
06 Static Traffic Assignment:
Base Model II

CIVIL-477 Transportation network modeling & analysis

Spring 2025



▪ Congestion pricing

• First-best vs second-best

▪ Likely path flow

• Max-entropy method

▪ Dual formulation
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▪ User equilibrium (UE) as a solution to optimization problem

where

▪ 𝐱, 𝐟: link/path flow vector

▪ 𝐪: OD demand vector

▪ Δ, Λ: link-path/OD-path incidence matrix

▪ 𝑧 𝐱 : Beckmann’s function

▪ Q: How about system optimum (SO)?
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min
𝐟

𝑧 𝐱 = σ𝑎0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱
𝐟 ≥ 𝟎



▪ System optimum (SO) is naturally an optimization problem

where

▪ 𝐱, 𝐟: link/path flow vector

▪ 𝐪: OD demand vector

▪ Δ, Λ: link-path/OD-path incidence matrix

▪ 𝑇𝑇 𝐱 : total travel time

▪ Q: How does it relate to UE?
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min
𝐟

𝑇𝑇 𝐱 = σ𝑎 𝑥𝑎𝑡𝑎(𝑥𝑎)

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱
𝐟 ≥ 𝟎



▪ System optimum (SO) is naturally an optimization problem

where

▪ 𝐱, 𝐟: link/path flow vector

▪ 𝐪: OD demand vector

▪ Δ, Λ: link-path/OD-path incidence matrix

▪ 𝑇𝑇 𝐱 : total travel time

▪ 𝑚𝑡𝑎 𝑥𝑎 = 𝑡𝑎 𝑥𝑎 + 𝑥𝑎𝑡𝑎
′ 𝑥𝑎 =

𝜕 𝑥𝑎𝑡𝑎 𝑥𝑎

𝜕𝑥𝑎
: marginal link travel time
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min
𝐟

𝑇𝑇 𝐱 = σ𝑎 𝑥𝑎𝑡𝑎(𝑥𝑎) = σ𝑎0׬
𝑥𝑎𝑚𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱
𝐟 ≥ 𝟎



▪ Rationale of (first-best) congestion pricing

where

▪ 𝐱, 𝐟: link/path flow vector

▪ 𝐪: OD demand vector

▪ Δ, Λ: link-path/OD-path incidence matrix

▪ 𝑇𝑇 𝐱 : total travel time

▪ 𝜏𝑎 𝑥𝑎 = 𝑚𝑡𝑎 𝑥𝑎 − 𝑡𝑎 𝑥𝑎 = 𝑥𝑎𝑡𝑎
′ 𝑥𝑎 : marginal pricing
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min
𝐟

𝑇𝑇 𝐱 = σ𝑎0׬
𝑥𝑎(𝑡𝑎 𝑢 + 𝜏𝑎 𝑢 )d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱
𝐟 ≥ 𝟎



▪ Rationale of (first-best) congestion pricing

• Flow-based toll added to all links 𝜏𝑎 𝑥𝑎 = 𝑥𝑎𝑡𝑎
′ 𝑥𝑎

▪ negative externality caused by each additional traveler

• not included in traveler’s cost under UE (no regulation/intervention)

• e.g., emission, noise, …
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C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

7



▪ Rationale of (first-best) congestion pricing

• Flow-based toll added to all links 𝜏𝑎 𝑥𝑎 = 𝑥𝑎𝑡𝑎
′ 𝑥𝑎

▪ negative externality caused by each additional traveler

• not included in traveler’s cost under UE (no regulation/intervention)

• e.g., emission, noise, …

▪ in unit of time, transformed back to monetary value via value of time (VOT)

• generalized link travel cost 𝑔𝑡𝑎 𝑥𝑎 = 𝛽𝑡𝑎 𝑥𝑎 + ǁ𝜏𝑎 𝑥𝑎 , where ǁ𝜏𝑎 𝑥𝑎 = 𝛽𝜏𝑎(𝑥𝑎)
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▪ Rationale of (first-best) congestion pricing

• Flow-based toll added to all links 𝜏𝑎 𝑥𝑎 = 𝑥𝑎𝑡𝑎
′ 𝑥𝑎

▪ negative externality caused by each additional traveler

• not included in traveler’s cost under UE (no regulation/intervention)

• e.g., emission, noise, …

▪ in unit of time, transformed back to monetary value via value of time (VOT)

• generalized link travel cost 𝑔𝑡𝑎 𝑥𝑎 = 𝛽𝑡𝑎 𝑥𝑎 + ǁ𝜏𝑎 𝑥𝑎 , where ǁ𝜏𝑎 𝑥𝑎 = 𝛽𝜏𝑎(𝑥𝑎)

• At SO, all used routes have equal and min marginal costs

First-best pricing
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▪ First-best pricing under base BRP

• Bureau of Public Roads (BPR) function  

where

• 𝑡0: free-flow travel time (hr)

• 𝑠: saturation flow, or “capacity” (veh/hr)

▪ widely used in transportation planning

▪ ideal mathematical properties 

• e.g., strictly increasing

First-best pricing
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

10

𝑡 𝑥 = 𝑡0 1 + 0.15
𝑥

𝑠

4

𝑡0 = 1, 𝑠 = 1

𝑡0 = 0.5, 𝑠 = 1

𝑡0 = 1, 𝑠 = 2



▪ First-best pricing under base BRP

• UE objective function

▪ integral of link travel time 

First-best pricing
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𝑧 𝐱 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢 = න
0

𝑥𝑎

𝑡0 1 + 0.15
𝑢

𝑠

4

d𝑢

= 𝑡0 𝑥𝑎 + 0.03𝑠
𝑥𝑎
𝑠

5

= 𝑥𝑎𝑡0 1 + 0.03
𝑥𝑎
𝑠

4



▪ First-best pricing under base BRP

• SO objective function

▪ marginal link cost 

• Q: What is the first-best link toll? What are the key parameters?
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𝑇𝑇 𝐱 =෍

𝑎

𝑥𝑎𝑡𝑎 𝑥𝑎 =෍

𝑎

𝑥𝑎𝑡0 1 + 0.15
𝑥𝑎
𝑠

4

𝑚𝑡𝑎 𝑥𝑎 =
𝜕 𝑥𝑎𝑡𝑎 𝑥𝑎

𝜕𝑥𝑎
= 𝑡𝑎 𝑥𝑎 + 𝑥𝑎𝑡𝑎

′ (𝑥𝑎)

= 𝑡0 1 + 0.15
𝑥𝑎
𝑠

4

+ 𝑥𝑎𝑡0
0.6

𝑠

𝑥𝑎
𝑠

3

= 𝑡0 1 + 0.75
𝑥𝑎
𝑠

4



▪ Issues of first-best pricing

▪ Q: First-best pricing is theoretically optimal. Is it practical, why or why not?

Second-best pricing
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▪ Issues of first-best pricing

• Link cost function is usually unknown and even not fixed

▪ influenced by weather, accidents, … 

• Adding tolls on all links and making them flow-dependent is not practical

▪ challenges in traffic monitoring, toll collection, …

• Travelers are not perfectly rational

▪ possibly resolved in the era of AVs

▪ Q: What are congestion pricing implemented in real practice?

Second-best pricing
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𝜏𝑎 𝑥𝑎 = 𝑥𝑎𝑡𝑎
′ 𝑥𝑎 , ∀𝑎 ∈ 𝐴



▪ Practical implementations

• Facility-based

▪ when using some facility

▪ e.g., highway, bridge

Second-best pricing
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▪ Practical implementations

• Facility-based

▪ when using some facility

▪ e.g., highway, bridge

• Cordon-based

▪ when passing some cordon/barrier

▪ e.g., Stockholm, New York

Second-best pricing
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▪ Practical implementations

• Facility-based

▪ when using some facility

▪ e.g., highway, bridge

• Cordon-based

▪ when passing some cordon/barrier

▪ e.g., Stockholm, New York

• Zone-based

▪ when driving within some zone

▪ e.g., London, Chicago

Second-best pricing
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▪ Practical implementations

• Temporal variation

▪ flat rate: fixed price over a ”congestion period”

▪ stepwise: constant within each time interval

• Price discrimination

▪ classified by vehicle and trip type

• private car vs truck vs taxis

• solo vs carpooling trips

Second-best pricing
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timet*

first-best stepwiseflat



▪ Optimize pricing objective subject to certain constraints

▪ Application in traffic routing

• Objective

▪ minimize total travel time 

• Constraints

▪ spatial: link, cordon, zone

▪ temporal: flat, stepwise

▪ scheme: vehicle-specific, trip-specific

Second-best pricing
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▪ General framework

where

▪ 𝑇𝑇, 𝐭: total travel time and link cost function

▪ 𝐱∗, 𝐱: (equilibrium) link flow

▪ 𝜏: link toll

▪ Ω𝐱, Ω𝜏: feasible set of link flow and toll

Second-best pricing
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min
𝜏

𝑇𝑇 𝐱∗, 𝜏

𝑠. 𝑡. 𝐭(𝐱∗, 𝜏), 𝐱 − 𝐱∗ ≥ 0, ∀𝐱 ∈ Ω𝐱

𝜏 ∈ Ω𝜏



▪ General framework

where

▪ 𝑇𝑇, 𝐭: total travel time and link cost function

▪ 𝐱∗, 𝐱: (equilibrium) link flow

▪ 𝜏: link toll

▪ Ω𝐱, Ω𝜏: feasible set of link flow and toll

▪ Connection to Stackelberg game

Second-best pricing
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min
𝜏

𝑇𝑇 𝐱∗, 𝜏

𝑠. 𝑡. 𝐭(𝐱∗, 𝜏), 𝐱 − 𝐱∗ ≥ 0, ∀𝐱 ∈ Ω𝐱

𝜏 ∈ Ω𝜏

Follower’s problem 

Leader’s problem 
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Questions?



▪ Non-uniqueness of equilibrium path flows

• Suppose 𝑡𝑎 is differentiable and strictly increasing, then 

▪ there exists unique UE link flows 𝐱∗

▪ any path flows 𝐟∗ that satisfies 𝐱∗ = Δ𝐟∗ is UE path flows

Likely path flow
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min
𝐟

𝑧 𝐱 = σ𝑎0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱
𝐟 ≥ 𝟎



▪ Non-uniqueness of equilibrium path flows

• If the primary goal is to predict congestion, then solving 𝐱∗ is sufficient. 

▪ Path flows are needed to

• Answer who are traveling a particular link

▪ e.g., equity-related analysis

• Design path-based incentives

▪ e.g., emission-based pricing

Likely path flow
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▪ Rationale of most likely path flow

• Suppose there are 10 points scattering in a two-dimension region. 

• Q: Which scenario is more likely to happen, and why?

Likely path flow
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Scenario 1 Scenario 2



▪ Rationale of most likely path flow

• Suppose there are 10 points scattering in a two-dimension region. 

• Q: Which scenario is more likely to happen, and why?

▪ Probability that 𝑁left points fall in the left half of the region

Likely path flow
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Scenario 1 Scenario 2

Prob 𝑁left = 10 =
1

2

10

< 0.001

Prob 𝑁left = 5 = 𝐶 10,5
1

2

5
1

2

5

≈ 0.25 *combination 𝑪 𝒏, 𝒌 =
𝒏!

𝒌! 𝒏−𝒌 !



▪ Rationale of most likely path flow

• Suppose there are 𝑞 travelers choosing between 𝐾 paths

• Path flow 𝐟 = 𝑓1, … , 𝑓𝐾 , σ𝑘 𝑓𝑘 = 𝑞 with probability  

• Most likely path flow 

Likely path flow
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Prob 𝐟 =
𝑞!

𝑓1! … 𝑓𝐾!
Π𝑘

1

𝐾

𝑓𝑘

=
𝑞!

𝑓1! … 𝑓𝐾!

1

𝐾

σ𝑘 𝑓𝑘

=
𝑞!

𝑓1! … 𝑓𝑘!

1

𝐾

𝑞

𝐟∗ = argmax
𝐟

Prob 𝐟 = argmax
𝐟

𝑞!

𝑓1! … 𝑓𝐾!



▪ Rationale of most likely path flow

• Suppose there are 𝑞 travelers choosing between 𝐾 paths

• Most likely path flow 

Likely path flow
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𝐟∗ = argmax
𝐟

𝑞!

𝑓1! … 𝑓𝐾!

= argmax
𝐟

log
𝑞!

𝑓1! … 𝑓𝐾!
= log 𝑞! −෍

𝑘

log 𝑓𝑘!

≈ 𝑞 log 𝑞 − 𝑞 −෍

𝑘

𝑓𝑘 log 𝑓𝑘 − 𝑓𝑘

= 𝑞 log 𝑞 −෍

𝑘

𝑓𝑘 log 𝑓𝑘

= −෍

𝑘

𝑓𝑘 log
𝑓𝑘
𝑞

log is strictly increasing  

log 𝑛! ≈ 𝑛 log𝑛 − 𝑛
when 𝑛 ≫ 0

𝑞 =෍

𝑘

𝑓𝑘



▪ Rationale of most likely path flow

• Suppose there are 𝑞 travelers choosing between 𝐾 paths

• Most likely path flow 

Likely path flow
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𝐟∗ = argmax
𝐟

−෍

𝑘

𝑓𝑘 log
𝑓𝑘
𝑞

= argmax
𝐟

−෍

𝑘

𝑓𝑘
𝑞

log
𝑓𝑘
𝑞

= argmax
𝐟

−෍

𝑘

𝑝𝑘 log 𝑝𝑘
* probability of choosing path  

𝑝𝑘 = 𝑓𝑘/𝑞

Shannon entropy



▪ Max-entropy method

• Find the max-entropy path flow 𝐟∗ that leads to the UE link flow. 𝐱∗ and 
maximizes entropy  

• Q: Is there a unique solution to this problem?

Likely path flow
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max
𝐟

− ෍

𝑤∈𝑊

෍

𝑘∈𝑃𝑤

𝑓𝑘 log
𝑓𝑘
𝑞𝑤

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱∗

𝐟 ≥ 𝟎



▪ Max-entropy method

• Find the max-entropy path flow 𝐟∗ that leads to the UE link flow. 𝐱∗ and 
maximizes entropy  

• Q: Is there a unique solution to this problem?

▪ Yes, because the objective function is strictly convex, and the feasible set is 
convex. How to prove it?

Likely path flow
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max
𝐟

− ෍

𝑤∈𝑊

෍

𝑘∈𝑃𝑤

𝑓𝑘 log
𝑓𝑘
𝑞𝑤

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱∗

𝐟 ≥ 𝟎



▪ Max-entropy method

• Find the max-entropy path flow 𝐟∗ that leads to the UE link flow. 𝐱∗ and 
maximizes entropy  

• Q: Is it really the “most likely” path flow?

▪ Only when we do not have any prior information

• e.g., historical trajectories

Likely path flow
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max
𝐟

− ෍

𝑤∈𝑊

෍

𝑘∈𝑃𝑤

𝑓𝑘 log
𝑓𝑘
𝑞𝑤

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱∗

𝐟 ≥ 𝟎
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Questions?



▪ Link-based formulation: origin-based

where 𝑁

▪ 𝑁, 𝑅: set of nodes and origins

▪ 𝑁𝑖
−,𝑁𝑖

+: set of upstream/downstream nodes of node 𝑖

▪ 𝐴: set of links

Dual formulation
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min
𝐱

𝑧 𝐱 = ෍

𝑖,𝑗 ∈𝐴

න
0

𝑥𝑖𝑗

𝑡𝑖𝑗 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑟 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑟 = 𝑞𝑖

𝑟 =

෍

𝑠

𝑞𝑟𝑠 𝑖 = 𝑟

−𝑞𝑟𝑠 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

෍

𝑟∈𝑅

𝑥𝑖𝑗
𝑟 = 𝑥𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑟 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation: destination-based

where 𝑁

▪ 𝑁, 𝑆: set of nodes and destinations

▪ 𝑁𝑖
−,𝑁𝑖

+: set of upstream/downstream nodes of node 𝑖

▪ 𝐴: set of links

Dual formulation
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min
𝐱

𝑧 𝐱 = ෍

𝑖,𝑗 ∈𝐴

න
0

𝑥𝑖𝑗

𝑡𝑖𝑗 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠 =

𝑞𝑟𝑠 𝑖 = 𝑟

−෍

𝑟∈𝑅

𝑞𝑟𝑠 𝑖 = 𝑠

0 otherwise

, ∀𝑖 ∈ 𝑁, 𝑠 ∈ 𝑆

෍

𝑠∈𝑅

𝑥𝑖𝑗
𝑠 = 𝑥𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation: destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

▪ Dual feasibility

Dual formulation
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ℒ 𝐱, 𝜇, 𝜆 = ෍

𝑖,𝑗 ∈𝐴

න
0

σ𝑟∈𝑅 𝑥𝑖𝑗
𝑠

𝑡𝑖𝑗 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝜇𝑖
𝑠(෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 − 𝑞𝑖

𝑠) −෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝜆𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑠

𝜕

𝜕𝑥𝑖𝑗
𝑠 ℒ 𝐱, 𝜇, 𝜆 = 𝑡𝑖𝑗 𝑥𝑖𝑗 − 𝜇𝑖

𝑠 + 𝜇𝑗
𝑠 − 𝜆𝑖𝑗

𝑠 = 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜆𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑠 = 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁

𝜆𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation: destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

▪ Dual feasibility

Dual formulation
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ℒ 𝐱, 𝜇, 𝜆 = ෍

𝑖,𝑗 ∈𝐴

න
0

σ𝑟∈𝑅 𝑥𝑖𝑗
𝑠

𝑡𝑖𝑗 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝜇𝑖
𝑠(෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 − 𝑞𝑖

𝑠) −෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝜆𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑠

𝜕

𝜕𝑥𝑖𝑗
𝑠 ℒ 𝐱, 𝜇, 𝜆 = 𝑡𝑖𝑗 𝑥𝑖𝑗 − 𝜇𝑖

𝑠 + 𝜇𝑗
𝑠 − 𝜆𝑖𝑗

𝑠 = 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜆𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑠 = 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁

𝜆𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation : destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

• KKT conditions of another problem with decision variables 𝐭 = 𝑡𝑖𝑗 𝑖,𝑗 ∈𝐴
, 

𝜇 = 𝜇𝑖
𝑠

𝑠∈𝑆,𝑖∈𝑁 and dual variables 𝐱 = 𝑥𝑖𝑗
𝑠

𝑟∈𝑠, 𝑖,𝑗 ∈𝐴

Dual formulation
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𝑡𝑖𝑗 − 𝜇𝑖
𝑠 + 𝜇𝑗

𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

(𝜇𝑖
𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗

𝑠)𝑥𝑖𝑗
𝑠 = 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

ℒ 𝐱, 𝜇, 𝜆 = ෍

𝑖,𝑗 ∈𝐴

න
0

σ𝑟∈𝑅 𝑥𝑖𝑗
𝑠

𝑡𝑖𝑗 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝜇𝑖
𝑠(෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 − 𝑞𝑖

𝑠) −෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝜆𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑠



▪ Dual formulation: destination-based

where 𝑁

▪ 𝑁, 𝑆: set of nodes and destinations

▪ 𝐴: set of links

▪ ℓ𝑖𝑗
−1: inverse of link cost function, i.e., 𝑡𝑖𝑗 = ℓ(𝑥𝑖𝑗)

▪ 𝑡𝑖𝑗
0 : free-flow link travel time

▪ 𝜇𝑖
𝑠: travel time to destination

Dual formulation
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min
𝐭,𝜇

𝑧𝐷 𝐭, 𝜇 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠

𝑠. 𝑡. 𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠 , ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑡𝑖𝑗 ≥ 𝑡𝑖𝑗
0 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝜇𝑠
𝑠 = 0, ∀𝑠 ∈ 𝑆



▪ Dual formulation: destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

▪ Dual feasibility

Dual formulation
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𝑥𝑖𝑗
𝑠 (𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠) = 0, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑡𝑖𝑗 ≥ 𝑡𝑖𝑗
0 , ∀ 𝑖, 𝑗 ∈ 𝐴 𝜇𝑠

𝑠 = 0, ∀𝑠 ∈ 𝑆

𝑦𝑖𝑗 𝑡𝑖𝑗 − 𝑡𝑖𝑗
0 = 0, ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴 𝑦𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴

𝜕

𝜕𝑡𝑖𝑗
ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = ℓ𝑖𝑗

−1 𝑡𝑖𝑗 −෍

𝑠∈𝑆

𝑥𝑖𝑗
𝑠 − 𝑦𝑖𝑗 = 0, ∀ 𝑖, 𝑗 ∈ 𝐴

𝜕

𝜕𝜇𝑖
𝑠 ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = −𝑞𝑖

𝑠 + ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 0, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠 +෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝑥𝑖𝑗
𝑠 𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠 − ෍

𝑖,𝑗 ∈𝐴

𝑦𝑖𝑗(𝑡𝑖𝑗 − 𝑡𝑖𝑗
0 )



▪ Dual formulation: destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

▪ Dual feasibility

Dual formulation
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ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠 +෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝑥𝑖𝑗
𝑠 𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠 − ෍

𝑖,𝑗 ∈𝐴

𝑦𝑖𝑗(𝑡𝑖𝑗 − 𝑡𝑖𝑗
0 )

𝜕

𝜕𝑡𝑖𝑗
ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = ℓ𝑖𝑗

−1 𝑡𝑖𝑗 −෍

𝑠∈𝑆

𝑥𝑖𝑗
𝑠 − 𝑦𝑖𝑗 = 0, ∀ 𝑖, 𝑗 ∈ 𝐴

𝜕

𝜕𝜇𝑖
𝑠 ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = −𝑞𝑖

𝑠 + ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 0, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 (𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠) = 0, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑡𝑖𝑗 ≥ 𝑡𝑖𝑗
0 , ∀ 𝑖, 𝑗 ∈ 𝐴 𝜇𝑠

𝑠 = 0, ∀𝑠 ∈ 𝑆

𝑦𝑖𝑗 𝑡𝑖𝑗 − 𝑡𝑖𝑗
0 = 0, ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴 𝑦𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Dual formulation: destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

▪ Dual feasibility

Dual formulation
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ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠 +෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝑥𝑖𝑗
𝑠 𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠 − ෍

𝑖,𝑗 ∈𝐴

𝑦𝑖𝑗(𝑡𝑖𝑗 − 𝑡𝑖𝑗
0 )

ℓ𝑖𝑗
−1 𝑡𝑖𝑗 −෍

𝑠∈𝑆

𝑥𝑖𝑗
𝑠 𝑡𝑖𝑗 − 𝑡𝑖𝑗

0 = 0, ∀ 𝑖, 𝑗 ∈ 𝐴

෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 (𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠) = 0, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜇𝑠
𝑠 = 0, ∀𝑠 ∈ 𝑆

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴



▪ Dual formulation: destination-based

• KKT conditions

▪ Stationarity 

▪ Complementary 

▪ Primal feasibility

▪ Dual feasibility

Dual formulation
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ℒ𝐷 𝐭, 𝜇, 𝐱, 𝐲 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠 +෍

𝑠∈𝑆

෍

𝑖,𝑗 ∈𝐴

𝑥𝑖𝑗
𝑠 𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠 − ෍

𝑖,𝑗 ∈𝐴

𝑦𝑖𝑗(𝑡𝑖𝑗 − 𝑡𝑖𝑗
0 )

𝑥𝑖𝑗 = ൞
෍

𝑠∈𝑆

𝑥𝑖𝑗
𝑠 , if 𝑡𝑖𝑗 > 𝑡𝑖𝑗

0

0, otherwise

, ∀ 𝑖, 𝑗 ∈ 𝐴

෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑠 (𝜇𝑖

𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗
𝑠) = 0, ∀𝑠, ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝜇𝑠
𝑠 = 0, ∀𝑠 ∈ 𝑆

𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴
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Primal Dual

𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠
Stationary Primal feasibility

(𝜇𝑖
𝑠 − 𝑡𝑖𝑗 − 𝜇𝑗

𝑠)𝑥𝑖𝑗
𝑠 = 0 Complementary Complementary

෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑠 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑠 = 𝑞𝑖

𝑠
Primal feasibility Stationary

෍

𝑠∈𝑅

𝑥𝑖𝑗
𝑠 = 𝑥𝑖𝑗 Primal feasibility Stationary

𝑥𝑖𝑗
𝑠 ≥ 0 Primal feasibility Dual feasibility

𝑡𝑖𝑗 ≥ 𝑡𝑖𝑗
0

Definition Primal feasibility

𝜇𝑠
𝑠 = 0 N/A Primal feasibility

* Recall we’ve also imposed 𝜇𝑠
𝑠 = 0 in the dual LP for shortest path



▪ Primal problem

• Solve destination-based link flows 𝐱

• Dim = (# link)*(# destination) = 𝒪( 𝑁 3)

▪ Dual problem

• Solve link cost 𝐭 and cost-to-destination 𝜇

• Dim = # link + (# node)*(# destination) = 𝒪(2 𝑁 2)

▪ further reduced to 𝒪( 𝑁 2) by solving optimal 𝜇 given 𝐭

Dual formulation
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▪ Reduced form 

• Observation: 𝜇 only appears in the second part of objective

▪ Solve 𝜇∗(𝐭) given 𝐭, then optimize 𝐭

Dual formulation
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min
𝐭,𝜇

𝑧𝐷 𝐭, 𝜇 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠

⇔ min
𝐭

𝑧𝐷 𝐭, 𝜇∗(𝐭) = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 − max

𝜇
෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠



▪ Reduced form 

• Q: Does this subproblem remind you another problem?

Dual formulation
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min
𝐭,𝜇

𝑧𝐷 𝐭, 𝜇 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠

𝑠. 𝑡. 𝜇𝑖
𝑠 ≤ 𝑡𝑖𝑗 + 𝜇𝑗

𝑠 , ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐴

𝑡𝑖𝑗 ≥ 𝑡𝑖𝑗
0 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝜇𝑠
𝑠 = 0, ∀𝑠 ∈ 𝑆

⇔ min
𝐭

𝑧𝐷 𝐭, 𝜇∗(𝐭) = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 − max

𝜇
෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠



▪ Reduced form 

where

▪ 𝜇𝑖
𝑠∗(𝐭): node labels obtained by solving the shortest path from all nodes to 

destination 𝑠 given link cost 𝐭

• This dual problem can be solved in the similar way as the primal problem

Dual formulation
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

48

min
𝐭

𝑧𝐷 𝐭 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠∗(𝐭)

𝑠. 𝑡. 𝑡𝑖𝑗 ≥ 𝑡𝑖𝑗
0 , ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Gradient projection

• Primal problem

• At each iteration, 

▪ Step 1: Find descent direction 𝐝𝑛 = −∇𝑧(Δ𝐟𝑛) = −𝐜 𝐟𝑛

▪ Step 2: Compute candidate path flow 𝐲𝑛 = 𝐟𝑛 + 𝛼𝐝𝑛

▪ Step 3: Project back to feasible set 𝐟𝑛+1 = argmin
𝐟∈Ω𝐟

𝐟 − 𝐲𝑛
2

▪ Step 4: Convergence check

• Terminate if 𝐟𝑛+1 = 𝐟𝑛 and return 𝐟∗ = 𝐟𝑛

Dual formulation
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min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

*key challenge: projection onto feasible path set



▪ Gradient projection

• Primal problem

• At each iteration, 

▪ Step 1: Find descent direction 𝐝𝑛 = −∇𝑧(Δ𝐟𝑛) = −𝐜 𝐟𝑛

▪ Step 2: Compute candidate path flow 𝐲𝑛 = 𝐟𝑛 + 𝛼𝐝𝑛

▪ Step 3: Project back to feasible set 𝐟𝑛+1 = argmin
𝐟∈Ω𝐟

𝐟 − 𝐲𝑛
2

▪ Step 4: Convergence check

• Terminate if 𝐟𝑛+1 = 𝐟𝑛 and return 𝐟∗ = 𝐟𝑛

• Projection is no longer a challenge, but ∇𝑧𝐷 𝐭𝑛 becomes hard to compute

Dual formulation
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• Dual problem

min
𝐭

𝑧𝐷(𝐭)

𝑠. 𝑡. 𝐭 ≥ 𝐭0

min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

𝐝𝑛 = −∇𝑧𝐷(𝐭
𝑛)

𝐲𝑛 = 𝐭𝑛 + 𝛼𝐝𝑛

𝐭𝑛+1 = max(𝐭0, 𝐲𝑛)



▪ Gradient projection

• Primal problem

• In fact, 𝑧𝐷(𝐭) is not even smooth, i.e., continuously differentiable, due to 𝜇𝑖
𝑠∗(𝐭)

Dual formulation
C
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• Dual problem

min
𝐭

𝑧𝐷(𝐭)

𝑠. 𝑡. 𝐭 ≥ 𝐭0

min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

𝑧𝐷 𝐭 = ෍

𝑖,𝑗 ∈𝐴

න
𝑡𝑖𝑗
0

𝑡𝑖𝑗

ℓ𝑖𝑗
−1 𝑢 d𝑢 −෍

𝑠∈𝑆

෍

𝑖∈𝑁

𝑞𝑖
𝑠𝜇𝑖

𝑠∗(𝐭)

⇒ 𝐝𝑛 ∈ −ℓ−1 𝐭𝑛 + 𝜕𝑡𝜇𝑖
𝑠∗ 𝐭𝑛 𝐪

*subgradient of 𝜇𝑖
𝑠∗ at 𝐭𝑛
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Questions?
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