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= Linear programming
« Shortest path problem

= Convex optimization
» Shortest path problem
 Traffic equilibrium

= Variational inequality
« Traffic equilibrium
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Linear programming

= Minimize a linear objective function of decision variables
» Subject to linear equality and inequality constraints

= General formulation

T

mXin c'X = Objective: c€R", x€R"
s.t. A1x<Dby = |nequality constraints: 4, € R™*" b, € R™

A>x = b, = Equality constraints: A, € R™2X" b, € R™2



=PFL  Linear programming

= Example |: Shipping goods

« Optimize the shipping plan from n factories to m warehouses that minimizes
the total shipping cost

.. = D;:total demand of warehouse j
xij = 0, Vi, ]j

n m
min Z Z CijXij
Xij « -

1=1j=1
; S.t. Z Xij <3S, Yi = ¢ : shipping cost from factory i to
£ = warehouse j
S n =  x;;j . shipping amount from factory i to
: . warehouse j
< Z Xij > Dj, V] J '
E e~ = S, : total supply of factory i

= Q: How to rewrite the problem in the general form?
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Linear programming
= Example |: Shipping goods

« Optimize the transport plan from n factories to m warehouses that minimizes

the total shipping cost

m
S. t. inj <3S Vi

xj =20, Vij

eg,.n=2,m=3

Cost vector c = (Clll C12) -, C23)T € R6
Transport plan x = (x11, X132, ..., X23)T € R®

Incidence matrix A, = [A] € R5%6

-1
1 1 1 0 0 0
0 0 0 1 1 1
A=]-1 0 0O -1 0 0
0 -1 0 0 -1 0

o 0 -1 0 o0 -1
Demand/Supply/Feasibility vector
bl == (Sl, Sz, _Dl, _Dz, —D3, 0, ey O)T € Rll



=PFL  Linear programming

= Example II: Shortest path problem
« Send one unit of flow from origin r to destination s with minimum path cost

min z tijxij
xij

(@)
1 I=r
s.t. inj—Zxﬁ= —1 I=s ) VieN
jeN; JEN; 0 otherwise

»  x;: flow onlink (i, /)
» t;: costonlink (i, /)
= N;: upstream nodes of node i

= N;*: downstream nodes of node i
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= Q: How to rewrite the problem in the general form?



=PFL  Linear programming

= Example II: Shortest path problem
« Send one unit of flow from origin r to destination s with minimum path cost

min t'x
X
S.t. AzX = b2
x>0

=  x: vector of link flows
= t: vector of link costs -1 1 1
= A, node-link matrix

=  b,: vector of node net flows
» A =-1,b;=0 -
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= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x=0 y=0
e x,c € R *y,beR™

e A e R™*" b e R™ e A e R™" ceR"
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= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x>0 y =0
= Weak duality

* If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c7x < bTy

= Q: How to prove it?
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Linear programming

= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x>0 y =0
= Weak duality

* If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c7x < bTy

= Proof. Directly from feasible constraints
cIx < ATy)Tx =yT(Ax) <yTb =bTy

= Q: What is the implication of weak duality?

10



=PFL  Linear programming

= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x>0 y =0
= Weak duality

* If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c7x < bTy

= Boundness: Any feasible primal solution offers a lower bound of the dual problem,
and vice versa.

= Q: What if cTx = bTy?
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Linear programming

= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x>0 y =0
= Weak duality

* If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c7x < bTy

= Boundness: Any feasible primal solution offers a lower bound of the dual problem,
and vice versa.

= Optimality: xand y are both optimal solutions if c'x = bTy

= Q: What if there is no feasible primal/dual solution?

12
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Linear programming

= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x>0 y =0
= Weak duality

* If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c7x < bTy

= Boundness: Any feasible primal solution offers a lower bound of the dual problem,
and vice versa.

= Optimality: xand y are both optimal solutions if c'x = bTy
= Unboundedness: If the primal/dual problem is unbounded, then the dual/primal
problem is infeasible

13
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Linear programming

= Primal problem = Dual problem
max c’x min b’y
X y
s.t. AXx<b s.t. ATy>c
x>0 y =0

= Strong duality

« If the primal/dual problem has a finite optimal solution x*/y*, then the
dual/primal problem also has a finite optimal solution y*/x".

« Further, the optimal objective value is the same, i.e., cTx* = bTy*.
» Proof. Based on weak duality, but more complex

14
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Linear programming

= General rules of conversion

Primal
max
objective coeff
# vars
= constraint
< constraint
> constraint
> 0 var
< 0 var

unrestricted var

Dual
min
RHS value
# constraints
unrestricted var
> (0 var
< 0 var
> constraint
< constraint

= constraint

15
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Linear programming

= Dual of shortest path problem
* Primal

max —tix
X

S.t. A2X = b2

x>0

* Dual
min bly

s.t. Ay > —t

O O KL B

O KL O -

_ O P O
H

16
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Linear programming

= Dual of shortest path problem
* Primal

max —tix
X

S.t. A2X = b2

x>0

* Dual
max blu
u

s.t. Alu<t

» replacey = —u

O O KL B

O KL O -

_ O P O
H

17
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Linear programming

= Dual of shortest path problem

* Primal

e Dual

min z tl-jxl-j
xij

(@.))
1
S.t. z xij_ z le‘ = —1
JEN; JEN; 0

xij = 0, V(l,])

max U, — U
uj

S.t. ui—ujStij, VieN

* Q: What is the physical meaning of u;?

=71
[=Ss
otherwise

)

VieN

18



=PFL  Linear programming

= Dual of shortest path problem

* Primal
min Ztijxij
Xij =
(i,))
1 =71
S.t. inj—iji= —1 =S ) VieN
jeNn; JEN; 0 otherwise
xij =0, v(i,j)
e Dual

S.t. ui—ujStij, VieN

= when restricting ug = 0, uy. is the min cost from origin r to destination s
= Q: Does it remind you some shortest path algorithm?
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Convex optimization

= Minimize a convex objective function of decision variables
« Subject to convex constraints

= General formulation

mXin f(x)
s.t. gx)<0
h(x) =0

= Q: What are convex function and convex set?
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Convex optimization

= Convex function
« Afunction f: X € R™ - R is convex if Vx;,X, € X and A € [0, 1]

fAx1 + (1= Dxy) S Af(x) + (1 = Df(x2)

A

\

Af (%) + (1 = Df(x2)

f(Ax, + (1 = )x5)

v

X1 /1X1 + (1 - /1)x2 xz
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Convex optimization

= Convex function
« Afunction f: X € R™ - R is convex if Vx;,X, € X and A € [0, 1]

fAx1 + (1= Dxy) S Af(x) + (1 = Df(x2)

= Q: Which of the following are convex?

« f(x) =x

« f(x) = x?
* fG) =x°
¢ f(x) =e*

* f(x) =logx

23
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Convex optimization

= Convex function
« Afunction f: X € R™ - R is convex if Vx;,X, € X and A € [0, 1]

fAx1 + (1= Dxy) S Af(x) + (1 = Df(x2)

\ fx) 5
* flx) =x
© f(x) = x?
« f(x) =x°
* flx) =e”
e f(x) =logx

= Q: Is there an easier way to check convexity?

24
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Convex optimization

= Convex function
« Adifferentiable function f: X € R™ - R is convex iff Vx,y € X

foy) = fx + V' (y—x)

f(x)

where Vf(x) = [a;ix), ] € R" is the gradient of f at x

0Xp

A

\

f)
fl) + () —x)

f)

v
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Convex optimization

= Convex function
« Adifferentiable function f: X € R™ - R is convex iff Vx,y € X

f =&+ V'Y —x)

where Vf(x) = [a;g)’ ...,a;i:)] € R" is the gradient of f at x
\ f(x) 5
s f(x) =x
e f(x) = x?
e f(x) =x3
cf=e T )
. f(x) = lo gx ““““ - X ’.

- Q: What if f(x) is twice-differentiable?
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= Convex function

« Atwice-differentiable function f: X € R™ - R is convex iff Vx € X,
Hessian matrix

) P )

oxZ ' 0x,0x; 0x,0xp

W
o

sz(X) = : . :
’fx) 9°f(x) 9 (%)

| 0xy0x, 0X5,0%5 ox2 |

= Matrix A is called positive semidefinite, i.e., A > 0, if xTAx > 0,Vx = 0
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=PFL  Convex optimization

= Convex function

« Atwice-differentiable function f: X € R™ — R is convex iff Vx,y € X,
Hessian matrix V2f(x) > 0

\_ ]

« flx) =x = f"(x) =0

« flx) =x? = f"(x) =2

c flx) =x° = f"(x) = 6x
* flx) =e" = f(x) = e*
« f(x) =logx = e = -

x2

B CIVIL-477 Transportation network modeling & analysis
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Convex optimization

= Convex set
 Aset X € R" is convex iff vx;,x, € X and 4 € [0, 1],

Axg + (1= Df(xy) € X

= a convex combination of any two points in the set also belongs to the set

= Q: Are these convex sets? Why and why not?
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Convex optimization

= Convex set
 Aset X € R" is convex iff vx;,x, € X and 4 € [0, 1],

Axg + (1= Df(xy) € X

= a convex combination of any two points in the set also belongs to the set




=PFL  Convex optimization

= Convex set
 Aset X € R" is convex iff vx;,x, € X and 4 € [0, 1],

Ax, + (1= Df(xy) € X

= a convex combination of any two points in the set also belongs to the set

A A

xz xZ

> X4 > X4

X = {(xp x2)|x1 +x, < 1,x,%x, 2 0} X = {(x1; x2)|x1 +Xx; = 1,}

B CIVIL-477 Transportation network modeling & analysis

= Q: Are these convex sets? Why and why not?
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Convex optimization

= Minimize a convex objective function of decision variables
« Subject to convex constraints

= General formulation

min  f(x) min c’x
X
s.t. gx)<0 s.t. A1x<b,
h(X) =0 AZX = b2

= Q: Does linear programming belong to convex optimization?

33
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Convex optimization

= How to solve a convex optimization problem?
 Single variable x
« Differentiable objective f(x)

A

f(x)

min  f(x) \

s.t. x€eR

f(x9)

v

= Q: What is the optimal solution and its property?
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Convex optimization

= How to solve a convex optimization problem?

 Single variable x
« Differentiable objective f(x)

min  f(x)

s.t. x€eR

VFi(x*) =0

f(x)

\

f(x9)

A

v
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Convex optimization

= How to solve a convex optimization problem?

 Single variable x
« Differentiable objective f(x)

f(x)

min  f(x) \

s.t. x € [x,x]

f(x9)

A

v

= Q: Where is the optimal solution?

=
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Convex optimization

= How to solve a convex optimization problem?

 Single variable x
« Differentiable objective f(x)

min  f(x)

s.t. x € [x,x]

Vilx*) =0ifx* € [x,x]

f(x)

\

f(x9)

A

v

=
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Convex optimization

= How to solve a convex optimization problem?

 Single variable x
« Differentiable objective f(x)

min  f(x)

s.t. x € [x,x]

Vi(x°) =0

x*=xifx°>x

f(x)

\

f(x)
f&x)

A

v
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Convex optimization

= How to solve a convex optimization problem?

 Single variable x
« Differentiable objective f(x)

min  f(x)

s.t. x € [x,x]

Vi(x°) =0

x*=xifx*<x

f(x)

\

f(x9)
f(x°)

A

v

=I



=PFL  Convex optimization

= How to solve a convex optimization problem?
 Multi-variable x = (x, ..., x,)7
« Differentiable objective f(x)
xz A
9(x)
fx)
min f(x)
X

s.t. gx)<0

etwork modeling & analysis

VFIx*) =0ifg(x*) <0

v

B CIVIL-477 Transportation n



=PFL  Convex optimization

= How to solve a convex optimization problem?
 Multi-variable x = (x, ..., x,)7

« Differentiable objective f(x)
xz A

78 £

mXin f(x)
s.t. gx)<0

etwork modeling & analysis

v

= Q: What if x° s.t. Vf(x°) = 0 does not satisfy g(x°) <0

B CIVIL-477 Transportation n
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Convex optimization

= Lagrangian function
LA 0 =fx)+ATg(x) + uTh(x)

where A, u are called Lagrange multipliers (dual variables)

= Primal problem = Dual problem
min f(x) max F(A, u) = inf L(x, A, u)
X Au XEX
s.t. gx)<0 s.t. 1=20
h(x) =0

. Feasible set * Lower bound of primal problem

X ={x|gx) <0,h(x) =0} FAw < LxAw < f(x), VxeX

42
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Convex optimization

= Primal problem = Dual problem
min f(x) max F(A, u) = inf L(x, 4, 1)
X Au XEX
s.t. gx)<0 s.t. A=0
h(x) =0

= Weak duality

* Suppose f* and F* are the optimal values of primal and dual problems,
then F* < f*.

= Strong duality

« Suppose f* and F* are the optimal values of primal and dual problems,
then F* = f~.

= Q: When do weak and strong duality hold?

43
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Convex optimization

= Primal problem = Dual problem
min f(x) max F(A, u) = inf L(x, 4, 1)
X Au XEX
s.t. gx)<0 s.t. A=0
h(x) =0

= Weak duality (always true)
* Suppose f* and F* are the optimal values of primal and dual problems,
then F* < f*.
= Strong duality (require some constraint qualifications)

« Suppose f* and F* are the optimal values of primal and dual problems,
then F* = f~.

4
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Convex optimization

= Suppose strong duality holds, then

f(x*) = F(A*, u")
= inf L(x, A", %) = inf(f00 + )79 () + (W) Th(x)

lllllllllllllllllllllll

< F) + A)Tg() HE)Th(x?) i =0
= (A)'gx) =0

-----------------------

45
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Convex optimization

= Suppose strong duality holds, then

f(x*) = F(A*, u")
= inf L(x, A", %) = inf(f00 + )79 () + (W) Th(x)

< fx) 4+ @A)Tgx)
= Mg =0

= Primal and dual feasibility requires g(x*) < 0,2* > 0> (A)Tg(x*) <0

46
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= Suppose strong duality holds, then
F) = FQ )
= inf L(x A%, 1") = )i(rel)f((f ®) + ()79 + () ThX)
< fD)+ @A) gx)
= (AN'gx) =0
= Primal and dual feasibility requires g(x*) < 0,2* > 0> (A)Tg(x*) <0

= Complementary conditions
(2)7g(x") =0

etwork modeling & analysis

= Q: What does it imply?
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Convex optimization

= Suppose strong duality holds, then

f(x*) = F(A*, u")
= inf L(x, A", %) = inf(f00 + )79 () + (W) Th(x)

< D+ @A)Tg")
= Mg =0

= Primal and dual feasibility requires g(x*) < 0,2* > 0> (A)Tg(x*) <0
= Complementary conditions
(A)Tg(x*) =0
« If 2* > 0, then g(x*) = 0, and if g(x*) < 0,then A* =0
* Q: Does it remind you the traffic equilibrium conditions?

48
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Convex optimization

= Karush-Kuhn-Tucker (KKT) conditions
* Necessary conditions for the optimal solution to the primal and dual problem

« Suppose strong duality holds, then x* and A%, u* must satisfy

Primal feasibility g(x*) <0, h(x*) =0

Dual feasibility A*=>0

Complementary (AHTg(x*) =0

Stationarity V L(x*25u") =0

= Q: Why the last condition hold at optimal solutions?

49
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Convex optimization

= Karush-Kuhn-Tucker (KKT) conditions
* Necessary conditions for the optimal solution to the primal and dual problem

« Suppose strong duality holds, then x* and A%, u* must satisfy

Primal feasibility g(x*) <0, h(x*) =0

Dual feasibility A*=>0

Complementary (AHTg(x*) =0

Stationarity V L(x*25u") =0
Proof. Due to strong duality,
f&) = FQ,u7) = inf L(x, A", 1)
Hence, x* minimizes L(x, 1%, u*), an unconstrained optimization, which implies V,£(x*, 2*, u*) = 0.
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Convex optimization
= Karush-Kuhn-Tucker (KKT) conditions

* Necessary conditions for the optimal solution to the primal and dual problem
= also sufficient when f, g, h are all differentiable and convex

» Suppose strong duality holds, then x* and A*, u* must satisfy
=« Primal feasibility g(x*) <0, h(x*) =0
= Dual feasibility A*=>0

= Complementary (AHTg(x*) =0

= Stationarity V L(x*25u") =0

51
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Convex optimization

= KKT conditions of shortest path

min Z tl-jxij
xij

(i)
S.t. Z xij_ Z inzbiZ
jeN{ JEN;

xl-j = 0, V(l,])

« Lagrangian

1
-1
0

=71
I=Ss
otherwise

)

VieN

L(X,A,‘U) = Ztijxij+z/1ij(—xij) +Zﬂl<z xij_ z in —bl>
JEN;

(@) @)

i

. +

i

53
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Convex optimization

= KKT conditions of shortest path
« Stationarity

%= tij— Ayt —p; =0 = A=t +p — 1y
 Primal feasibility Mx =Db,x =0
« Dual feasibility ;=0
« Complementary Aijxij =0

= Q: How these conditions relate to the shortest path?

54
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Convex optimization

= KKT conditions of shortest path
« Stationarity

%= tij—Aij+ i — i =0 = A =t; + 1 — U
+ Primal feasibility Mx =b,x =0
« Dual feasibility ;=0
* Complementary Aijxij =0 forward Bellman

optimality condition

llllllllllllllllllllllllllllll

llllllllllllllllllllllllllllll

 u; as the shortest distance from origin to node i
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=PFL  Convex optimization

= KKT conditions vs traffic equilibrium
« Complementary conditions for deterministic UE

fi (cie — ) =0, vk e B,weW
Cr = U, vk € B,weEW

where

= fr, g equilibrium flow and cost of path k

= Uy, equilibrium min path cost between OD pair w

= P, W: set of path between OD pair w and set of OD pairs

B CIVIL-477 Transportation network modeling & analysis
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Convex optimization

= KKT conditions vs traffic equilibrium

« Complementary conditions for deterministic UE

T (c* = ATu*) =0
c*—A'u*>0
A" =q
f*>0
 KKT conditions
V L(x*A5u") =0
gx") <0
h(x*) =0
AF>0
A)Tgx) =0

f*: equilibrium path flow

c*: equilibrium path cost

1 equilibrium min path cost
A: OD-path incidence matrix
q: demand vector

Replace x by f, g(x) = —x, and
h(x) = q — Af
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Convex optimization

= KKT conditions vs traffic equilibrium
« Complementary conditions for deterministic UE

()T (c* = ATu") =0

c*—A'u*>0 = f*: equilibrium path flow
. = ¢*: equilibrium path cost
A =q = u*: equilibrium min path cost
. = A: path-OD incidence matrix
f* =0 = g demand vector
« KKT conditions
VeL(f5 25 u*) =0 = Replace x by f, g(x) = —x, and
h(x) = q — Af
f*>0 s Set VeL(F A5 uY) = ¢F — 1 — ATy
A" =q
AF=0

()T =0
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Convex optimization

= KKT conditions vs traffic equilibrium

« Complementary conditions for deterministic UE

()T (c* = ATu") =0
c*—ATu* >0
A" =q
f*>0
« KKT conditions

A" =q
AT=>0
AHTf*=0

f*: equilibrium path flow

c*: equilibrium path cost

1 equilibrium min path cost
A: path-OD incidence matrix
q: demand vector

Replace x by f, g(x) = —x, and
h(x) = q — Af

Set VeL(F*, A%, u*) = ¢* — A* — ATy

Combine 15t and 4" condition and
plug 15t condition into 5" condition
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Convex optimization

= KKT conditions vs traffic equilibrium
« Complementary conditions for deterministic UE

()T (c* = ATu") =0

c*—A'u*>0 = f*: equilibrium path flow
. = ¢*: equilibrium path cost
A =q = u*: equilibrium min path cost
. = A: path-OD incidence matrix
f* =0 = q: demand vector
« KKT conditions
c*—ATu >0 = Replace x by f, g(x) = —x, and
h(x) = q — Af
f*=0 = Set VeL(f", 1%, u?) = ¢* — A — ATy
. L ) »
Af* =q Combine 1t and 4™ condition and

plug 15t condition into 5" condition

(c* = ATu")Tf* =0

61
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Convex optimization

= KKT conditions vs traffic equilibrium
« Complementary conditions for deterministic UE

()T (c* = ATu") =0

c*—A'u*>0 = f*: equilibrium path flow
. = ¢*: equilibrium path cost
A =q = u*: equilibrium min path cost
. = A: path-OD incidence matrix
f* =0 = g demand vector

= Q: What does this equivalence imply?

« We can construct an optimization problem whose optimal solution must
satisfy the equilibrium conditions
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Variational inequality

= Consider a convex optimization problem

min f(x) = f(-): differentiable convex function
X with gradient F(x) = V£ (x)
s.t. x<X = X:convex set

= Equivalent variational inequality (V1) problem
* Find x* € X such that

(F(x*),x—x*) >0, vx € X

* Q: What does this equivalent imply?
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Variational inequality

= Consider a convex optimization problem

min f(x) = f(-): differentiable convex function
X with gradient F(x) = V£ (x)
s.t. x<X = X:convex set

= Equivalent variational inequality (V1) problem
* Find x* € X such that

(F(x*),x—x*) >0, vx € X

« All differentiable convex programs have corresponding VI formulations

* However, the reverse only holds under certain conditions
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Variational inequality

= VI conditions vs traffic equilibrium
* Find x* € X such that

(F(x*),x—x*) >0, vx € X

= Replace x by f, F(x) by c(f), and specify X = {f|Af = q,f = 0}
(c(f),f—f*) >0, VIeX
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Variational inequality

= VI conditions vs traffic equilibrium
* Find x* € X such that

(F(x*),x—x*) >0, vx € X

Replace x by f, F(x) by c(f), and specify X = {f|Af = q,f = 0}
(c(f),f—f*) >0, VIeX

= c(f)Tf = c(f)Tf, vie X

The inequality conditions implies that, given the equilibrium path cost
c(f*), the equilibrium path flows f* lead to the minimum total cost

Meanwhile, the total cost is minimized when all travelers take the
shortest paths

Hence, f* is the best response for all travelers, which implies equilibrium

* Q: Does the reverse also hold? How to prove it?
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