
05 Static Traffic Assignment:
Base Model I

CIVIL-477 Transportation network modeling & analysis

Spring 2025



▪ Formulations

• Classic

• VI

▪ Properties

• Existence and uniqueness

• Price of anarchy

▪ Solution algorithm

• Frank-Wolfe

• Gradient projection
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▪ Definition of traffic assignment

• Assign traffic flows on a given transportation network according to certain
rules and satisfying certain constraints

▪ Routing principles

• User equilibrium (UE)

▪ choose route to min own travel time, i.e., selfish routing

• System optimum (SO)

▪ choose route to min total travel time, i.e., selfless routing

▪ Flow constraints

• ∑ path flow between each OD pair = OD demand

• ∑ path flow on each link = link flow
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▪ Network 𝒢 = (𝑁, 𝐴)
• Node 𝑖 ∈ 𝑁

• Origin-destination (OD) 𝑤 = 𝑟, 𝑠 ∈ 𝑊, 𝑟, 𝑠 ∈ 𝑁

• Link 𝑎 ∈ 𝐴

▪ Link flow 𝑥𝑎 ∈ ℝ+ , 𝑎 ∈ 𝐴

▪ Link cost 𝑡𝑎 ∈ ℝ+, 𝑎 ∈ 𝐴

• Path 𝑘 ∈ 𝑃𝑤 with 𝑤 = 𝑟, 𝑠 ∈ 𝑊

▪ Path flow 𝑓𝑘 ∈ ℝ+ , 𝑘 ∈∪𝑤∈𝑊 𝑃𝑤
▪ Path cost 𝑐𝑘 ∈ ℝ+ , 𝑘 ∈∪𝑤∈𝑊 𝑃𝑤
▪ Min path cost 𝜇𝑤 ∈ ℝ+ , 𝑤 ∈ 𝑊

• Link-path matrix Δ = 𝛿𝑎𝑝 𝑎∈𝐴,𝑝∈𝑃

• OD-path matrix Λ = 𝜆𝑤𝑝 𝑤∈𝑊,𝑝∈𝑃
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▪ Network 𝒢 = (𝑁, 𝐴)
• Node 𝑖 ∈ 𝑁

• Origin-destination (OD) 𝑤 = 𝑟, 𝑠 ∈ 𝑊, 𝑟, 𝑠 ∈ 𝑁

• Link 𝑎 ∈ 𝐴

▪ Link flow 𝑥𝑎 ∈ ℝ+ , 𝑎 ∈ 𝐴; 𝐱 = 𝑥𝑎 ∀𝑎∈𝐴 ∈ ℝ+
|𝐴|

▪ Link cost 𝑡𝑎 ∈ ℝ+, 𝑎 ∈ 𝐴; 𝐭 = 𝑡𝑎 ∀𝑎∈𝐴 ∈ ℝ+
|𝐴|

• Path 𝑘 ∈ 𝑃𝑤 with 𝑤 = 𝑟, 𝑠 ∈ 𝑊

▪ Path flow 𝑓𝑘 ∈ ℝ+ , 𝑘 ∈∪𝑤∈𝑊 𝑃𝑤; 𝐟 = 𝑓𝑘 ∀𝑘∈𝑃 ∈ ℝ+
|𝑃|

▪ Path cost 𝑐𝑘 ∈ ℝ+ , 𝑘 ∈∪𝑤∈𝑊 𝑃𝑤 ; 𝐜 = 𝑐𝑘 ∀𝑘∈𝑃 ∈ ℝ+
|𝑃|

▪ Min path cost 𝜇𝑤 ∈ ℝ+ , 𝑤 ∈ 𝑊; 𝜇 = 𝜇𝑤 ∀𝑤∈𝑊 ∈ ℝ+
|𝑊|

• Link-path matrix Δ = 𝛿𝑎𝑘 𝑎∈𝐴,𝑘∈𝑃; 𝐱 = Δ𝐟, 𝐭 = Δ𝐜, 𝐜 = Δ𝑇𝐭

• OD-path matrix Λ = 𝜆𝑤𝑘 𝑤∈𝑊,𝑘∈𝑃; 𝐪 = Λ𝐟
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▪ Traffic equilibrium condition

• A feasible path flow 𝑓∗ such that ∀𝑤 ∈ 𝑊, 𝑘 ∈ 𝑃𝑤 ,

𝑓𝑘
∗ 𝑐𝑘 𝑓∗ − 𝜇𝑤

∗ = 0, 𝑐𝑘 𝑓∗ ≥ 𝜇𝑤
∗

▪ Equivalent KKT conditions

▪ Q: What is the corresponding optimization problem?
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(𝐟∗)𝑇 𝐜∗ − Λ𝑇𝜇∗ = 0

𝐜∗ − Λ𝑇𝜇∗ ≥ 𝟎

Λ𝐟∗ = 𝐪

𝐟∗ ≥ 𝟎

𝐜∗ − Λ𝑇𝜇∗ = 𝜆∗

𝐟∗ ≥ 𝟎

Λ𝐟∗ = 𝐪

𝜆∗ ≥ 0

𝜆∗ 𝑇𝐟∗ = 0

⇔

⇔ 0 = ∇𝐟ℒ 𝐟∗, 𝜆∗, 𝜇∗

= 𝐜∗ − 𝜆∗ − Λ𝑇𝜇∗



▪ Path-based formulation

▪ Lagrangian

▪ KKT conditions

• Q: What is 𝑍 𝐟 such that ∇𝐟𝑍 𝐟 = 𝐜?   

Classic formulation
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min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

ℒ 𝐟, 𝜆, 𝜇 = 𝑍 𝐟 − 𝜆𝑇𝐟 − 𝜇𝑇(Λ𝐟 − 𝐪)

∇𝐟ℒ 𝐟, 𝜆, 𝜇 = ∇𝐟𝑍 𝐟 − 𝜆 − Λ𝑇𝜇 = 0
𝐟∗ ≥ 𝟎

Λ𝐟∗ = 𝐪
𝜆∗ ≥ 0

𝜆∗ 𝑇𝐟∗ = 0



▪ Path-based formulation

▪ Beckmann function

where

Classic formulation
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𝑍 𝐟 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

𝑥𝑎 = ෍

𝑘∈𝑃

𝛿𝑎𝑘𝑓𝑘

min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎



▪ Path-based formulation

▪ Beckmann function

• A compact form ∇𝐟Z 𝐟 = 𝐜

Classic formulation
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𝜕𝑍 𝐟

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝜕 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝜕 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑥𝑎

𝜕𝑥𝑎
𝜕𝑓𝑘

= ෍

𝑎∈𝐴

𝑡𝑎(𝑥𝑎)
𝜕∑𝑘 𝛿𝑎𝑘𝑓𝑘

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝑡𝑎(𝑥𝑎) 𝛿𝑎𝑘 = 𝑐𝑘

𝑍 𝐟 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎



▪ Path-based formulation

▪ Beckmann function

• Only depend on link flows 𝐱

• Q: What are ∇𝐱𝑧 𝐱 and ∇𝐟𝑧 𝐱 ?

Classic formulation
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𝑍 𝐟 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

𝑧 𝐱 = 𝑧 Δ𝐟 = 𝑍(𝐟)



▪ Path-based formulation

▪ Beckmann function

Classic formulation
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𝑧 𝐱 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

𝜕𝑧 𝐱

𝜕𝑥𝑎
=
0׬��

𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑥𝑎
= 𝑡𝑎 𝑥𝑎

𝜕𝑧 𝐱

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝜕 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑥𝑎

𝜕𝑥𝑎
𝜕𝑓𝑘

= ෍

𝑎∈𝐴

𝑡𝑎(𝑥𝑎) 𝛿𝑎𝑘 = 𝑐𝑘

⇔ ∇𝐱𝑧 𝐱 = 𝐭

⇔ ∇𝐟𝑧 𝐱 = 𝐜

Q: Another way to express this?



▪ Path-based formulation

▪ Beckmann function

Classic formulation
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𝑧 𝐱 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

min
𝐟

𝑍(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

𝜕𝑧 𝐱

𝜕𝑥𝑎
=
0׬��

𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑥𝑎
= 𝑡𝑎 𝑥𝑎

𝜕𝑧 𝐱

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝜕 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑥𝑎

𝜕𝑥𝑎
𝜕𝑓𝑘

= 𝑡𝑎 𝑥𝑎 𝛿𝑎𝑘

⇔ ∇𝐱𝑧 𝐱 = 𝐭

⇔ ∇𝐟𝑧 𝐱 = ∇𝐟z Δ𝐟
= Δ𝑇∇𝐱𝑧 𝐱 = Δ𝑇𝐭 = 𝐜



▪ Path-based formulation

• Compact and straightforward 

• Useful for analyzing the equilibrium properties

• Feasible for solving equilibrium in small networks but not large networks

▪ Number of paths increases exponentially with the network size

Classic formulation
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min
𝐟

𝑧(𝐱)

𝑠. 𝑡. Λ𝐟 = 𝐪

Δ𝐟 = 𝐱
𝐟 ≥ 𝟎



▪ Link-based formulation

where 𝑁

▪ 𝑁, 𝑅: set of nodes/origins

▪ 𝑁𝑖
−,𝑁𝑖

+: set of upstream/downstream nodes of node 𝑖

▪ 𝐴: set of links

Classic formulation
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min
𝐱

𝑧 𝐱 = ෍

𝑖,𝑗 ∈𝐴

න
0

𝑥𝑖𝑗

𝑡𝑖𝑗 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑟 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑟 = 𝑞𝑖

𝑟 =

෍

𝑠

𝑞𝑟𝑠 𝑖 = 𝑟

−𝑞𝑟𝑠 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

෍

𝑟∈𝑅

𝑥𝑖𝑗
𝑟 = 𝑥𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗
𝑟 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation

• Also known as Beckmann’s formulation

• Q: Does the formulation look familiar?

Classic formulation
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min
𝐱

𝑧 𝐱 = ෍

𝑖,𝑗 ∈𝐴

න
0

𝑥𝑖𝑗

𝑡𝑖𝑗 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑟 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑟 = 𝑞𝑖

𝑟 =

෍

𝑠

𝑞𝑟𝑠 𝑖 = 𝑟

−𝑞𝑟𝑠 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

෍

𝑟∈𝑅

𝑥𝑖𝑗
𝑟 = 𝑥𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation

• Also known as Beckmann’s formulation

• Decomposed by origin and based on node-wise flow conservation

• Q: How many decision variables are there?

Classic formulation
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min
𝐱

𝑧 𝐱 = ෍

𝑖,𝑗 ∈𝐴

න
0

𝑥𝑖𝑗

𝑡𝑖𝑗 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑟 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑟 = 𝑞𝑖

𝑟 =

෍

𝑠

𝑞𝑟𝑠 𝑖 = 𝑟

−𝑞𝑟𝑠 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

෍

𝑟∈𝑅

𝑥𝑖𝑗
𝑟 = 𝑥𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Link-based formulation

• Also known as Beckmann’s formulation

• Decomposed by origin and based on node-wise flow conservation

• Fewer variables than the path-based formulation 𝒪 𝑁 3 vs 𝒪 2 𝑁 2

Classic formulation
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min
𝐱

𝑧 𝐱 = ෍

𝑖,𝑗 ∈𝐴

න
0

𝑥𝑖𝑗

𝑡𝑖𝑗 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗
𝑟 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖
𝑟 = 𝑞𝑖

𝑟 =

෍

𝑠

𝑞𝑟𝑠 𝑖 = 𝑟

−𝑞𝑟𝑠 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

෍

𝑟∈𝑅

𝑥𝑖𝑗
𝑟 = 𝑥𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ 𝐴

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴



▪ Equivalent VI problem

• Find 𝐟∗ ∈ Ω𝐟 = {𝐟|Λ𝐟 = 𝐪, 𝐟 ≥ 0} such that 

• Recall that 𝐜 𝐟∗ = Δ𝑇𝐭∗ = Δ𝑇𝐭(𝐱∗), then

▪ Link-based VI problem

• Find 𝐱∗ ∈ Ω𝐱 = {𝐱|Δ𝐟 = 𝐱, Λ𝐟 = 𝐪, 𝐟 ≥ 0} such that 

VI formulation
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𝐜(𝐟∗), 𝐟 − 𝐟∗ ≥ 0, ∀𝐟 ∈ Ω𝐟

𝐜(𝐟∗), 𝐟 − 𝐟∗ = Δ𝑇𝐭(𝐱∗),𝐟 − 𝐟∗ = 𝐭(𝐱∗),Δ(𝐟 − 𝐟∗) = 𝐭(𝐱∗),𝐱 − 𝐱∗

𝐭(𝐱∗), 𝐱 − 𝐱∗ ≥ 0, ∀𝐱 ∈ Ω𝐱



▪ Link-based VI problem

• Find 𝐱∗ ∈ Ω𝐱 = {𝐱|Δ𝐟 = 𝐱, Λ𝐟 = 𝐪, 𝐟 ≥ 0} such that

• More compact and connected to general equilibrium in game theory

• Often used in the case when equivalent optimization problem does not exist

• Useful for analyzing the equilibrium properties

• Lead to a class of solution methods

▪ generalize Frank-Wolfe, Newton-type method, and gradient projection

VI formulation
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

19

𝐭(𝐱∗), 𝐱 − 𝐱∗ ≥ 0, ∀𝐱 ∈ Ω𝐱
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Questions?



▪ Existence

• With and without equivalent optimization problem

▪ Uniqueness

• Link vs path flows

▪ Price of anarchy

Properties of traffic equilibrium
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

21



▪ Extreme value theorem 

• Any continuous function over a compact feasible 
set has global minimum and maximum 

▪ compact = close + bounded

▪ close: contain all limit points

▪ bounded: norm is less than some finite value

Existence of equilibrium
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f(x)

x
x



▪ Extreme value theorem 

• Any continuous function over a compact feasible 
set has global minimum and maximum 

▪ compact = close + bounded

▪ close: contain all limit points

▪ bounded: norm is less than some finite value

▪ Path-based formulation

Existence of equilibrium
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min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

f(x)

x
x

Note: 𝑧(𝐱) denotes Beckmann function

Continuous objective function

Compact feasible set

Q: Does this problem satisfy the conditions?



▪ Extreme value theorem 

• Any continuous function over a compact feasible 
set has global minimum and maximum 

▪ compact = close + bounded

▪ close: contain all limit points

▪ bounded: norm is less than some finite value

▪ Path-based formulation

Existence of equilibrium
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min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

f(x)

x
x

Continuous objective function

▪ sum of continous functions (integrals)

Compact feasible set

▪ path flow 𝑓𝑘 ∈ 0, 𝑞𝑤 , ∀𝑘 ∈ 𝑃𝑤, 𝑤 ∈ 𝑊

Q: Does this problem satisfy the conditions?

Note: 𝑧(𝐱) denotes Beckmann function



▪ Reformulation of VI as fixed-point problem

• VI problem

▪ Find 𝑥∗ ∈ 𝑋 such that 𝐹(𝑥∗), 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋

• Fixed-point

▪ Find 𝑥∗ such that 𝑥∗ = 𝐺(𝑥∗) for some mapping 𝐺: 𝑋 → 𝑋

• If 𝑋 is close and convex, then the equivalent fixed-point is

𝑥∗ = 𝐺 𝑥∗ = Π𝑋(𝑥
∗ − 𝛼𝐹(𝑥∗))

where 

▪ Π𝑋: projection operator

▪ 𝛼 > 0: any step size

Existence of equilibrium
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𝑓(x)

x0

x0 − 𝛼∇𝑓 x0

x1

𝑋

x∗



▪ Reformulation of VI as fixed-point problem

• VI formulation

▪ Find 𝐱∗ ∈ Ω𝐱 = {𝐱|Δ𝐟 = 𝐱, Λ𝐟 = 𝐪, 𝐟 ≥ 0} such that

• Fixed-point formulation

▪ Find 𝐱∗ such that

Existence of equilibrium
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𝐭(𝐱∗), 𝐱 − 𝐱∗ ≥ 0, ∀𝐱 ∈ Ω𝐱

𝐱∗ = ΠΩ𝐱
(𝐱∗ − 𝛼𝐭(𝐱∗))



▪ Brouwer’s fixed-point theorem 

• Any continuous function from a nonempty
convex compact set to itself has a fixed point

Existence of equilibrium
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f(x)

x

x
x

x



▪ Brouwer’s fixed-point theorem 

• Any continuous function from a nonempty
convex compact set to itself has a fixed point

▪ Fixed-point formulation

• Find 𝐱∗ such that 𝐱∗ = ΠΩ𝐱
(𝐱∗ − 𝛼𝐭(𝐱∗))

▪ Q: Does this problem satisfy the conditions?

Existence of equilibrium
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f(x)

x

x
x

x

Continuous operator

Nonempty convex compact feasible set



▪ Brouwer’s fixed-point theorem 

• Any continuous function from a nonempty
convex compact set to itself has a fixed point

▪ Fixed-point formulation

• Find 𝐱∗ such that 𝐱∗ = ΠΩ𝐱
(𝐱∗ − 𝛼𝐭(𝐱∗))

▪ Q: Does this problem satisfy the conditions?

Existence of equilibrium
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f(x)

x

x
x

x

Continuous operator

▪ due to continuous 𝐭 and convex Ω𝐱
Nonempty convex compact feasible set

▪ physical meaning of Ω𝐱
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Questions?



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Q: How to check if a twice differentiable function is convex, and
strictly convex?

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If the feasible set 𝑋 is convex and compact

• If objective function 𝑓(x) is strictly convex



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Path-based formulation

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact

min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪

𝐟 ≥ 𝟎

Note: 𝑧(𝐱) denotes Beckmann function

Strictly convex objective function

Convex and compact feasible set

Q: Does this problem satisfy the conditions?

?



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Convexity of Beckmann function

• If link cost function 𝑡𝑎 is differentiable, then 𝑧 Δ𝐟 is twice differentiable

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact

𝑧 Δ𝐟 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢

𝜕𝑧 Δ𝐟

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝑡𝑎(𝑥𝑎) 𝛿𝑎𝑘 ⇒
𝜕2𝑧 Δ𝐟

𝜕𝑓𝑘
2 = ෍

𝑎∈𝐴

𝑡𝑎
′ (𝑥𝑎) 𝛿𝑎𝑘

2 ,
𝜕2𝑍 𝐟

𝜕𝑓𝑘𝜕𝑓𝑘′
= ෍

𝑎∈𝐴

𝑡𝑎
′ (𝑥𝑎) 𝛿𝑎𝑘𝛿𝑎𝑘′

∇𝐟𝑧 Δ𝐟 = Δ𝑇∇𝐱𝑧 𝐱 ⇒ ∇𝐟
2𝑧 Δ𝐟 = ∇𝐟 ∇𝐱𝑧 𝐱 Δ = Δ𝑇∇𝐱

2𝑧 𝐱 Δ



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Convexity of Beckmann function

• If link cost function 𝑡𝑎 is strictly increasing, then 𝑡𝑎
′ > 0

▪ ∇𝐱
2𝑧 𝐱 is a diagonal matrix with all positive diagonal elements

▪ ∇𝐱
2𝑧 𝐱 ≻ 0 is positive definite

• Q: Does it imply 𝑧 Δ𝐟 is strictly convex?

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact

𝑧 Δ𝐟 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Convexity of Beckmann function

• If link cost function 𝑡𝑎 is differentiable and strictly increasing, then

▪ 𝑧 𝐱 is strictly convex with 𝐱 because 𝐻𝐱 = ∇𝐱
2𝑧 𝐱 ≻ 0

▪ 𝑧 Δ𝐟 is only convex function with 𝐟 because 𝐻𝐟 = ∇𝐟
2𝑧 Δ𝐟 = Δ𝑇∇𝐱

2𝑧 𝐱 Δ ≽ 0

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact

𝑧 Δ𝐟 =෍

𝑎

න
0

𝑥𝑎

𝑡𝑎 𝑢 d𝑢



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Uniqueness of traffic equilibrium

• Suppose link cost function 𝑡𝑎 is differentiable and strictly increasing

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact

min
𝐱

𝑧(𝐱)

𝑠. 𝑡. 𝐱 ∈ Ω𝐱

Strictly convex objective function

Convex and compact feasible set

▪ 𝐱 = Δ𝐟 linear combination of
convex set is also convex

Q: Does this problem satisfy the conditions?



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Uniqueness of traffic equilibrium

• Suppose link cost function 𝑡𝑎 is differentiable and strictly increasing

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact

min
𝐟

𝑧(Δ𝐟)

𝑠. 𝑡. 𝐟 ∈ Ω𝐟

Strictly convex objective function

Convex and compact feasible set

Q: Does this problem satisfy the conditions?

𝑋



▪ Solution uniqueness of a constrained nonlinear optimization

▪ Uniqueness of traffic equilibrium

• Suppose link cost function 𝑡𝑎 is differentiable and strictly increasing

• There exists unique UE link flows 𝐱∗

• Any path flows 𝐟∗ that satisfies 𝐱∗ = Δ𝐟∗ is UE path flows

Uniqueness of equilibrium
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

• If objective function 𝑓(x) is strictly convex

• If the feasible set 𝑋 is convex and compact
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Questions?



▪ Example of Braess paradox

▪ Q: What are main factors of PoA?

Price of anarchy (PoA)
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B

C

A D

20

0

2020

20
B

C

A D

20

0

2010

10

𝑇𝑇UE = 40 ∗ 200 𝑇𝑇SO = 30 ∗ 200

B

C

A D

20

0

20x/10

x/10

q=200𝑃𝑜𝐴 =
𝑇𝑇UE
𝑇𝑇SO

=
4

3



▪ Main factors

• Demand

▪ q=200, PoA = 4/3

▪ q=500, PoA = 1

• Network topology

▪ Remove link C→B

• Link cost function

▪ Linear function t(x) = x/10, PoA = 4/3

▪ Quadratic function t(x) = x2 + x/10, PoA = 1

Price of anarchy (PoA)
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

41

B

C

A D

20

0

20x/10

x/10

q



▪ Upper bound of PoA

• Seminal work by Prof. Tim Roughgarden

Price of anarchy (PoA)
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▪ Upper bound of PoA

• For linear, non-negative, and non-decreasing link cost functions, the PoA
is at most 4/3

• Proof. based on VI

At UE, we have

𝐭(𝐱∗), 𝐱 − 𝐱∗ ≥ 0, ∀𝐱 ∈ Ω𝐱

Then, for any feasible link flow 𝐱 ∈ Ω𝐱, we have

𝑇𝑇𝑈𝐸 ≤ 𝐭 𝐱∗ 𝑇𝐱 = 𝐭 𝐱∗ 𝑇𝐱 − 𝐭 𝐱 𝑇𝐱 + 𝐭 𝐱 𝑇𝐱

= 𝐭 𝐱∗ − 𝐭 𝐱
𝑇
𝐱 + 𝐭 𝐱 𝑇𝐱

With linear cost 𝑡𝑎 𝑥𝑎 = 𝛽0,𝑎 + 𝛽1,𝑎𝑥𝑎 with 𝛽0,𝑎, 𝛽1,𝑎 ≥ 0, the first term is further expanded as

𝐭 𝐱∗ − 𝐭 𝐱
𝑇
𝐱 = ∑𝑎 𝑥𝑎(𝛽0,𝑎 + 𝛽1,𝑎𝑥𝑎

∗) − ∑𝑎 𝑥𝑎 𝛽0,𝑎 + 𝛽1,𝑎𝑥𝑎 = ∑𝑎𝛽1,𝑎(𝑥𝑎𝑥𝑎
∗ − 𝑥𝑎

2)

≤ ∑𝑎𝛽1,𝑎
1

4
𝑥𝑎
∗ 2 ≤

1

4
∑𝑎 𝑥𝑎

∗ 𝛽0,𝑎 + 𝛽1,𝑎𝑥𝑎
∗ =

1

4
𝑇𝑇𝑈𝐸

Combining the above results, we conclude SO flows 𝐱SO ∈ Ω𝐱

𝑇𝑇𝑈𝐸 ≤
1

4
𝑇𝑇𝑈𝐸 + 𝐭 𝐱SO

𝑇
𝐱SO ⇒ 𝑇𝑇SO = 𝐭 𝐱SO

𝑇
𝐱SO ≥

3

4
𝑇𝑇𝑈𝐸 ⇒ 𝑃𝑜𝐴 =

𝑇𝑇𝑈𝐸
𝑇𝑇SO

≤
4

3

Price of anarchy (PoA)
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Questions?



▪ Link-based

• Method of successive average (MSA)

• Frank-Wolfe

▪ Path-based

• Gradient projection

• Maximum entropy (next lecture)

▪ Bush-based

• Algorithm B (beyond this course)

Solution algorithms
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▪ Typical idea of solving a constrained optimization problem

• At each iteration 𝑘, find a good descent direction 𝑑𝑘 to update

𝑥𝑘+1 ← 𝑥𝑘 + 𝛼𝑑𝑘

with some step size 𝛼

▪ Key questions

• How to determine direction 𝑑𝑘?

• How to set step 𝛼?

Frank-Wolfe algorithm
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𝑓(𝑥)

𝑥0

𝑥1

𝑋

𝑥∗

min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋 𝑥2
𝑑0

𝑑1



▪ Main idea of FW algorithm

• How to determine direction 𝑑𝑘?

▪ construct an auxiliary problem that is easier to solve, and use its optimal
solution 𝑦𝑘 to set 𝑑𝑘 = 𝑦𝑘 − 𝑥𝑘

• How to set step 𝛼?

▪ search the optimal step size 𝛼 that leads to the min objective

Frank-Wolfe algorithm
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▪ At iteration 𝑘,

• Step 1: Find descent direction 𝐝𝑘 = 𝐲𝑘 − 𝐱𝑘

▪ Solve auxiliary problem with linear approximated objective

which is equivalent to

Frank-Wolfe algorithm
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min
𝐱

ǁ𝑧 𝐱 = 𝑧 𝐱𝑘 + ∇𝑧 𝐱𝑘 , 𝐱 − 𝐱𝑘

𝑠. 𝑡. 𝐱 ∈ Ω𝐱

min
𝐱

𝐭𝑘, 𝐱 − 𝐱𝑘

𝑠. 𝑡. 𝐱 ∈ Ω𝐱

∇𝑧 𝐱𝑘𝑧 𝐱𝑘

𝐱𝑘

𝑧 𝐱

ǁ𝑧 𝐱



▪ At iteration 𝑘,

• Step 1: Find descent direction 𝐝𝑘 = 𝐲𝑘 − 𝐱𝑘

▪ Solve auxiliary problem with linear approximated objective

• Q: What is the physical meaning of this problem?

Frank-Wolfe algorithm
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min
𝐱

𝐭𝑘, 𝐱 − 𝐱𝑘

𝑠. 𝑡. 𝐱 ∈ Ω𝐱

min
𝐟

𝐜𝑘, 𝐟

𝑠. 𝑡. 𝐟 ∈ Ω𝐟
⇒



▪ At iteration 𝑘,

• Step 1: Find descent direction 𝐝𝑘 = 𝐲𝑘 − 𝐱𝑘

▪ Solve auxiliary problem with linear approximated objective

• All-or-nothing assignment: assign all demand to shortest paths to get 𝐲𝑘

• Step 2: Find optimal step size 𝛼

▪ Solve line search problem

• Q: How to efficiently solve this problem?

Frank-Wolfe algorithm
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min
𝛼

ǁ𝑧 𝛼 = 𝑧 𝐱𝑘 + 𝛼𝐝𝑘

𝑠. 𝑡. 0 ≤ 𝛼 ≤ 1



• Step 2: Find optimal step size 𝛼

▪ Solve line search problem

• Bisection search: reduce half of search
space per iteration

▪ Terminate when both conditions hold

• reach max iteration or search space

• ∇𝛼 ǁ𝑧 𝛼 = ∇𝐱 ǁ𝑧 𝛼 ,𝐝𝑘 = 𝐭 𝛼 ,𝐝𝑘 ≤ 0

Frank-Wolfe algorithm
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

51

𝛼

ǁ𝑧 𝛼

0 11/21/4

▪ At iteration 𝑘,

• Step 1: Find descent direction 𝐝𝑘 = 𝐲𝑘 − 𝐱𝑘

▪ Solve auxiliary problem with linear approximated objective

• All-or-nothing assignment: assign all demand to shortest paths to get 𝐲𝑘



Frank-Wolfe algorithm
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▪ At iteration 𝑘,

• Step 1: Find descent direction 𝐝𝑘 = 𝐲𝑘 − 𝐱𝑘

▪ Solve auxiliary problem with linear approximated objective

• All-or-nothing assignment: assign all demand to shortest paths to get 𝐲𝑘

• Step 2: Find optimal step size 𝛼

▪ Solve line search problem

• Bisection search: reduce half of search space per iteration

• Step 3: Update link flow 𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝐝𝑘

• Step 4: Check convergence

▪ Compute gap 𝑔 = 𝐭𝑘, −𝐝𝑘

▪ If 𝑔 ≤ 𝜀 for some gap threshold 𝜀, terminate and return 𝐱∗ = 𝐱𝑘



Quick note on MSA
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▪ At iteration 𝑘,

• Step 1: Find descent direction 𝐝𝑘 = 𝐲𝑘 − 𝐱𝑘

▪ Solve auxiliary problem with linear approximated objective

• All-or-nothing assignment: assign all demand to shortest paths to get 𝐲𝑘

• Step 2: Simple step size 𝛼 = 1/𝑘

• Step 3: Update link flow 𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝐝𝑘

▪ Exponential average 𝐱𝑘+1 = 𝐱𝑘 + 𝛼 𝐲𝑘 − 𝐱𝑘 = 1 − 𝛼 𝐱𝑘 + 𝛼𝐲𝑘

• Step 4: Check convergence

▪ Compute gap 𝑔 = 𝐭𝑘, −𝐝𝑘

▪ If 𝑔 ≤ 𝜀 for some gap threshold 𝜀, terminate and return 𝐱∗ = 𝐱𝑘
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Questions?



▪ Issue of FW algorithm

• All-or-nothing assignment solve a linear program

▪ Optimal solution is always at the corner

• Lead to to zig-zagging behaviors and thus slow convergence

Gradient projection
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min
𝐟

𝐜𝑘, 𝐟

𝑠. 𝑡. 𝐟 ∈ Ω𝐟
𝑥𝑘

𝑦𝑘

𝑥𝑘+1

𝑦𝑘+1

𝑥𝑘+2
𝑥𝑘

𝑥𝑘+1

𝑥𝑘+2
⇒



▪ Fixed-point formulation for path-based VI

• Find 𝐟∗ ∈ Ω𝐟 such that 𝐜(𝐟∗), 𝐟 − 𝐟∗ ≥ 0, ∀𝐟 ∈ Ω𝒇

• Find 𝐟∗ such that 𝐟∗ = ΠΩ𝐟
(𝐟∗ − 𝛼𝐜(𝐟∗))

▪ A simple projection algorithm

• At each iteration 𝑛,

▪ Step 1: Find descent direction 𝐝𝑛 = −𝐜 𝐟𝑛 = −∇𝑍(𝐟𝑛)

▪ Step 2: Compute candidate path flow 𝐲𝑛 = 𝐟𝑛 + 𝛼𝐝𝑛

▪ Step 3: Project back to feasible set 𝐟𝑛+1 = argmin
𝐟∈Ω𝐟

𝐟 − 𝐲𝑛
2

▪ Step 4: Convergence check

• Terminate if 𝐟𝑛+1 = 𝐟𝑛 and return 𝐟∗ = 𝐟𝑛

• Q: Which step is the most challenging?

Gradient projection
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▪ Main idea of GP algorithm

• Make the projection more efficient by modifying the subproblem for each OD

• Q: How to represent the constraints by 𝑓𝑘?

Gradient projection
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min
𝐟

𝑍 𝐟 =෍

𝑎

න
0

∑𝑘 𝛿𝑎𝑘𝑓𝑘

𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. Λ𝑤𝐟 = 𝑞𝑤

𝐟 ≥ 𝟎



▪ Main idea of GP algorithm

• Make the projection more efficient by modifying the subproblem for each OD

• OD index 𝑤 is dropped for simplicity

• Q: How to further simplify the constraints?

Gradient projection
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min
𝐟

𝑍 𝐟 =෍

𝑎

න
0

∑𝑘 𝛿𝑎𝑘𝑓𝑘

𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑘

𝑓𝑘 = 𝑞

𝑓𝑘 ≥ 0



▪ Main idea of GP algorithm

• Make the projection more efficient by modifying the subproblem for each OD

• Given current path flow 𝐟, define

▪ Basic path 𝑘∗: the shortest path

▪ Non-basic path set 𝑃𝑁𝐵

Gradient projection
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min
𝐟

𝑍 𝐟 =෍

𝑎

න
0

∑𝑘 𝛿𝑎𝑘𝑓𝑘

𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. ෍

𝑘

𝑓𝑘 = 𝑞

𝑓𝑘 ≥ 0

𝑓𝑘∗ = 𝑞 − ෍

𝑘∈𝑃𝑁𝐵

𝑓𝑘



▪ Main idea of GP algorithm

• Make the projection more efficient by modifying the subproblem for each OD

▪ Basic path 𝑘∗: the shortest path

▪ Non-basic path set 𝑃𝑁𝐵

• Q: How to implement the projection algorithm?

Gradient projection
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min
𝐟

መ𝑍 𝐟 =෍

𝑎

න
0

𝛿𝑎𝑘∗ 𝑞−∑𝑘∈𝑃𝑁𝐵
𝑓𝑘 +∑𝑘∈𝑃𝑁𝐵

𝛿𝑎𝑘𝑓𝑘

𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. 𝑓𝑘≥ 0



▪ At iteration 𝑛,

• Step 1: Find descent direction 𝐝𝑛 = −∇ መ𝑍 𝐟𝑛

where 𝑐𝑘 = ∑𝑎∈𝐴 𝑡𝑎(𝑥𝑎) 𝛿𝑎𝑘 is the current travel time of path 𝑘

Gradient projection
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𝜕 መ𝑍 𝐟

𝜕𝑓𝑘
= ෍

𝑎∈𝐴

𝑡𝑎(𝑥𝑎)
𝜕𝛿𝑎𝑘∗ 𝑞 −∑𝑘′∈𝑃𝑁𝐵 𝑓𝑘′

𝜕𝑓𝑘
+
𝜕∑𝑘′∈𝑃𝑁𝐵

𝛿𝑎𝑘′ 𝑓𝑘′

𝜕𝑓𝑘

= ෍

𝑎∈𝐴

𝑡𝑎(𝑥𝑎) (𝛿𝑎𝑘−𝛿𝑎𝑘∗) = 𝑐𝑘 − 𝑐𝑘∗



▪ At iteration 𝑛,

• Step 1: Find descent direction 𝐝𝑛 = −∇ መ𝑍 𝐟𝑛 = 𝑐𝑘∗
𝑛 𝟏 − 𝒄𝑛

• Step 2: Compute candidate path flow 𝐲𝑛 = 𝐟𝑛 + 𝛼𝐝𝑛

▪ Set step size 𝛼 based on quasi-Newton method

Gradient projection
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𝜕2 መ𝑍 𝐟

𝜕𝑓𝑘
2 =

𝜕

𝜕𝑓𝑘
𝑐𝑘 − 𝑐𝑘∗ =

𝜕

𝜕𝑓𝑘
෍

𝑎∈𝐴

𝑡𝑎 𝑥𝑎 𝛿𝑎𝑘 − 𝛿𝑎𝑘∗ = ෍

𝑎∈𝐴

𝑡𝑎
′ 𝑥𝑎 𝛿𝑎𝑘 − 𝛿𝑎𝑘∗

2

𝛼𝑘 =
𝜕2 መ𝑍 𝐟𝑛

𝜕𝑓𝑘
2

−1

⇒ 𝑦𝑘
𝑛 = 𝑓𝑘

𝑛 − 𝛼𝑘 𝑐𝑘
𝑛 − 𝑐𝑘∗

𝑛



▪ At iteration 𝑛,

• Step 1: Find descent direction 𝐝𝑛 = −∇ መ𝑍 𝐟𝑛 = 𝑐𝑘∗
𝑛 𝟏 − 𝒄𝑛

• Step 2: Compute candidate path flow 𝐲𝑛 = 𝐟𝑛 + 𝛼𝐝𝑛

▪ Set step size 𝛼 based on quasi-Newton method

• Step 3: Project back to feasible set 𝐟𝑛+1 = 𝐲𝑛 +

▪ Since demand constraint Λ𝐟 = 𝑞 has been taken into account, we only need

to project the possible negative flow

Gradient projection
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▪ At iteration 𝑛,

• Step 1: Find descent direction 𝐝𝑛 = −∇ መ𝑍 𝐟𝑛 = 𝑐𝑘∗
𝑛 𝟏 − 𝒄𝑛

• Step 2: Compute candidate path flow 𝐲𝑛 = 𝐟𝑛 + 𝛼𝐝𝑛

▪ Set step size 𝛼 based on quasi-Newton method

• Step 3: Project back to feasible set 𝐟𝑛+1 = 𝐲𝑛 + = max{𝟎, 𝐲𝑛}

• Step 4: Convergence check

▪ Terminate if 𝐟𝑛+1 = 𝐟𝑛 and return 𝐟∗ = 𝐟𝑛

Gradient projection
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Questions?
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