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=PFL  Review

= Definition of traffic assignment

 Assign traffic flows on a given transportation network according to certain
rules and satisfying certain constraints

= Routing principles
« User equilibrium (UE)
= choose route to min own travel time, i.e., selfish routing
* System optimum (SO)
= choose route to min total travel time, i.e., selfless routing

= Flow constraints
) path flow between each OD pair = OD demand
* ¥ path flow on each link = link flow

B CIVIL-477 Transportation network modeling & analysis
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Review

= Network G = (N, A)

Node
Origin-destination (OD)
Link

= Link flow

» Link cost

Path
= Path flow
= Path cost
= Min path cost

Link-path matrix

OD-path matrix
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t,€ER,, a€eA

k € P, withw =(r,s) e W
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Review
= Network G = (N, A)

Node
Origin-destination (OD)
Link

= Link flow

» Link cost

Path
» Path flow
» Path cost

= Min path cost

Link-path matrix
OD-path matrix

IEN

w=(rs)eEW, r,seN

a€A

Xqg ER,, a€A;x= (X )vqen e]RlJf1|

to €R,, a€A;t=(tg)yees € R

k € P, withw =(r,s) ewW
fi € Ry, k €Upew Byi £ = (fidvker € ]lel

P
¢k € Ry, k €Uy ey By € = (c)vkep € ]R|+|

. w
Uy ERL,weW;,u= (.UW)VWEW € RL— |

A - {5ak}a6A,kEP; X = Af,t - AC, C - ATt
A= {AWR}WEW,ICEP; q= A



=PFL  Review

= Traffic equilibrium condition
» Afeasible path flow f* such that vw € W,k € B,,,

fr (e (f7) — ) = 0, c(f*) = wy,

= Equivalent KKT conditions

* T . * — * * *
(f*)T(C* —AT[.l*) —0 C A U AN o0 VfL(f ,/1 ,‘U)

g f*ZO :C*—A*—AT‘U*
;i c—ATu*>0 o AF* = g
: A =q =0

f* >0 (AT =0

= Q: What is the corresponding optimization problem?

B CIVIL-477 Transportation n
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Classic formulation

= Path-based formulation
mfin Z(f)
s.t. Af=q
f>0

= Lagrangian LEAp) =Z(f) —ATf —

u'(Af —q)

= KKT conditions  VeL(f, A, 1) = VeZ(f) — A —ATu =0

« Q: What is Z(f) such that V¢Z(f) = ¢?

f*>0

A* = q
=0
(AT =0



=PFL  Classic formulation

= Path-based formulation

mfin Z(f)
s.t. Af=q
f>0
= Beckmann function
X
20 =) j to(u) du
7o
where X, = Z Sarfi

kep
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=PFL  Classic formulation

= Path-based formulation
mfin Z(f)
s.t. Af=q
f>0

Z(f) = z joxata(u) du

GZ(f) — d fxa ta(u) du _ 0 fxa ta(u) du axa _ 0 Zk akfk —
0fx _Z 0 f _Z 0 ox. of, —z ta(Xa)— 7 0f. Zta(xa)5ak—ck

acA acA acA acA

= Beckmann function

etwork modeling & analysis

« A compact form V;Z(f) = c

B CIVIL-477 Transportation n
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Classic formulation
= Path-based formulation
mfin Z(f)
s.t. Af=q
f>0

Z(f) = z joxata(u) du

* Only depend on link flows x
z(x) = z(Af) = Z(f)
* Q: What are V,z(x) and Viz(x) ?

= Beckmann function

10
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Classic formulation

= Path-based formulation

mfin Z(f)
s.t. Af=q
f>0

= Beckmann function
Xa
z(x) = ZJ t,(u) du
a 0
aZ(X) - a f(;ca ta(u) du == ta(xa)

0x, dx,

0z(x) 9 [ ta(w) dudx,
=) a5 = ) el ba =

acA acA

11

e Viz(x) =t

= VfZ(X) = C

Q: Another way to express this?
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Classic formulation

= Path-based formulation

mfin Z(f)
s.t. AMf=q
f>0
= Beckmann function
Xa
2(x) = z j £, (w) du
a 0
0z(x) 0 [y ta(w) du
gxa =— dx, = ta(xq) =3 VXZ(X) =t
0z(x) o[ t,(wdug u
T e m bt & Vpz(X) = Viz(Af)

a€A = ATVXZ(X) = ATt =C
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Classic formulation

= Path-based formulation
mfin z(X)
s.t. Af=q

Af =Xx
f>0

« Compact and straightforward

 Useful for analyzing the equilibrium properties

» Feasible for solving equilibrium in small networks but not large networks
= Number of paths increases exponentially with the network size

13
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Classic formulation

= Link-based formulation

xij
min z(x) = z f t;;(w) du
i (ijpea”
.
z Qrs L=T
s.t. zxirj—ijrizqir=< s . )
jeny  JeN; ~drs  L=S
. 0 otherwise
zx{,. =x;, V(i) €A
TER

x[;>0, V(,)EA

where N

= N, R: set of nodes/origins

= N7, N;": set of upstream/downstream nodes of node i
= A: set of links

VieN,r€R

14
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Classic formulation

= Link-based formulation

xij
min z(x) = z f t;;(w) du
i (ijpea”
.
z Qrs L=T
s.t. zxirj—ijrizqir=< s .
jeny  JeN; ~drs  L=S
. 0 otherwise
zx{,. =x;, V(i) €A
TER

xl-j > 0, V(l,]) €A

* Also known as Beckmann’s formulation
* Q: Does the formulation look familiar?

)

VieN,r€R

15
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Classic formulation

= Link-based formulation

xij
min z(x) = z f t;;(w) du
X
(ijpea”®
r r __ r __
JEN; JEN;
ro_
TER
xl-j > 0,

otherwise

( .
zqrs L=T
S
—Qrs I=Ss
. 0
v(i,j) EA
v(i,j) €A

« Also known as Beckmann’s formulation
» Decomposed by origin and based on node-wise flow conservation
* Q: How many decision variables are there?

)

VieN,r€R

16
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Classic formulation

= Link-based formulation

xij
min z(x) = z f t;;(w) du
X
(i,pea””
( -
z Qrs =T
s.t. zxirj—ijrizqir=< s ) VieN,r €R
jeny  Jen; s 175
. 0 otherwise
Sap=x;,  viped

TER
xl-j > 0, V(l,]) €A

« Also known as Beckmann’s formulation
» Decomposed by origin and based on node-wise flow conservation

- Fewer variables than the path-based formulation O(|N|3) vs 0(2V*)

17
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VI formulation

= Equivalent VI problem
* Find f* € Q; = {f|Af = q,f = 0} such that

(c(f),f—f*) >0, VfeQ

« Recall that c(f*) = ATt* = ATt(x"), then
(c(f), f — *) = (ATt(x*),f — £*) = (t(x*),A(f — ) = (t(x*),x — x*)

= Link-based VI problem
 Find x* € Q4 = {x|Af = x, Af = q,f = 0} such that

(t(x*),x —x*) =0, VX €

18
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VI formulation

= Link-based VI problem
» Find x* € Qy = {x|Af = x, Af = q,f = 0} such that

(t(x*),x—x") >0, VX €

More compact and connected to general equilibrium in game theory
Often used in the case when equivalent optimization problem does not exist
Useful for analyzing the equilibrium properties
Lead to a class of solution methods
= generalize Frank-Wolfe, Newton-type method, and gradient projection

19
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Properties of traffic equilibium

= Existence
« With and without equivalent optimization problem

= Uniqueness
* Link vs path flows

= Price of anarchy

21
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Existence of equilibrium

= Extreme value theorem

« Any continuous function over a compact feasible
set has global minimum and maximum

= compact = close + bounded
» close: contain all limit points
» bounded: norm is less than some finite value

f(x)

A

[><

v
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Existence of equilibrium

= Extreme value theorem N

: : : f(x
« Any continuous function over a compact feasible )
set has global minimum and maximum

= compact = close + bounded
» close: contain all limit points
» bounded: norm is less than some finite value

23

v

X
= Path-based formulation
mfin z(Af) Q: Does this problem satisfy the conditions?
O Continuous objective function
s.t. Af=q
O Compact feasible set
f>0 P

Note: z(x) denotes Beckmann function
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Existence of equilibrium

= Extreme value theorem N

: : : f(x
« Any continuous function over a compact feasible )
set has global minimum and maximum

= compact = close + bounded
» close: contain all limit points
» bounded: norm is less than some finite value

24

v

X
= Path-based formulation
mfin z(Af) Q: Does this problem satisfy the conditions?
17( Continuous objective function
s.t. Af=q = sum of continous functions (integrals)
£>0 E( Compact feasible set
— »= path flow f; €[0,q,],Vk € B,,w € W

Note: z(x) denotes Beckmann function



=L Existence of equilibrium

= Reformulation of VI as fixed-point problem
* VI problem
= Find x* € X such that (F(x*),x —x*) >0, Vx € X
 Fixed-point

» Find x* such that x* = G(x*) for some mapping G: X —- X

 If X is close and convex, then the equivalent fixed-point is

x*=G(x*) =y (x* — aF(x")) X
where 1 0
» [Iy: projection operator o
= o > 0: any step size 9 an(xO)‘&

f)

B CIVIL-477 Transportation network modeling & analysis
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Existence of equilibrium

= Reformulation of VI as fixed-point problem

* V| formulation
= Find x* € Q, = {x|Af = x, Af = q,f > 0} such that

(t(x"),x—x*) =0, VX € O

 Fixed-point formulation
= Find x* such that
* * *
X" =g (X" — at(x))
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Existence of equilibrium

= Brouwer’s fixed-point theorem

« Any continuous function from a nonempty
convex compact set to itself has a fixed point

X

<

f(x)

v

I

I

27
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Existence of equilibrium

= Brouwer’s fixed-point theorem

« Any continuous function from a nonempty
convex compact set to itself has a fixed point

= Fixed-point formulation
 Find x* such that x* = Iy (X" — at(x"))

= Q: Does this problem satisfy the conditions?

O Continuous operator

O Nonempty convex compact feasible set

X

f(x)

<

v

I

I
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Existence of equilibrium

= Brouwer’s fixed-point theorem

« Any continuous function from a nonempty
convex compact set to itself has a fixed point

= Fixed-point formulation
 Find x* such that x* = Iy (X" — at(x"))

= Q: Does this problem satisfy the conditions?

E( Continuous operator
= due to continuous t and convex
E( Nonempty convex compact feasible set
= physical meaning of Q,

X

<

f(x)

v

I

I
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=PFL  Uniqueness of equilibium

= Solution uniqueness of a constrained nonlinear optimization

mxln f )  If the feasible set X is convex and compact
* If objective function f(x) is strictly convex
s.t. x<X J & g

= Q: How to check if a twice differentiable function is convex, and
strictly convex?

B CIVIL-477 Transportation network modeling & analysis
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Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Path-based formulation

mfin z(Af) Q: Does this problem satisfy the conditions?
2 Strictly convex objective function
s.t. AMf=q .
f>0 E( Convex and compact feasible set

Note: z(x) denotes Beckmann function
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33

Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Convexity of Beckmann function

z(Af) = z jxata(u) du
~ Jo

« If link cost function t, is differentiable, then z(Af) is twice differentiable

9z (Af) 92z(Af) , ’z(f) ",
of, = ; ta(xq) Ogr = asz = Z ta(xq) 5§k, 3f0f = z ta(xq) 5ak5ak’

a€eAi a€cA
Vez(AF) = ATV, z(x) = VZz(Af) = Vg(Vyez(x))A = ATVZz(X)A
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Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Convexity of Beckmann function

z(Af) = z jxata(u) du
~ Jo

« If link cost function t, is strictly increasing, then t;, > 0
= V2z(x) is a diagonal matrix with all positive diagonal elements
= V2z(x) > 0 is positive definite

« Q: Does it imply z(Af) is strictly convex?

34
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Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Convexity of Beckmann function

z(Af) = z jxata(u) du
— Jo

« If link cost function t, is differentiable and strictly increasing, then
= z(x) is strictly convex with x because Hy = V2z(x) > 0
= z(Af) is only convex function with f because Hy = VZz(Af) = ATVZz(x)A > 0

35
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36

Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Uniqueness of traffic equilibrium
« Suppose link cost function t, is differentiable and strictly increasing

_ _ : : . 5
min Z(X) Q: Does this problem satisfy the conditions”
X d Strictly convex objective function
S.t. X€ QX u( Convex and compact feasible set
= x = Af linear combination of
convex set is also convex
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Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Uniqueness of traffic equilibrium
« Suppose link cost function t, is differentiable and strictly increasing

_ _ : . . 5

min Z(Af) Q: Does this problem satisfy the conditions”
f [ Strictly convex objective function

s.t. f€ -Qf ]E( Convex and compact feasible set

37
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Uniqueness of equilibrium

= Solution uniqueness of a constrained nonlinear optimization

mxln f(X) « If objective function f(x) is strictly convex
» If the feasible set X is convex and compact
s.t. x<X

= Uniqueness of traffic equilibrium
« Suppose link cost function t, is differentiable and strictly increasing
» There exists unique UE link flows x*
« Any path flows f* that satisfies x* = Af* is UE path flows

38
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Price of anarchy (PoA)

= Example of Braess paradox

TTys 4

PoA =
T Ty, T 3

TTyg = 40 * 200

= Q: What are main factors of POA?

10

20

40
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Price of anarchy (PoA)

= Main factors
« Demand
= =200, PoA = 4/3
= =500, POA=1

* Network topology
= Remove link C—B

 Link cost function
= Linear function t(x) = x/10, POA = 4/3
= Quadratic function t(x) = x? + x/10, POA=1

a1



=P*L  Price of anarchy (PoA) «

= Upper bound of PoA
« Seminal work by Prof. Tim Roughgarden

ing?
How Bad Is Selfish Routing? Tim Roughgarden

Columbia University
Verified email at cs.columbia.edu - Homepage

TIM ROUGHGARDEN AND EVA TARDOS
Algorithms Game Theory Networks

Cornell University, Ithaca, New York

Abstract. We consider the problem of routing traffic to optimize the performance of a congested
network. We are given a network, a rate of traffic between each pair of nodes, and a latency function TITLE CITED BY YEAR
for each edge specifying the time needed to traverse the edge given its congestion; the objective is to
route traffic such that the sum of all travel times—the total latency—is minimized.
In many settings, it may be expensive or impossible to regulate network traffic so as to implement
an optimal assi i i T Roughgarden
ptimal assignment of routes. In the absence of regulation by some central authority, we assume e
h h k & ffi the mini 1 h ilabl R h Kk Communications of the ACM 53 (7), 78-86
that each network user routes its traffic on the minimum-latency pathavailable to it, given the networ! SN NN NN NN NN AN NN NN NN AN AN NN NN N AN N ENNNEENNEEENEEEEEEEEEEEEEEEEEEEEEEEEN,
congestion caused by the other users. In general such a “selfishly motivated” assignment of traffic to How bad is selfish routing? 606 o002
paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased ; 9
T Roughgarden, E Tardos

network performance.
s 3 2 & J | of the ACM (JACM) 49 (2), 236-259
In this article, we quantify the degradation in network performance due to unregulated traffic. We el s ( )49(2)

Algorithmic game theory 5666 2010

prove that if the latency of each edge is a linear function of its congestion, then the total latency of the Selfish routing and the price of anarchy 1277 2005
routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject T Roughgarden

to the condition that all traffic must be routed). We also consider the more general setting in which MIT press

edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion.

Here, the total latency of the routes chosen by unregulated selfish network users may be arbitrarily The price of stability for network design with fair cost allocation 1201 2008

larger than the minimum possible total latency; however, we prove that it is no more than the total

3 % . : E Anshelevich, A Dasgupta, J Kleinberg, E Tardos, T Wexler, ...
latency incurred by optimally routing twice as much traffic.

SIAM Journal on Computing 38 (4), 1602-1623
Categories and Subject Descriptors: F.0 [Theory of Computation]: General . o
The price of anarchy is independent of the network topology 732 2002
T Roughgarden

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing ...

General Terms: Algorithms, Economics, Theory
Additional Key Words and Phrases: Braess’s Paradox, Nash equilibria, network flow, selfish routing

eEEEEEEEEEEEEEEEEEEEEEEEE,
‘sssssEEEEEEEEEEEEEEEEEEES

B CIVIL-477 Transportation network modeling & analysis
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Price of anarchy (PoA) )

= Upper bound of PoA

* For linear, non-negative, and non-decreasing link cost functions, the POA
is at most 4/3

* Proof. based on VI

At UE, we have
(t(x*),x —x*) =0, VX €

Then, for any feasible link flow x € Q,, we have
TTyg < t(x)Tx = t(x")Tx — t(x)Tx + t(x)Tx

= (tx") = t(®) x + t®)
With linear cost t,(x,) = Boq + B1aXq With By q, B14 = 0, the first term is further expanded as
* T * *
(t(X ) - t(X)) X = Zaxa(ﬁo,a + ﬁl,axa) - Za xa(ﬁo,a + ﬁl,axa) = Za ﬁl,a(xaxa - xczl)

1, . 1 . . 1
< Za ﬁl,az (xa)z < Zza xa(ﬁora + ,Bl'axa) = Z TTUE
Combining the above results, we conclude SO flows x5° € O,

TT,
UESiL
TTso ~ 3

1 3
TTyp <4 TTye + t(x59) x50 = 7Ty = (x5°) x50 > +TTus = PoA=
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Solution algorithms

= Link-based
» Method of successive average (MSA)

* Frank-Wolfe

= Path-based
« Gradient projection
* Maximum entropy (next lecture)

= Bush-based
» Algorithm B (beyond this course)

45
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Frank-Wolfe algorithm

= Typical idea of solving a constrained optimization problem
- At each iteration k, find a good descent direction d* to update
xF+l e xF 4+ qd¥

with some step size a

A X
min f(x) X
X
dO\_ x!
s.t. x<X 5 xix*
| f@o
= Key questions
« How to determine direction d*?

 How to set step a?

v

46
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Frank-Wolfe algorithm

= Main idea of FW algorithm
 How to determine direction d*?

= construct an auxiliary problem that is easier to solve, and use its optimal
solution y* to set d* = y* — x¥

* How to set step a?
= search the optimal step size a that leads to the min objective

a7
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Frank-Wolfe algorithm *

= At iteration k,
« Step 1: Find descent direction d* = y* — x*

= Solve auxiliary problem with linear approximated objective

mxin Z(x) = z(xk) + (Vz(xk),x — xk)

A

s.t. XE 'Qx Z(X)
Z(x)
which is equivalent to
: k « _ vk
min (t ,X—X ) 2(x¥)
s.t. x € (4

v
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Frank-Wolfe algorithm

= At iteration k,
- Step 1: Find descent direction d* = y* — x*

= Solve auxiliary problem with linear approximated objective

min (tk,x—xk) min (c"", f)
X = f
Ss.t. X €y s.t. f€ Qg

* Q: What is the physical meaning of this problem?

49
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Frank-Wolfe algorithm

= At iteration k,
- Step 1: Find descent direction d* = y* — x*

= Solve auxiliary problem with linear approximated objective
- All-or-nothing assignment: assign all demand to shortest paths to get y*

« Step 2: Find optimal step size «a
= Solve line search problem

m;n Z(a) = z(xk + adk)

s.t. 0<a<l1

* Q: How to efficiently solve this problem?



=PFL  Frank-Wolfe algorithm "

= At iteration k,
- Step 1: Find descent direction d* = y* — x*

= Solve auxiliary problem with linear approximated objective
- All-or-nothing assignment: assign all demand to shortest paths to get y*

» Step 2: Find optimal step size «a
= Solve line search problem

* Bisection search: reduce half of search
space per iteration

= Terminate when both conditions hold \
» reach max iteration or search space

e Voi(a) = (Viz(a),d*) = (t(a),d*) <0

v
)

0 1/4 1/2 1

B CIVIL-477 Transportation network modeling & analysis
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Frank-Wolfe algorithm

= At iteration k,
Step 1: Find descent direction d* = y* — x*

= Solve auxiliary problem with linear approximated objective
« All-or-nothing assignment: assign all demand to shortest paths to get y*

Step 2: Find optimal step size a
= Solve line search problem
» Bisection search: reduce half of search space per iteration

Step 3: Update link flow x**1 = x* + ad*

Step 4: Check convergence
= Compute gap g = (t¥, —d*)
= If g < & for some gap threshold ¢, terminate and return x* = x*
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Quick note on MSA

= At iteration k,
- Step 1: Find descent direction d* = y* — x*

= Solve auxiliary problem with linear approximated objective
« All-or-nothing assignment: assign all demand to shortest paths to get y*

» Step 2: Simple step size a = 1/k

« Step 3: Update link flow x**1 = x* + ad*
= Exponential average x*** = x* + a(y* — x¥) = (1 — a)x* + ay*

« Step 4: Check convergence
= Compute gap g = (t¥, —d¥)
= If g < & for some gap threshold ¢, terminate and return x* = x*
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Gradient projection

= |[ssue of FW algorithm
« All-or-nothing assignment solve a linear program

= Optimal solution is always at the corner

min (ck,f)

s.t. fe
Xk = xk/\/

« Lead to to zig-zagging behaviors and thus slow convergence
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Gradient projection

= Fixed-point formulation for path-based VI
* Find f* € Q¢ such that (c(f*),f — f*) > 0, Vf € Qf
» Find f* such that f* = g (f* — ac(f*))

= A simple projection algorithm
« At each iteration n,

= Step 1: Find descent direction d™ = —c(f") = —VZ(f")

= Step 2: Compute candidate path flow y" = f"* + ad™

= Step 3: Project back to feasible set f"*! = argmin [If — y™|
f

= Step 4. Convergence check

o Terminate if f**1 = f" and return f* = f"

* Q: Which step is the most challenging?
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Gradient projection

= Main idea of GP algorithm
« Make the projection more efficient by modifying the subproblem for each OD

Zk 6akfk
mfin Z(f) = ZJ ty,(u) du
=~ Jo

s.t. Ayf=qy
f>0

* Q: How to represent the constraints by f,?
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Gradient projection

= Main idea of GP algorithm
« Make the projection more efficient by modifying the subproblem for each OD

Zk 6akfk
mfin Z(f) = ZJ ty,(u) du
=~ Jo

S. L. ka=q
) fk20

* OD index w is dropped for simplicity

* Q: How to further simplify the constraints?
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Gradient projection

= Main idea of GP algorithm
« Make the projection more efficient by modifying the subproblem for each OD

Zk 6akfk
min Z(f) = ZJ ty,(u) du
f 0
a

S. L. ka =q
K

fk20

« Given current path flow f, define
= Basic path k*: the shortest path
» Non-basic path set Pyg

fir =q -~ z fr

kePnp
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Gradient projection

= Main idea of GP algorithm
« Make the projection more efficient by modifying the subproblem for each OD

= Basic path k*: the shortest path
= Non-basic path set Pyg

. 5ak*(q—2kepNB fk) +Xkepyp Sakfk
mfin Z(f) = ZJ t,(u) du
0

a

S.t. sz 0

* Q: How to implement the projection algorithm?
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Gradient projection

= At iteration n,
« Step 1: Find descent direction d® = —VZ(f™)

0Z(f) z ) [a5ak*(q ~ Yirepyy [1') N 0 X'epyg Sar’ i’

g o 0fk 0fk
= ) ta(ta) Bar—0ar) = i = cic
a€eA

where ¢, = Y eata(xa) 64k IS the current travel time of path k
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Gradient projection

= At iteration n,
« Step 1: Find descent direction d® = —VZ(f") = el —c"
« Step 2: Compute candidate path flow y"* = f* + ad™
= Set step size a based on quasi-Newton method
022(f) 0
ofic  Ofk

acA

922(fM)\
a=(T350) = k= Ak )
7

(ck —cp) = aifk [2 ta(x)(8ax — 5ak*)] = Z ta(xe) (Sqx — 8qi)?
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Gradient projection

= At iteration n,
« Step 1: Find descent direction d® = —VZ(f") = el —c"

« Step 2: Compute candidate path flow y"* = f* + ad™
= Set step size a based on quasi-Newton method
« Step 3: Project back to feasible set f**1 = [y"]

= Since demand constraint Af = g has been taken into account, we only need
to project the possible negative flow
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Gradient projection

= At iteration n,
« Step 1: Find descent direction d® = —VZ(f") = el —c"
« Step 2: Compute candidate path flow y"* = f* + ad™
» Set step size a based on quasi-Newton method
- Step 3: Project back to feasible set f**! = [y"], = max{0,y"}
» Step 4: Convergence check

= Terminate if f**1 = f" and return f* = f*
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