

Spring 2025

06 Static Traffic Assignment: Base Model II

CML-477 Transportation network modeling & analysis

- Congestion pricing
 - First-best vs second-best
- Likely path flow
 - Max-entropy method
- Dual formulation

Congestion pricing

- User equilibrium (UE) as a solution to optimization problem

$$\begin{aligned} \min_{\mathbf{f}} \quad & z(\mathbf{x}) = \sum_a \int_0^{x_a} t_a(u) \, du \\ \text{s. t.} \quad & \Lambda \mathbf{f} = \mathbf{q} \end{aligned}$$

$$\begin{aligned} \Delta \mathbf{f} &= \mathbf{x} \\ \mathbf{f} &\geq \mathbf{0} \end{aligned}$$

where

- \mathbf{x}, \mathbf{f} : link/path flow vector
- \mathbf{q} : OD demand vector
- Δ, Λ : link-path/OD-path incidence matrix
- $z(\mathbf{x})$: Beckmann's function

- ***Q: How about system optimum (SO)?***

Congestion pricing

- System optimum (SO) is naturally an optimization problem

$$\begin{aligned} \min_{\mathbf{f}} \quad & TT(\mathbf{x}) = \sum_a x_a t_a(x_a) \\ \text{s. t.} \quad & \Delta \mathbf{f} = \mathbf{q} \\ & \Delta \mathbf{f} = \mathbf{x} \\ & \mathbf{f} \geq \mathbf{0} \end{aligned}$$

where

- \mathbf{x}, \mathbf{f} : link/path flow vector
- \mathbf{q} : OD demand vector
- Δ, Λ : link-path/OD-path incidence matrix
- $TT(\mathbf{x})$: total travel time

- ***Q: How does it relate to UE?***

Congestion pricing

- System optimum (SO) is naturally an optimization problem

$$\begin{aligned} \min_{\mathbf{f}} \quad & TT(\mathbf{x}) = \sum_a x_a t_a(x_a) = \sum_a \int_0^{x_a} m t_a(u) \, du \\ \text{s. t.} \quad & \Delta \mathbf{f} = \mathbf{q} \end{aligned}$$

$$\Delta \mathbf{f} = \mathbf{x}$$

$$\mathbf{f} \geq \mathbf{0}$$

where

- \mathbf{x}, \mathbf{f} : link/path flow vector
- \mathbf{q} : OD demand vector
- Δ, Λ : link-path/OD-path incidence matrix
- $TT(\mathbf{x})$: total travel time
- $mt_a(x_a) = t_a(x_a) + x_a t'_a(x_a) = \frac{\partial(x_a t_a(x_a))}{\partial x_a}$: marginal link travel time

Congestion pricing

- Rationale of (first-best) congestion pricing

$$\begin{aligned} \min_{\mathbf{f}} \quad & TT(\mathbf{x}) = \sum_a \int_0^{x_a} (t_a(u) + \tau_a(u)) \, du \\ \text{s. t.} \quad & \Delta \mathbf{f} = \mathbf{q} \end{aligned}$$

$$\Delta \mathbf{f} = \mathbf{x}$$

$$\mathbf{f} \geq \mathbf{0}$$

where

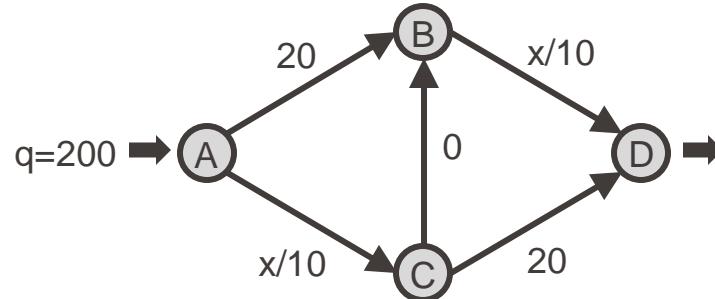
- \mathbf{x}, \mathbf{f} : link/path flow vector
- \mathbf{q} : OD demand vector
- Δ, Λ : link-path/OD-path incidence matrix
- $TT(\mathbf{x})$: total travel time
- $\tau_a(x_a) = mt_a(x_a) - t_a(x_a) = x_a t'_a(x_a)$: marginal pricing

- Rationale of (first-best) congestion pricing
 - Flow-based toll added to all links $\tau_a(x_a) = x_a t'_a(x_a)$
 - **negative externality** caused by each additional traveler
 - not included in traveler's cost under UE (no regulation/intervention)
 - e.g., emission, noise, ...

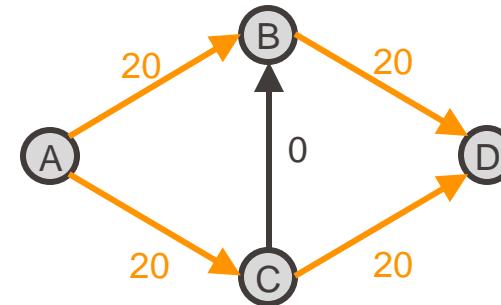
- Rationale of (first-best) congestion pricing
 - Flow-based toll added to all links $\tau_a(x_a) = x_a t'_a(x_a)$
 - **negative externality** caused by each additional traveler
 - not included in traveler's cost under UE (no regulation/intervention)
 - e.g., emission, noise, ...
 - in unit of time, transformed back to monetary value via value of time (VOT)
 - **generalized link travel cost** $gt_a(x_a) = \beta t_a(x_a) + \tilde{\tau}_a(x_a)$, where $\tilde{\tau}_a(x_a) = \beta \tau_a(x_a)$

First-best pricing

- Rationale of (first-best) congestion pricing
 - Flow-based toll added to all links $\tau_a(x_a) = x_a t'_a(x_a)$
 - **negative externality** caused by each additional traveler
 - not included in traveler's cost under UE (no regulation/intervention)
 - e.g., emission, noise, ...
 - in unit of time, transformed back to monetary value via value of time (VOT)
 - **generalized link travel cost** $gt_a(x_a) = \beta t_a(x_a) + \tilde{\tau}_a(x_a)$, where $\tilde{\tau}_a(x_a) = \beta \tau_a(x_a)$
 - At SO, all used routes have equal and min marginal costs



SO marginal link travel time



First-best pricing

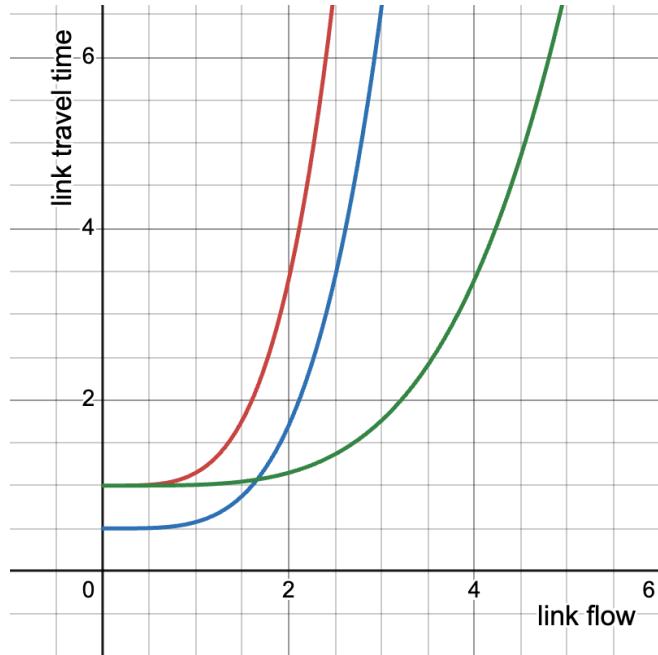
- First-best pricing under base BRP
 - Bureau of Public Roads (BPR) function

$$t(x) = t_0 \left[1 + 0.15 \left(\frac{x}{s} \right)^4 \right]$$

where

- t_0 : free-flow travel time (hr)
- s : saturation flow, or “capacity” (veh/hr)

- widely used in transportation planning
- ideal mathematical properties
 - e.g., strictly increasing



—	$t_0 = 1, s = 1$
—	$t_0 = 0.5, s = 1$
—	$t_0 = 1, s = 2$

- First-best pricing under base BRP
 - UE objective function

$$z(\mathbf{x}) = \sum_a \int_0^{x_a} t_a(u) \, du$$

- integral of link travel time

$$\begin{aligned} \int_0^{x_a} t_a(u) \, du &= \int_0^{x_a} t_0 \left[1 + 0.15 \left(\frac{u}{s} \right)^4 \right] \, du \\ &= t_0 \left[x_a + 0.03s \left(\frac{x_a}{s} \right)^5 \right] = x_a t_0 \left[1 + 0.03 \left(\frac{x_a}{s} \right)^4 \right] \end{aligned}$$

- First-best pricing under base BRP
 - SO objective function

$$TT(\mathbf{x}) = \sum_a x_a t_a(x_a) = \sum_a x_a t_0 \left[1 + 0.15 \left(\frac{x_a}{S} \right)^4 \right]$$

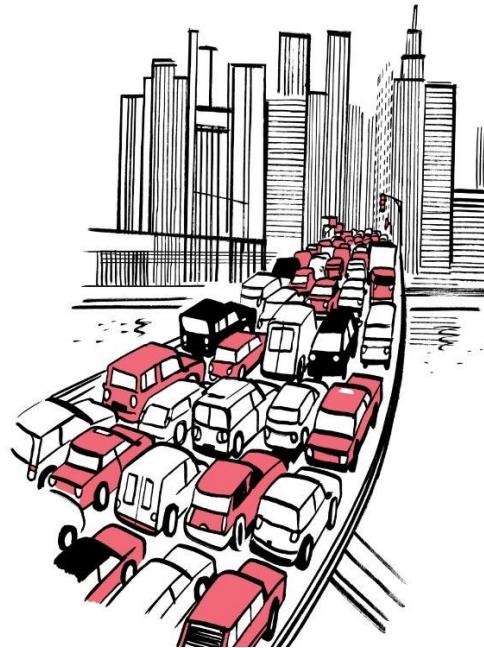
- marginal link cost

$$\begin{aligned} mt_a(x_a) &= \frac{\partial(x_a t_a(x_a))}{\partial x_a} = t_a(x_a) + x_a t'_a(x_a) \\ &= t_0 \left[1 + 0.15 \left(\frac{x_a}{S} \right)^4 \right] + x_a t_0 \left[\frac{0.6}{S} \left(\frac{x_a}{S} \right)^3 \right] \\ &= t_0 \left[1 + 0.75 \left(\frac{x_a}{S} \right)^4 \right] \end{aligned}$$

- **Q: What is the first-best link toll? What are the key parameters?**

Second-best pricing

- Issues of first-best pricing



- ***Q: First-best pricing is theoretically optimal. Is it practical, why or why not?***

Second-best pricing

- Issues of first-best pricing

$$\tau_a(x_a) = x_a t'_a(x_a), \forall a \in A$$

- Link cost function is usually unknown and even not fixed
 - influenced by weather, accidents, ...
- Adding tolls on all links and making them flow-dependent is not practical
 - challenges in traffic monitoring, toll collection, ...
- Travelers are not perfectly rational
 - possibly resolved in the era of AVs

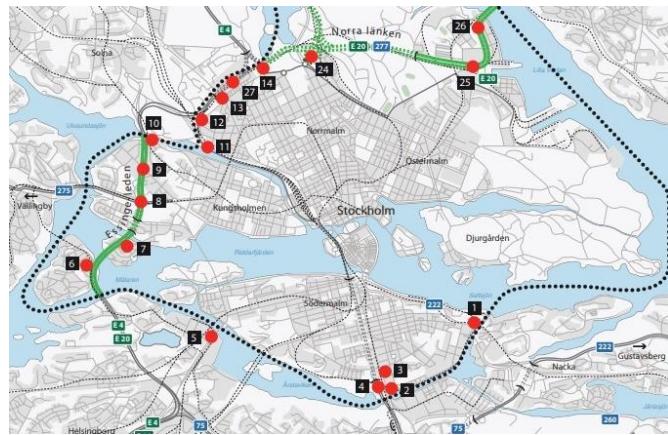
- ***Q: What are congestion pricing implemented in real practice?***

Second-best pricing

- Practical implementations
 - Facility-based
 - when using some facility
 - e.g., highway, bridge

Second-best pricing

- Practical implementations
 - Facility-based
 - when using some facility
 - e.g., highway, bridge
 - Cordon-based
 - when passing some cordon/barrier
 - e.g., Stockholm, New York

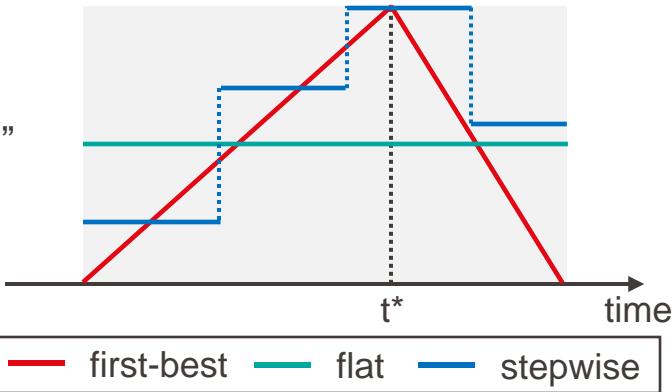


Second-best pricing

- Practical implementations
 - Facility-based
 - when using some facility
 - e.g., highway, bridge
 - Cordon-based
 - when passing some cordon/barrier
 - e.g., Stockholm, New York
 - Zone-based
 - when driving within some zone
 - e.g., London, Chicago

Second-best pricing

- Practical implementations
 - Temporal variation
 - flat rate: fixed price over a "congestion period"
 - stepwise: constant within each time interval



- Price discrimination
 - classified by vehicle and trip type
 - private car vs truck vs taxis
 - solo vs carpooling trips

Second-best pricing

- Optimize pricing ***objective*** subject to certain ***constraints***
- Application in traffic routing
 - Objective
 - minimize total travel time
 - Constraints
 - spatial: link, cordon, zone
 - temporal: flat, stepwise
 - scheme: vehicle-specific, trip-specific

Second-best pricing

- General framework

$$\begin{aligned} \min_{\tau} \quad & TT(\mathbf{x}^*, \tau) \\ \text{s.t.} \quad & \langle \mathbf{t}(\mathbf{x}^*, \tau), \mathbf{x} - \mathbf{x}^* \rangle \geq 0, \quad \forall \mathbf{x} \in \Omega_{\mathbf{x}} \\ & \tau \in \Omega_{\tau} \end{aligned}$$

where

- TT, \mathbf{t} : total travel time and link cost function
- \mathbf{x}^*, \mathbf{x} : (equilibrium) link flow
- τ : link toll
- $\Omega_{\mathbf{x}}, \Omega_{\tau}$: feasible set of link flow and toll

Second-best pricing

- General framework

$$\min_{\tau} TT(\mathbf{x}^*, \tau)$$

$$s.t. \quad \langle \mathbf{t}(\mathbf{x}^*, \tau), \mathbf{x} - \mathbf{x}^* \rangle \geq 0, \quad \forall \mathbf{x} \in \Omega_{\mathbf{x}}$$

$$\tau \in \Omega_{\tau}$$

Leader's problem

Follower's problem

where

- TT, \mathbf{t} : total travel time and link cost function
- \mathbf{x}^*, \mathbf{x} : (equilibrium) link flow
- τ : link toll
- $\Omega_{\mathbf{x}}, \Omega_{\tau}$: feasible set of link flow and toll

- Connection to Stackelberg game

Questions?

- Non-uniqueness of equilibrium path flows

$$\begin{aligned} \min_{\mathbf{f}} \quad & z(\mathbf{x}) = \sum_a \int_0^{x_a} t_a(u) \, du \\ \text{s. t.} \quad & \Lambda \mathbf{f} = \mathbf{q} \end{aligned}$$

$$\Delta \mathbf{f} = \mathbf{x}$$

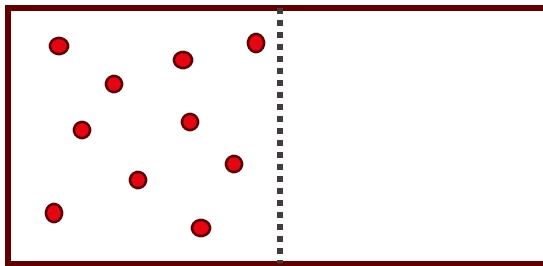
$$\mathbf{f} \geq \mathbf{0}$$

- Suppose t_a is differentiable and strictly increasing, then
 - there exists unique UE link flows \mathbf{x}^*
 - any path flows \mathbf{f}^* that satisfies $\mathbf{x}^* = \Delta \mathbf{f}^*$ is UE path flows

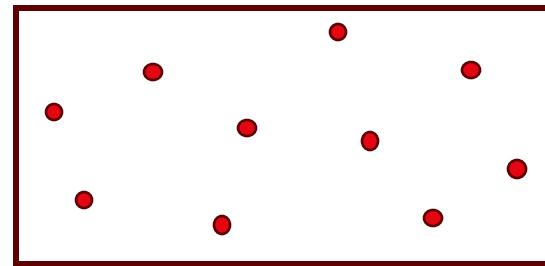
- Non-uniqueness of equilibrium path flows
 - If the primary goal is to predict congestion, then solving x^* is sufficient.
- Path flows are needed to
 - Answer who are traveling a particular link
 - e.g., equity-related analysis
 - Design path-based incentives
 - e.g., emission-based pricing

- Rationale of ***most likely*** path flow
 - Suppose there are 10 points scattering in a two-dimension region.

Scenario 1



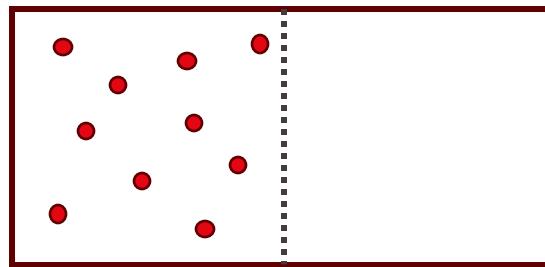
Scenario 2



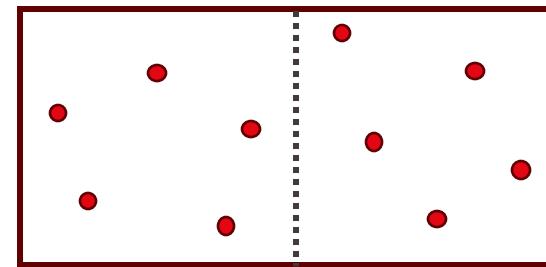
- ***Q: Which scenario is more likely to happen, and why?***

- Rationale of **most likely** path flow
 - Suppose there are 10 points scattering in a two-dimension region.

Scenario 1



Scenario 2



- **Q: Which scenario is more likely to happen, and why?**

- Probability that N_{left} points fall in the left half of the region

$$\text{Prob } [N_{\text{left}} = 10] = \left(\frac{1}{2}\right)^{10} < 0.001$$

$$\text{Prob } [N_{\text{left}} = 5] = C(10,5) \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^5 \approx 0.25$$

*combination $C(n, k) = \frac{n!}{k!(n-k)!}$

- Rationale of **most likely** path flow
 - Suppose there are q travelers choosing between K paths
 - Path flow $\mathbf{f} = (f_1, \dots, f_K)$, $\sum_k f_k = q$ with probability

$$\begin{aligned}\text{Prob} [\mathbf{f}] &= \frac{q!}{f_1! \dots f_K!} \prod_k \left(\frac{1}{K}\right)^{f_k} \\ &= \frac{q!}{f_1! \dots f_K!} \left(\frac{1}{K}\right)^{\sum_k f_k} = \frac{q!}{f_1! \dots f_k!} \left(\frac{1}{K}\right)^q\end{aligned}$$

- Most likely path flow

$$\mathbf{f}^* = \arg \max_{\mathbf{f}} \text{Prob} [\mathbf{f}] = \arg \max_{\mathbf{f}} \frac{q!}{f_1! \dots f_K!}$$

- Rationale of **most likely** path flow

- Suppose there are q travelers choosing between K paths
- Most likely path flow

$$\mathbf{f}^* = \arg \max_{\mathbf{f}} \frac{q!}{f_1! \dots f_K!}$$

log is strictly increasing

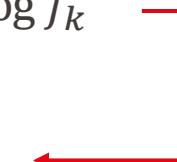
$$= \arg \max_{\mathbf{f}} \log \left(\frac{q!}{f_1! \dots f_K!} \right) = \log q! - \sum_k \log f_k!$$

$\log n! \approx n \log n - n$
when $n \gg 0$

$$\approx (q \log q - q) - \sum_k (f_k \log f_k - f_k)$$

$$= q \log q - \sum_k f_k \log f_k$$

$$= - \sum_k f_k \log \left(\frac{f_k}{q} \right)$$



$$q = \sum_k f_k$$

- Rationale of **most likely** path flow
 - Suppose there are q travelers choosing between K paths
 - Most likely path flow

$$\mathbf{f}^* = \arg \max_{\mathbf{f}} - \sum_k f_k \log \left(\frac{f_k}{q} \right)$$

$$= \arg \max_{\mathbf{f}} - \sum_k \left(\frac{f_k}{q} \right) \log \left(\frac{f_k}{q} \right)$$

$$= \arg \max_{\mathbf{f}} - \sum_k p_k \log p_k$$

* probability of choosing path
 $p_k = f_k/q$

Shannon entropy

- Max-entropy method
 - Find the max-entropy path flow \mathbf{f}^* that leads to the UE link flow. \mathbf{x}^* and maximizes entropy

$$\max_{\mathbf{f}} \quad - \sum_{w \in W} \sum_{k \in P_w} f_k \log\left(\frac{f_k}{q_w}\right)$$

$$s.t. \quad \Lambda \mathbf{f} = \mathbf{q}$$

$$\Delta \mathbf{f} = \mathbf{x}^*$$

$$\mathbf{f} \geq \mathbf{0}$$

- ***Q: Is there a unique solution to this problem?***

- Max-entropy method

- Find the max-entropy path flow \mathbf{f}^* that leads to the UE link flow. \mathbf{x}^* and maximizes entropy

$$\max_{\mathbf{f}} - \sum_{w \in W} \sum_{k \in P_w} f_k \log\left(\frac{f_k}{q_w}\right)$$

$$\begin{aligned} s.t. \quad & \Lambda \mathbf{f} = \mathbf{q} \\ & \Delta \mathbf{f} = \mathbf{x}^* \\ & \mathbf{f} \geq \mathbf{0} \end{aligned}$$

- **Q: Is there a unique solution to this problem?**
 - Yes, because the objective function is strictly convex, and the feasible set is convex. How to prove it?

- Max-entropy method
 - Find the max-entropy path flow \mathbf{f}^* that leads to the UE link flow. \mathbf{x}^* and maximizes entropy

$$\max_{\mathbf{f}} \quad - \sum_{w \in W} \sum_{k \in P_w} f_k \log\left(\frac{f_k}{q_w}\right)$$

$$\begin{aligned} s.t. \quad & \Lambda \mathbf{f} = \mathbf{q} \\ & \Delta \mathbf{f} = \mathbf{x}^* \\ & \mathbf{f} \geq \mathbf{0} \end{aligned}$$

- ***Q: Is it really the “most likely” path flow?***
 - Only when we do not have any prior information
 - e.g., historical trajectories

Questions?

- Link-based formulation: origin-based

$$\begin{aligned}
 \min_{\mathbf{x}} \quad & z(\mathbf{x}) = \sum_{(i,j) \in A} \int_0^{x_{ij}} t_{ij}(u) \, du \\
 \text{s. t.} \quad & \sum_{j \in N_i^+} x_{ij}^r - \sum_{j \in N_i^-} x_{ji}^r = q_i^r = \begin{cases} \sum_s q_{rs} & i = r \\ -q_{rs} & i = s \\ 0 & \text{otherwise} \end{cases}, \quad \forall i \in N, r \in R \\
 & \sum_{r \in R} x_{ij}^r = x_{ij}, \quad \forall (i,j) \in A \\
 & x_{ij}^r \geq 0, \quad \forall (i,j) \in A
 \end{aligned}$$

where N

- N, R : set of nodes and origins
- N_i^-, N_i^+ : set of upstream/downstream nodes of node i
- A : set of links

- Link-based formulation: destination-based

$$\begin{aligned}
 \min_{\mathbf{x}} \quad & z(\mathbf{x}) = \sum_{(i,j) \in A} \int_0^{x_{ij}} t_{ij}(u) \, du \\
 \text{s. t.} \quad & \sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s = \begin{cases} q_{rs} & i = r \\ -\sum_{r \in R} q_{rs} & i = s \\ 0 & \text{otherwise} \end{cases}, \quad \forall i \in N, s \in S \\
 & \sum_{s \in R} x_{ij}^s = x_{ij}, \quad \forall (i,j) \in A \\
 & x_{ij}^s \geq 0, \quad \forall (i,j) \in A
 \end{aligned}$$

where N

- N, S : set of nodes and **destinations**
- N_i^-, N_i^+ : set of upstream/downstream nodes of node i
- A : set of links

Dual formulation

- Link-based formulation: destination-based

$$\mathcal{L}(\mathbf{x}, \mu, \lambda) = \sum_{(i,j) \in A} \int_0^{\sum_{r \in R} x_{ij}^s} t_{ij}(u) \, du - \sum_{s \in S} \sum_{i \in N} \mu_i^s \left(\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s - q_i^s \right) - \sum_{s \in S} \sum_{(i,j) \in A} \lambda_{ij}^s x_{ij}^s$$

- KKT conditions

- Stationarity

$$\frac{\partial}{\partial x_{ij}^s} \mathcal{L}(\mathbf{x}, \mu, \lambda) = t_{ij}(x_{ij}) - \mu_i^s + \mu_j^s - \lambda_{ij}^s = 0, \quad \forall s \in S, (i, j) \in A$$

- Complementary

$$\lambda_{ij}^s x_{ij}^s = 0, \quad \forall s \in S, (i, j) \in A$$

- Primal feasibility

$$\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s, \quad \forall s \in S, i \in N$$

$$x_{ij}^s \geq 0, \quad \forall s \in S, (i, j) \in A$$

- Dual feasibility

$$\lambda_{ij}^s \geq 0, \quad \forall s \in S, (i, j) \in A$$

- Link-based formulation: destination-based

$$\mathcal{L}(\mathbf{x}, \mu, \lambda) = \sum_{(i,j) \in A} \int_0^{\sum_{r \in R} x_{ij}^s} t_{ij}(u) \, du - \sum_{s \in S} \sum_{i \in N} \mu_i^s \left(\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s - q_i^s \right) - \sum_{s \in S} \sum_{(i,j) \in A} \lambda_{ij}^s x_{ij}^s$$

- KKT conditions

- Stationarity

$$\frac{\partial}{\partial x_{ij}^s} \mathcal{L}(\mathbf{x}, \mu, \lambda) = t_{ij}(x_{ij}) - \mu_i^s + \mu_j^s - \lambda_{ij}^s = 0, \quad \forall s \in S, (i, j) \in A$$

- Complementary

$$\lambda_{ij}^s x_{ij}^s = 0, \quad \forall s \in S, (i, j) \in A$$

- Primal feasibility

$$\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s, \quad \forall s \in S, i \in N$$

$$x_{ij}^s \geq 0, \quad \forall s \in S, (i, j) \in A$$

- Dual feasibility

$$\lambda_{ij}^s \geq 0, \quad \forall s \in S, (i, j) \in A$$

Dual formulation

- Link-based formulation : destination-based

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = \sum_{(i,j) \in A} \int_0^{\sum_{r \in R} x_{ij}^s} t_{ij}(u) \, du - \sum_{s \in S} \sum_{i \in N} \mu_i^s \left(\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s - q_i^s \right) - \sum_{s \in S} \sum_{(i,j) \in A} \lambda_{ij}^s x_{ij}^s$$

- KKT conditions

- Stationarity

$$t_{ij} - \mu_i^s + \mu_j^s \geq 0, \quad \forall s \in S, (i,j) \in A$$

- Complementary

$$(\mu_i^s - t_{ij} - \mu_j^s)x_{ij}^s = 0, \quad \forall s \in S, (i,j) \in A$$

- Primal feasibility

$$\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s, \quad \forall s \in S, i \in N$$

$$x_{ij}^s \geq 0, \quad \forall s \in S, (i,j) \in A$$

- KKT conditions of another problem with decision variables $\mathbf{t} = (t_{ij})_{(i,j) \in A}$, $\boldsymbol{\mu} = (\mu_i^s)_{s \in S, i \in N}$ and dual variables $\mathbf{x} = (x_{ij}^s)_{r \in S, (i,j) \in A}$

- Dual formulation: destination-based

$$\min_{\mathbf{t}, \mu} \quad z_D(\mathbf{t}, \mu) = \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s$$

$$s.t. \quad \mu_i^s \leq t_{ij} + \mu_j^s, \quad \forall s \in S, (i,j) \in A$$

$$t_{ij} \geq t_{ij}^0, \quad \forall (i,j) \in A$$

$$\mu_s^s = 0, \quad \forall s \in S$$

where N

- N, S : set of nodes and destinations
- A : set of links
- ℓ_{ij}^{-1} : inverse of link cost function, i.e., $t_{ij} = \ell(x_{ij})$
- t_{ij}^0 : free-flow link travel time
- μ_i^s : travel time to destination

Dual formulation

- Dual formulation: destination-based

$$\mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s + \sum_{s \in S} \sum_{(i,j) \in A} x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) - \sum_{(i,j) \in A} y_{ij} (t_{ij} - t_{ij}^0)$$

- KKT conditions

- Stationarity

$$\frac{\partial}{\partial t_{ij}} \mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = \ell_{ij}^{-1}(t_{ij}) - \sum_{s \in S} x_{ij}^s - y_{ij} = 0, \quad \forall (i,j) \in A$$

$$\frac{\partial}{\partial \mu_i^s} \mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = -q_i^s + \sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = 0, \quad \forall s \in S, (i,j) \in A$$

- Complementary

$$x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) = 0, \quad \forall s \in S, (i,j) \in A$$

$$y_{ij} (t_{ij} - t_{ij}^0) = 0, \quad \forall (i,j) \in A$$

- Primal feasibility

$$\mu_i^s \leq t_{ij} + \mu_j^s, \quad \forall s \in S, (i,j) \in A$$

$$t_{ij} \geq t_{ij}^0, \quad \forall (i,j) \in A \quad \mu_s^s = 0, \quad \forall s \in S$$

- Dual feasibility

$$x_{ij}^s \geq 0, \quad \forall s \in S, (i,j) \in A \quad y_{ij} \geq 0, \quad \forall (i,j) \in A$$

Dual formulation

- Dual formulation: destination-based

$$\mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s + \sum_{s \in S} \sum_{(i,j) \in A} x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) - \sum_{(i,j) \in A} y_{ij} (t_{ij} - t_{ij}^0)$$

- KKT conditions

- Stationarity

$$\frac{\partial}{\partial t_{ij}} \mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = \ell_{ij}^{-1}(t_{ij}) - \sum_{s \in S} x_{ij}^s - y_{ij} = 0, \quad \forall (i,j) \in A$$

$$\frac{\partial}{\partial \mu_i^s} \mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = -q_i^s + \sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = 0, \quad \forall s \in S, (i,j) \in A$$

- Complementary

$$x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) = 0, \quad \forall s \in S, (i,j) \in A$$

$$y_{ij} (t_{ij} - t_{ij}^0) = 0, \quad \forall (i,j) \in A$$

- Primal feasibility

$$\mu_i^s \leq t_{ij} + \mu_j^s, \quad \forall s \in S, (i,j) \in A$$

$$t_{ij} \geq t_{ij}^0, \quad \forall (i,j) \in A \quad \mu_s^s = 0, \quad \forall s \in S$$

- Dual feasibility

$$x_{ij}^s \geq 0, \quad \forall s \in S, (i,j) \in A \quad y_{ij} \geq 0, \quad \forall (i,j) \in A$$

- Dual formulation: destination-based

$$\mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s + \sum_{s \in S} \sum_{(i,j) \in A} x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) - \sum_{(i,j) \in A} y_{ij} (t_{ij} - t_{ij}^0)$$

- KKT conditions
 - Stationarity

$$\left(\ell_{ij}^{-1}(t_{ij}) - \sum_{s \in S} x_{ij}^s \right) (t_{ij} - t_{ij}^0) = 0, \quad \forall (i,j) \in A$$

$$\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s, \quad \forall s \in S, (i,j) \in A$$

- Complementary

$$x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) = 0, \quad \forall s \in S, (i,j) \in A$$

- Primal feasibility

$$\mu_i^s \leq t_{ij} + \mu_j^s, \quad \forall s \in S, (i,j) \in A$$

$$\mu_s^s = 0, \quad \forall s \in S$$

- Dual feasibility

$$x_{ij}^s \geq 0, \quad \forall s \in S, (i,j) \in A$$

- Dual formulation: destination-based

$$\mathcal{L}_D(\mathbf{t}, \boldsymbol{\mu}, \mathbf{x}, \mathbf{y}) = \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s + \sum_{s \in S} \sum_{(i,j) \in A} x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) - \sum_{(i,j) \in A} y_{ij} (t_{ij} - t_{ij}^0)$$

- KKT conditions
 - Stationarity

$$x_{ij} = \begin{cases} \sum_{s \in S} x_{ij}^s, & \text{if } t_{ij} > t_{ij}^0, \\ 0, & \text{otherwise} \end{cases} \quad \forall (i,j) \in A$$

$$\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s, \quad \forall s \in S, (i,j) \in A$$

- Complementary $x_{ij}^s (\mu_i^s - t_{ij} - \mu_j^s) = 0, \quad \forall s \in S, (i,j) \in A$

- Primal feasibility $\mu_i^s \leq t_{ij} + \mu_j^s, \quad \forall s \in S, (i,j) \in A$

- Primal feasibility $\mu_s^s = 0, \quad \forall s \in S$

- Dual feasibility $x_{ij}^s \geq 0, \quad \forall s \in S, (i,j) \in A$

	Primal	Dual
$\mu_i^s \leq t_{ij} + \mu_j^s$	Stationary	Primal feasibility
$(\mu_i^s - t_{ij} - \mu_j^s)x_{ij}^s = 0$	Complementary	Complementary
$\sum_{j \in N_i^+} x_{ij}^s - \sum_{j \in N_i^-} x_{ji}^s = q_i^s$	Primal feasibility	Stationary
$\sum_{s \in R} x_{ij}^s = x_{ij}$	Primal feasibility	Stationary
$x_{ij}^s \geq 0$	Primal feasibility	Dual feasibility
$t_{ij} \geq t_{ij}^0$	Definition	Primal feasibility
$\mu_s^s = 0$	N/A	Primal feasibility

* Recall we've also imposed $\mu_s^s = 0$ in the dual LP for shortest path

- Primal problem
 - Solve destination-based link flows \mathbf{x}
 - Dim = (# link)*(# destination) = $\mathcal{O}(|N|^3)$

- Dual problem
 - Solve link cost \mathbf{t} and cost-to-destination μ
 - Dim = # link + (# node)*(# destination) = $\mathcal{O}(2|N|^2)$
 - further reduced to $\mathcal{O}(|N|^2)$ by solving optimal μ given \mathbf{t}

- Reduced form

$$\begin{aligned} \min_{\mathbf{t}, \mu} \quad z_D(\mathbf{t}, \mu) &= \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s \\ \Leftrightarrow \min_{\mathbf{t}} \quad z_D(\mathbf{t}, \mu^*(\mathbf{t})) &= \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \max_{\mu} \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s \end{aligned}$$

- Observation: μ only appears in the second part of objective
 - Solve $\mu^*(\mathbf{t})$ given \mathbf{t} , then optimize \mathbf{t}

- Reduced form

$$\begin{aligned}
 \min_{\mathbf{t}, \mu} \quad z_D(\mathbf{t}, \mu) &= \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s \\
 \Leftrightarrow \min_{\mathbf{t}} \quad z_D(\mathbf{t}, \mu^*(\mathbf{t})) &= \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \max_{\mu} \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^s
 \end{aligned}$$

$$s.t. \quad \mu_i^s \leq t_{ij} + \mu_j^s, \quad \forall s \in S, (i,j) \in A$$

$$t_{ij} \geq t_{ij}^0, \quad \forall (i,j) \in A$$

$$\mu_s^s = 0, \quad \forall s \in S$$

- **Q: Does this subproblem remind you another problem?**

- Reduced form

$$\begin{aligned} \min_{\mathbf{t}} \quad z_D(\mathbf{t}) &= \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) \, du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^{s*}(\mathbf{t}) \\ \text{s.t.} \quad t_{ij} &\geq t_{ij}^0, \quad \forall (i,j) \in A \end{aligned}$$

where

- $\mu_i^{s*}(\mathbf{t})$: node labels obtained by solving the shortest path from all nodes to destination s given link cost \mathbf{t}
- This dual problem can be solved in the similar way as the primal problem

- Gradient projection
 - Primal problem

$$\min_{\mathbf{f}} z(\Delta \mathbf{f})$$

$$s.t. \quad \Lambda \mathbf{f} = \mathbf{q}$$

$$\mathbf{f} \geq \mathbf{0}$$

- At each iteration,
 - Step 1: Find descent direction $\mathbf{d}^n = -\nabla z(\Delta \mathbf{f}^n) = -\mathbf{c}(\mathbf{f}^n)$
 - Step 2: Compute candidate path flow $\mathbf{y}^n = \mathbf{f}^n + \alpha \mathbf{d}^n$
 - Step 3: Project back to feasible set $\mathbf{f}^{n+1} = \arg \min_{\mathbf{f} \in \Omega_f} \|\mathbf{f} - \mathbf{y}^n\|^2$
 - Step 4: Convergence check
 - Terminate if $\mathbf{f}^{n+1} = \mathbf{f}^n$ and return $\mathbf{f}^* = \mathbf{f}^n$

***key challenge: projection onto feasible path set**

- Gradient projection

 - Primal problem

$$\min_{\mathbf{f}} z(\Delta \mathbf{f})$$

$$s.t. \quad \Lambda \mathbf{f} = \mathbf{q}$$

$$\mathbf{f} \geq \mathbf{0}$$

 - Dual problem

$$\min_{\mathbf{t}} z_D(\mathbf{t})$$

$$s.t. \quad \mathbf{t} \geq \mathbf{t}^0$$

- At each iteration,

 - Step 1: Find descent direction $\mathbf{d}^n = -\nabla z(\Delta \mathbf{f}^n) = -\mathbf{c}(\mathbf{f}^n)$

$$\mathbf{d}^n = -\nabla z_D(\mathbf{t}^n)$$

 - Step 2: Compute candidate path flow $\mathbf{y}^n = \mathbf{f}^n + \alpha \mathbf{d}^n$

$$\mathbf{y}^n = \mathbf{t}^n + \alpha \mathbf{d}^n$$

 - Step 3: Project back to feasible set $\mathbf{f}^{n+1} = \arg \min_{\mathbf{f} \in \Omega_f} \|\mathbf{f} - \mathbf{y}^n\|^2$

$$\mathbf{t}^{n+1} = \max(\mathbf{t}^0, \mathbf{y}^n)$$

 - Step 4: Convergence check

 - Terminate if $\mathbf{f}^{n+1} = \mathbf{f}^n$ and return $\mathbf{f}^* = \mathbf{f}^n$

- Projection is no longer a challenge, but $\nabla z_D(\mathbf{t}^n)$ becomes hard to compute

- Gradient projection
 - Primal problem

$$\min_{\mathbf{f}} z(\Delta \mathbf{f})$$

$$s.t. \quad \Lambda \mathbf{f} = \mathbf{q}$$

$$\mathbf{f} \geq \mathbf{0}$$

- Dual problem

$$\min_{\mathbf{t}} z_D(\mathbf{t})$$

$$s.t. \quad \mathbf{t} \geq \mathbf{t}^0$$

- In fact, $z_D(\mathbf{t})$ is not even smooth, i.e., continuously differentiable, due to $\mu_i^{s*}(\mathbf{t})$

$$z_D(\mathbf{t}) = \sum_{(i,j) \in A} \int_{t_{ij}^0}^{t_{ij}} \ell_{ij}^{-1}(u) du - \sum_{s \in S} \sum_{i \in N} q_i^s \mu_i^{s*}(\mathbf{t})$$

$$\Rightarrow \mathbf{d}^n \in -\ell^{-1}(\mathbf{t}^n) + \partial_t \mu_i^{s*}(\mathbf{t}^n) \mathbf{q}$$

***subgradient of μ_i^{s*} at \mathbf{t}^n**

Questions?