𝑇𝛍∗⇔

equilibrium conditions based on ҧ𝐜

⇔ queue only emerges if flow reaches capacity



▪ Solution method

• Although the solution properties remain the same as the addition constraints
are also linear, solving the problem becomes more challenging

▪ e.g., all-or-nothing assignment in FW may not ensure a feasible target link flow

• Main idea: relax constraints and introduce penalty

▪ Barrier method

▪ Lagrange Multiplier method

Side constraints
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min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 ≤ 𝐂

𝐟 ≥ 𝟎



▪ Barrier method

• Add a barrier function to each link cost function such that link cost approaches
to infinity when link flow exceeds capacity

• The solution algorithms for standard TA problem can be utilized to solve the
relaxed problem and the solution converges to (CAP) as 𝛾 → 0

where

▪ 𝑏(⋅): barrier function

▪ 𝛾: weighting parameter

Side constraints
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Ƹ𝑡 𝑥 = 𝑡(𝑥) + 𝛾𝑏(𝑥, 𝐶)

𝑥0

𝑡0

𝑡(𝑥)

𝐶

𝑏(𝑥)



▪ Lagrange Multiplier method

• Solve the relaxed problem with fixed queuing delay 𝛎 and update 𝛎 based on
constraint deviations

• At iteration 𝑛,

▪ Solve relaxed TA with 𝛎𝑛

• unique solution exists as ℒ 𝐱, 𝛎𝑛 is strictly convex

▪ Update queueing delay based on 𝐱𝑛+1

• increase 𝑣𝑎 if 𝑥𝑎
𝑛+1 > 𝐶𝑎 by the product of parameter 𝜂 > 0 and exceed flow 𝑥𝑎

𝑛+1 − 𝐶𝑎

Side constraints
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𝐱𝑛+1 = argmax
x∈Ω𝐱

ℒ 𝐱, 𝛎𝑛 = 𝑧 𝐱 + (𝛎𝑛)𝑇(𝐱 − 𝐂)

𝝂𝑛+1 = 𝝂𝑛 + 𝜂 𝐱𝑛+1 − 𝐂 +
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Questions?



▪ Recall standard TA assumes homogenous users with

• Same contribution to traffic congestion (e.g., car vs truck)

• Same travel preference (e.g., VOT)

• Same routing principle (e.g., selfish vs selfless)

Heterogeneous users
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▪ Multiple vehicle type

• Assume trucks (𝑟) occupy twice road space as cars (𝑣) and thus have
doubled impacts on the link travel time

• Asymmetric marginal impact

▪ Q: Is there an equivalent optimization as the standard TA?

Heterogeneous users
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𝑡 𝑥𝑣, 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4

𝜕

𝜕𝑥𝑣
𝑡 𝑥𝑣, 𝑥𝑟 =

0.6𝑡0
𝑠

𝑥𝑣 + 2𝑥𝑟
𝑠

3

𝜕

𝜕𝑥𝑟
𝑡 𝑥𝑣, 𝑥𝑟 =

1.2𝑡0
𝑠

𝑥𝑣 + 2𝑥𝑟
𝑠

3



▪ Multiple vehicle type

• Assume trucks (𝑟) occupy twice road space as cars (𝑣) and thus have
doubled impacts on the link travel time

• Presumed equivalent problem

Heterogeneous users
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min
𝐟𝑣,𝐟𝑟

𝑍 𝐟𝑣, 𝐟𝑟 = ෍

𝑎∈𝐴

න
0

𝑥𝑣,𝑎

𝑡𝑎 𝑢, 𝑥𝑟,𝑎 d𝑢 + න
0

𝑥𝑟,𝑎

𝑡𝑎 𝑥𝑣,𝑎, 𝑢 d𝑢

𝐟𝑣, 𝐟𝑟 ≥ 𝟎

𝑠. 𝑡. Δ(𝐟𝑣 + 𝐟𝑟) = 𝐱

Λ𝐟𝑣 = 𝐪𝑣
Λ𝐟𝑟 = 𝐪𝑟

𝑡 𝑥𝑣, 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4



▪ Multiple vehicle type

• Assume trucks (𝑟) occupy twice road space as cars (𝑣) and thus have
doubled impacts on the link travel time

• Presumed equivalent problem

Heterogeneous users
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∇𝐟𝑣ℒ = ∇𝐟𝑣𝑍 − 𝛌𝑣
∗ − Λ𝑇𝛍𝑣

∗ = 0

𝛌𝑣
∗ ≥ 0, 𝛌𝑣

∗ 𝑇𝐟𝑣
∗ = 0

∇𝐟𝑟ℒ = ∇𝐟𝑟𝑍 − 𝛌𝑟
∗ − Λ𝑇𝛍𝑟

∗ = 0

𝛌𝑟
∗ ≥ 0, 𝛌𝑟

∗ 𝑇𝐟𝑟
∗ = 0

Λ𝐟𝑣
∗ = 𝐪𝑣

∗ , Λ𝐟𝑟
∗ = 𝐪𝑟

∗

𝐟𝑣
∗, 𝐟𝑟

∗ ≥ 𝟎

equivalent to multi-class traffic equilibrium if

∇𝐟𝑣𝑍 𝐟𝑣, 𝐟𝑟 = 𝐜

∇𝐟𝑟𝑍 𝐟𝑣, 𝐟𝑟 = 𝐜

▪ Q: Does these equalities hold?

𝑡 𝑥𝑣, 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4



▪ Multiple vehicle type

• Assume trucks (𝑟) occupy twice road space as cars (𝑣) and thus have
doubled impacts on the link travel time

• Presumed equivalent problem

Heterogeneous users
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𝜕𝑍 𝐟𝑣 , 𝐟𝑟
𝜕𝑓𝑣,𝑘

= ෍

𝑎∈𝐴

𝜕

𝜕𝑓𝑣,𝑘
න
0

σ𝑘 𝛿𝑎𝑘𝑓𝑣,𝑘

𝑡𝑎 𝑢, 𝑥𝑟,𝑎 d𝑢 + න
0

𝑥𝑟,𝑎 𝜕

𝜕𝑓𝑣,𝑘
𝑡𝑎 𝑥𝑣,𝑎 , 𝑢 d𝑢

𝑡 𝑥𝑣, 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4

= ෍

𝑎∈𝐴

𝛿𝑎𝑘𝑡𝑎 𝑥𝑣,𝑎 , 𝑥𝑟,𝑎 + න
0

𝑥𝑟,𝑎

𝛿𝑎𝑘
𝜕𝑡𝑎 𝑥𝑣,𝑎 , 𝑢

𝜕𝑥𝑣,𝑎
d𝑢

= 𝑐𝑘 +෍

𝑎∈𝐴

𝛿𝑎𝑘න
0

𝑥𝑟,𝑎 𝜕𝑡𝑎 𝑥𝑣,𝑎 , 𝑢

𝜕𝑥𝑣,𝑎
d𝑢



▪ Multiple vehicle type

• Assume trucks (𝑟) occupy twice road space as cars (𝑣) and thus have
doubled impacts on the link travel time

• There is no equivalent optimization problem, but the equivalent VI problem
always exits

▪ Path-based

Find feasible path flows 𝐟𝑣
∗, 𝐟𝑟

∗ such that

▪ Link-based

Find feasible link flows 𝐱𝑣
∗ , 𝐱𝑡

∗ such that

Heterogeneous users
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𝑡 𝑥𝑣, 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4

𝐜(𝐟𝑣
∗, 𝐟𝑟

∗), 𝐟𝑣 − 𝐟𝑣
∗ + 𝐜(𝐟𝑣

∗, 𝐟𝑟
∗), 𝐟𝑡 − 𝐟𝑡

∗ ≥ 0, ∀𝐟𝑣 ∈ Ω𝐟𝑣 , 𝐟𝑟 ∈ Ω𝐟𝑟

𝐭(𝐱𝑣
∗ , 𝐱𝑟

∗), 𝐱𝑣 − 𝐱𝑣
∗ + 𝐭(𝐱𝑣

∗ , 𝐱𝑟
∗), 𝐱𝑟 − 𝐱𝑟

∗ ≥ 0, ∀𝐱𝑣 ∈ Ω𝐱𝑣 , 𝐱𝑟 ∈ Ω𝐱𝑟



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

Heterogeneous users
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∇𝐭(𝐱) =

𝜕𝑡1,1 𝐱

𝜕𝑥1,1

𝜕𝑡1,1 𝐱

𝜕𝑥1,2
⋯

𝜕𝑡1,1 𝐱

𝜕𝑥2,1
⋯

𝜕𝑡1,1 𝐱

𝜕𝑥𝑘,𝑚
𝜕𝑡1,2 𝐱

𝜕𝑥1,1

𝜕𝑡1,2 𝐱

𝜕𝑥1,2
⋯

𝜕𝑡1,2 𝐱

𝜕𝑥2,1
⋯

𝜕𝑡1,2 𝐱

𝜕𝑥𝑘,𝑚
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝜕𝑡2,1 𝐱

𝜕𝑥1,1

𝜕𝑡2,1 𝐱

𝜕𝑥1,2
⋯

𝜕𝑡2,1 𝐱

𝜕𝑥2,1
⋯

𝜕𝑡2,1 𝐱

𝜕𝑥𝑘,𝑚
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝜕𝑡𝑘,𝑚 𝐱

𝜕𝑥1,1

𝜕𝑡𝑘,𝑚 𝐱

𝜕𝑥1,2
⋯

𝜕𝑡𝑘,𝑚 𝐱

𝜕𝑥2,1
⋯

𝜕𝑡𝑘,𝑚 𝐱

𝜕𝑥𝑚

𝜕𝑡𝑖 𝐱

𝜕𝑥𝑗
=
𝜕𝑡𝑗 𝐱

𝜕𝑥𝑖
, ∀𝑖, 𝑗



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

▪ Quiz 1: What is the Jacobian in the car-truck example?

Heterogeneous users
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▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

▪ Quiz 2: If cars and trucks have equal contribution to traffic, does the symmetry
condition hold?

Heterogeneous users
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𝑡 𝑥𝑣 , 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 𝑥𝑟

𝑠

4



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

▪ Quiz 3: If cars and trucks have different impacts on traffic and also experience
different travel times such that

Heterogeneous users
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

41

𝑡𝑣 𝑥𝑣 , 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4

𝑡𝑟 𝑥𝑣 , 𝑥𝑟 = 2𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

▪ Quiz 3: If cars and trucks have different impacts on traffic and also experience
different travel times such that

▪ Q: What is the objective function?

Heterogeneous users
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𝜕𝑡𝑣 𝑥𝑣 , 𝑥𝑟
𝜕𝑥𝑟

=
𝜕𝑡𝑟 𝑥𝑣 , 𝑥𝑡

𝜕𝑥𝑣
=
1.2𝑡0
𝑠

𝑥𝑣 + 2𝑥𝑟
𝑠

3

𝑡𝑣 𝑥𝑣 , 𝑥𝑟 = 𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4

𝑡𝑟 𝑥𝑣 , 𝑥𝑟 = 2𝑡0 1 + 0.15
𝑥𝑣 + 2𝑥𝑟

𝑠

4



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

▪ Recall the candidate objective in the car-truck example

Heterogeneous users
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𝑍 𝐟𝑣 , 𝐟𝑟 = ෍

𝑎∈𝐴

න
0

𝑥𝑣,𝑎

𝑡𝑣,𝑎 𝑢, 𝑥𝑟,𝑎 d𝑢 + න
0

𝑥𝑟,𝑎

𝑡𝑟,𝑎 𝑥𝑣,𝑎 , 𝑢 d𝑢

𝜕𝑍 𝐟𝑣, 𝐟𝑟
𝜕𝑓𝑣,𝑘

= 𝑐𝑘 +෍

𝑎∈𝐴

𝛿𝑎𝑘න
0

𝑥𝑟,𝑎 𝜕𝑡𝑟,𝑎 𝑥𝑣,𝑎, 𝑢

𝜕𝑥𝑣,𝑎
d𝑢

= 𝑐𝑘 +෍

𝑎∈𝐴

𝛿𝑎𝑘න
0

𝑥𝑟,𝑎 𝜕𝑡𝑣,𝑎 𝑥𝑣,𝑎, 𝑢

𝜕𝑥𝑟,𝑎
d𝑢

symmetric condition 

= 𝑐𝑘 +෍

𝑎∈𝐴

𝛿𝑎𝑘 𝑡𝑣,𝑎 𝑥𝑣,𝑎, 𝑥𝑟,𝑎 − 𝑡𝑣,𝑎 𝑥𝑣,𝑎, 0



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

▪ Recall the candidate objective in the car-truck example

▪ Q: How to construct an objective function that get rids of factor 2 and 
the second term?
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𝑍 𝐟𝑣 , 𝐟𝑟 = ෍

𝑎∈𝐴

න
0

𝑥𝑣,𝑎

𝑡𝑣,𝑎 𝑢, 𝑥𝑟,𝑎 d𝑢 + න
0

𝑥𝑟,𝑎

𝑡𝑟,𝑎 𝑥𝑣,𝑎 , 𝑢 d𝑢

𝜕𝑍 𝐟𝑣, 𝐟𝑟
𝜕𝑓𝑣,𝑘

= 2𝑐𝑘 −෍

𝑎∈𝐴

𝛿𝑎𝑘𝑡𝑣,𝑎 𝑥𝑣,𝑎, 0



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

where 𝐱−𝑘,𝑎 is flows of user classes other than 𝑘 on link 𝑎
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𝑠. 𝑡. 𝐱𝑘 ∈ Ω𝐱𝑘
, ∀𝑘

min
𝐱

𝑧 𝐱 =
1

𝐾
෍

𝑎∈𝐴

෍

𝑘=1

𝐾

න
0

𝑥𝑘,𝑎

𝑡𝑘,𝑎 𝑢, 𝐱−𝑘,𝑎 d𝑢 + 𝐾 − 1 න
0

𝑥𝑘,𝑎

𝑡𝑘,𝑎 𝑢, 𝟎 d𝑢



▪ General result

• Consider 𝐾 classes of users, each with link flows 𝐱𝑘 and link costs 𝐭𝑘 𝐱 ,
where 𝐱 = 𝐱1, … , 𝐱𝐾 ∈ ℝ𝐾𝑚 , 𝑚 = |𝐴|.

• Multi-class traffic equilibrium has an equivalent optimization problem iff the
Jacobian matrix of link costs ∇𝐭(𝐱) is symmetric

• No matter whether symmetry condition holds, the equivalent VI problem 
always exists

Find feasible link flows 𝐱∗ such that
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min
𝐱

𝑧 𝐱 =
1

𝐾
෍

𝑎∈𝐴

෍

𝑘=1

𝐾

න
0

𝑥𝑘,𝑎

𝑡𝑘,𝑎 𝑢, 𝐱−𝑘,𝑎 d𝑢 + 𝐾 − 1 න
0

𝑥𝑘,𝑎

𝑡𝑘,𝑎 𝑢, 𝟎 d𝑢

𝑠. 𝑡. 𝐱𝑘 ∈ Ω𝐱𝑘
, ∀𝑘

෍

𝑘=1

𝐾

𝐭𝑘(𝐱
∗), 𝐱𝒌 − 𝐱𝑘

∗ ≥ 0, ∀𝐱𝑘 ∈ Ω𝐱𝑘
, ∀𝑘



▪ Solution method

• Symmetric: Due to the similar formulation, same solution algorithms for
standard traffic assignment (e.g., FW, PG) can be utilized

• Asymmetric: Revised FW algorithm with diagonalization

▪ Line search 𝛼

• With target link flow 𝐲 and current link flow 𝐱, solve step size 𝛼 such that 

• It corresponds to a relaxed objective function without link interactions 
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෍

𝑎∈𝐴

෍

𝑘=1

𝐾

𝑡𝑘,𝑎 𝛼𝑦𝑘,𝑎 + 1 − 𝛼 𝑥𝑘,𝑎, 𝐱−𝑘,𝑎 𝑦𝑘,𝑎 − 𝑥𝑘,𝑎 = 0

min
𝛼

෍

𝑎∈𝐴

෍

𝑘=1

𝐾

න
0

𝛼𝑦𝑘,𝑎+ 1−𝛼 𝑥𝑘,𝑎

𝑡𝑘,𝑎 𝑢, 𝐱−𝑘,𝑎 d𝑢

should have changed with 𝛼
but kept constant

only diagonal elements in

∇𝐭(𝐱) are considered  
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Questions?
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