
04 Optimization Primer

CIVIL-477 Transportation network modeling & analysis

Spring 2025



▪ Linear programming

• Shortest path problem

▪ Convex optimization

• Shortest path problem

• Traffic equilibrium

▪ Variational inequality

• Traffic equilibrium
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▪ Minimize a linear objective function of decision variables

• Subject to linear equality and inequality constraints

▪ General formulation

Linear programming
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min
x

c𝑇x

𝑠. 𝑡. 𝐴1x ≤ b1

𝐴2x = b2

▪ Objective: c ∈ ℝ𝑛 , x ∈ ℝ𝑛

▪ Inequality constraints: 𝐴1 ∈ ℝ𝑚1×𝑛 , b1 ∈ ℝ𝑚1

▪ Equality constraints: 𝐴2 ∈ ℝ𝑚2×𝑛 , b2 ∈ ℝ𝑚2



▪ Example I: Shipping goods

• Optimize the shipping plan from 𝑛 factories to 𝑚 warehouses that minimizes
the total shipping cost

▪ Q: How to rewrite the problem in the general form?
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▪ 𝑐𝑖𝑗 : shipping cost from factory 𝑖 to

warehouse 𝑗

▪ 𝑥𝑖𝑗 : shipping amount from factory 𝑖 to

warehouse 𝑗

▪ 𝑆𝑖 : total supply of factory 𝑖

▪ 𝐷𝑗 : total demand of warehouse 𝑗

min
𝑥𝑖𝑗

෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑐𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗=1

𝑚

𝑥𝑖𝑗 ≤ 𝑆𝑖, ∀𝑖

෍

𝑖=1

𝑛

𝑥𝑖𝑗 ≥ 𝐷𝑗, ∀𝑗

𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗



▪ Example I: Shipping goods

• Optimize the transport plan from 𝑛 factories to 𝑚 warehouses that minimizes
the total shipping cost

Linear programming
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

5

min
𝑥𝑖𝑗

෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑐𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗=1

𝑚

𝑥𝑖𝑗 ≤ 𝑆𝑖, ∀𝑖

෍

𝑖=1

𝑛

𝑥𝑖𝑗 ≥ 𝐷𝑗, ∀𝑗

𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗

▪ Cost vector c = 𝑐11, 𝑐12, … , 𝑐23
𝑇 ∈ ℝ6

▪ Transport plan x = 𝑥11, 𝑥12, … , 𝑥23
𝑇 ∈ ℝ6

▪ Incidence matrix 𝐴1 =
Λ
−𝐼

∈ ℝ5×6

Λ =

1 1 1 0 0 0
0 0 0 1 1 1
−1 0 0 −1 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 −1

▪ Demand/Supply/Feasibility vector

b1 = 𝑆1, 𝑆2, −𝐷1, −𝐷2, −𝐷3, 0, … , 0 𝑇 ∈ ℝ11

e.g., 𝑛 = 2, 𝑚 = 3



▪ Example II: Shortest path problem

• Send one unit of flow from origin 𝑟 to destination 𝑠 with minimum path cost

▪ 𝑥𝑖𝑗: flow on link 𝑖, 𝑗

▪ 𝑡𝑖𝑗: cost on link 𝑖, 𝑗

▪ 𝑁𝑖
−: upstream nodes of node 𝑖

▪ 𝑁𝑖
+: downstream nodes of node 𝑖

▪ Q: How to rewrite the problem in the general form?
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min
𝑥𝑖𝑗

෍

𝑖,𝑗

𝑡𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖 = ቐ
1 𝑖 = 𝑟

−1 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗



▪ Example II: Shortest path problem

• Send one unit of flow from origin 𝑟 to destination 𝑠 with minimum path cost

▪ x: vector of link flows

▪ t: vector of link costs

▪ 𝐴2: node-link matrix

▪ b2: vector of node net flows

▪ 𝐴1 = −𝐼, b1 = 0
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min
x

t𝑇x

x ≥ 0

𝑠. 𝑡. 𝐴2x = b2

2

3

1 4

a1

a2

a4

a5

a3

1 1 0 0 0

-1 0 1 1 0

0 -1 -1 0 1

0 0 0 -1 -1

𝐴2 =

b2 = 1 0 0 -1
𝑇



▪ Primal problem

• x, c ∈ ℝ𝑛

• 𝐴 ∈ ℝ𝑚×𝑛 , b ∈ ℝ𝑚

Linear programming
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

8

max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

• y, b ∈ ℝ𝑚

• 𝐴 ∈ ℝ𝑚×𝑛 , c ∈ ℝ𝑛

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ Primal problem

▪ Weak duality

• If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c𝑇x ≤ b𝑇y

▪ Q: How to prove it?
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max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ Primal problem

▪ Weak duality

• If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c𝑇x ≤ b𝑇y

▪ Proof. Directly from feasible constraints

c𝑇x ≤ 𝐴𝑇y 𝑇x = y𝑇 Ax ≤ y𝑇b = b𝑇y

▪ Q: What is the implication of weak duality?
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max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ Primal problem

▪ Weak duality

• If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c𝑇x ≤ b𝑇y

▪ Boundness: Any feasible primal solution offers a lower bound of the dual problem,
and vice versa.

▪ Q: What if 𝒄𝑻𝒙 = 𝒃𝑻𝒚?
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max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ Primal problem

▪ Weak duality

• If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c𝑇x ≤ b𝑇y

▪ Boundness: Any feasible primal solution offers a lower bound of the dual problem,
and vice versa.

▪ Optimality: x and y are both optimal solutions if c𝑇x = b𝑇y

▪ Q: What if there is no feasible primal/dual solution?
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max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ Primal problem

▪ Weak duality

• If x is a feasible solution to the primal problem and y is a feasible solution to
the dual problem, then c𝑇x ≤ b𝑇y

▪ Boundness: Any feasible primal solution offers a lower bound of the dual problem,
and vice versa.

▪ Optimality: x and y are both optimal solutions if c𝑇x = b𝑇y

▪ Unboundedness: If the primal/dual problem is unbounded, then the dual/primal
problem is infeasible
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max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ Primal problem

▪ Strong duality

• If the primal/dual problem has a finite optimal solution x∗/y∗, then the
dual/primal problem also has a finite optimal solution y∗/x∗.

• Further, the optimal objective value is the same, i.e., c𝑇x∗ = b𝑇y∗.
▪ Proof. Based on weak duality, but more complex
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max
x

c𝑇x

𝑠. 𝑡. 𝐴x ≤ b

x ≥ 0

▪ Dual problem

min
y

b𝑇y

𝑠. 𝑡. 𝐴𝑇y ≥ c

y ≥ 0



▪ General rules of conversion
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Primal

⇔

Dual

max min

objective coeff RHS value

# vars # constraints

= constraint unrestricted var

≤ constraint ≥ 0 var

≥ constraint ≤ 0 var

≥ 0 var ≥ constraint

≤ 0 var ≤ constraint

unrestricted var = constraint



▪ Dual of shortest path problem

• Primal

• Dual
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max
x

−t𝑇x

x ≥ 0

𝑠. 𝑡. 𝐴2x = b2

2

3

1 4

a1

a2

a4

a5

a3

1 1 0 0 0

-1 0 1 1 0

0 -1 -1 0 1

0 0 0 -1 -1

𝐴2 =

b2 = 1 0 0 -1
𝑇

min
y

b2
𝑇y

𝑠. 𝑡. 𝐴2
𝑇y ≥ −𝑡



▪ Dual of shortest path problem

• Primal

• Dual

▪ replace y = −u
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max
x

−t𝑇x

x ≥ 0

𝑠. 𝑡. 𝐴2x = b2

2

3

1 4

a1

a2

a4

a5

a3

1 1 0 0 0

-1 0 1 1 0

0 -1 -1 0 1

0 0 0 -1 -1

𝐴2 =

b2 = 1 0 0 -1
𝑇

max
u

b2
𝑇u

𝑠. 𝑡. 𝐴2
𝑇u ≤ 𝑡



▪ Dual of shortest path problem

• Primal

• Dual

• Q: What is the physical meaning of 𝒖𝒊
∗?
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min
𝑥𝑖𝑗

෍

𝑖,𝑗

𝑡𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖 = ቐ
1 𝑖 = 𝑟

−1 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗

max
𝑢𝑖

𝑢𝑟 − 𝑢𝑠

𝑠. 𝑡. 𝑢𝑖 − 𝑢𝑗 ≤ 𝑡𝑖𝑗, ∀𝑖 ∈ 𝑁



▪ Dual of shortest path problem

• Primal

• Dual

▪ when restricting 𝑢𝑠 = 0, 𝑢𝑟
∗ is the min cost from origin 𝑟 to destination 𝑠

▪ Q: Does it remind you some shortest path algorithm?
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min
𝑥𝑖𝑗

෍

𝑖,𝑗

𝑡𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖 = ቐ
1 𝑖 = 𝑟

−1 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗

max
𝑢𝑖

𝑢𝑟 − 𝑢𝑠

𝑠. 𝑡. 𝑢𝑖 − 𝑢𝑗 ≤ 𝑡𝑖𝑗, ∀𝑖 ∈ 𝑁
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Questions?



▪ Minimize a convex objective function of decision variables

• Subject to convex constraints

▪ General formulation

▪ Q: What are convex function and convex set?
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min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

ℎ(x) = 0



▪ Convex function

• A function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex if ∀x1, x2 ∈ 𝑋 and 𝜆 ∈ [0, 1]

𝑓 𝜆x1 + 1 − 𝜆 x2 ≤ 𝜆𝑓 x1 + 1 − 𝜆 𝑓(x2)

Convex optimization
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𝑥1 𝑥2𝜆𝑥1 + 1 − 𝜆 𝑥2

𝑓 𝜆x1 + 1 − 𝜆 x2

𝜆𝑓 x1 + 1 − 𝜆 𝑓(x2)



▪ Convex function

• A function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex if ∀x1, x2 ∈ 𝑋 and 𝜆 ∈ [0, 1]

𝑓 𝜆x1 + 1 − 𝜆 x2 ≤ 𝜆𝑓 x1 + 1 − 𝜆 𝑓(x2)

▪ Q: Which of the following are convex?

• 𝑓 𝑥 = 𝑥

• 𝑓 𝑥 = 𝑥2

• 𝑓 𝑥 = 𝑥3

• 𝑓 𝑥 = 𝑒𝑥

• 𝑓 𝑥 = log 𝑥

Convex optimization
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▪ Convex function

• A function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex if ∀x1, x2 ∈ 𝑋 and 𝜆 ∈ [0, 1]

𝑓 𝜆x1 + 1 − 𝜆 x2 ≤ 𝜆𝑓 x1 + 1 − 𝜆 𝑓(x2)

• 𝑓 𝑥 = 𝑥

• 𝑓 𝑥 = 𝑥2

• 𝑓 𝑥 = 𝑥3

• 𝑓 𝑥 = 𝑒𝑥

• 𝑓 𝑥 = log 𝑥

▪ Q: Is there an easier way to check convexity?

Convex optimization
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▪ Convex function

• A differentiable function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex iff ∀x, y ∈ 𝑋

𝑓 y ≥ 𝑓 x + ∇𝑓 x 𝑇(y − x)

where ∇𝑓 x =
𝜕𝑓 x

𝜕x1
, … ,

𝜕𝑓 x

𝜕xn
∈ ℝ𝑛 is the gradient of 𝑓 at x

Convex optimization
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𝑦𝑥

𝑓(𝑥)

𝑓 𝑥 + 𝑓′(𝑥)(𝑦 − 𝑥)

𝑓 𝑦

∇𝑓(𝑥)



▪ Convex function

• A differentiable function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex iff ∀x, y ∈ 𝑋

𝑓 y ≥ 𝑓 x + ∇𝑓 x 𝑇(y − x)

where ∇𝑓 x =
𝜕𝑓 x

𝜕x1
, … ,

𝜕𝑓 x

𝜕xn
∈ ℝ𝑛 is the gradient of 𝑓 at x

• 𝑓 𝑥 = 𝑥

• 𝑓 𝑥 = 𝑥2

• 𝑓 𝑥 = 𝑥3

• 𝑓 𝑥 = 𝑒𝑥

• 𝑓 𝑥 = log 𝑥

▪ Q: What if 𝑓 𝑥 is twice-differentiable?

Convex optimization
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▪ Convex function

• A twice-differentiable function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex iff ∀x ∈ 𝑋, 
Hessian matrix 

∇2𝑓 x =

𝜕2𝑓 x

𝜕𝑥1
2 ,

𝜕2𝑓 x

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓 x

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑓 x

𝜕𝑥𝑛𝜕𝑥1
,
𝜕2𝑓 x

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓 x

𝜕𝑥𝑛
2

≽ 0

▪ Matrix 𝐴 is called positive semidefinite, i.e., 𝐴 ≽ 0, if x𝑇𝐴x ≥ 0, ∀x ≠ 0
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▪ Convex function

• A twice-differentiable function 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ is convex iff ∀x, y ∈ 𝑋, 
Hessian matrix ∇2𝑓 x ≽ 0

• 𝑓 𝑥 = 𝑥 ⇒ 𝑓′′ 𝑥 = 0

• 𝑓 𝑥 = 𝑥2 ⇒ 𝑓′′ 𝑥 = 2

• 𝑓 𝑥 = 𝑥3 ⇒ 𝑓′′ 𝑥 = 6𝑥

• 𝑓 𝑥 = 𝑒𝑥 ⇒ 𝑓′′ 𝑥 = 𝑒𝑥

• 𝑓 𝑥 = log 𝑥 ⇒ 𝑓′′ 𝑥 = −
1

𝑥2
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▪ Convex set

• A set 𝑋 ⊆ ℝ𝑛 is convex iff ∀x1, x2 ∈ 𝑋 and 𝜆 ∈ [0, 1],

𝜆x1 + 1 − 𝜆 𝑓 x2 ∈ 𝑋

▪ a convex combination of any two points in the set also belongs to the set

▪ Q: Are these convex sets? Why and why not?
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▪ Convex set

• A set 𝑋 ⊆ ℝ𝑛 is convex iff ∀x1, x2 ∈ 𝑋 and 𝜆 ∈ [0, 1],

𝜆x1 + 1 − 𝜆 𝑓 x2 ∈ 𝑋

▪ a convex combination of any two points in the set also belongs to the set
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x1

x2

x1

x2



▪ Convex set

• A set 𝑋 ⊆ ℝ𝑛 is convex iff ∀x1, x2 ∈ 𝑋 and 𝜆 ∈ [0, 1],

𝜆x1 + 1 − 𝜆 𝑓 x2 ∈ 𝑋

▪ a convex combination of any two points in the set also belongs to the set

▪ Q: Are these convex sets? Why and why not?
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𝑥1

𝑥2

𝑋 = 𝑥1, 𝑥2 𝑥1 + 𝑥2 ≤ 1, 𝑥1, 𝑥2 ≥ 0

𝑥1

𝑥2

𝑋 = 𝑥1, 𝑥2 𝑥1 + 𝑥2 = 1,
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Questions?



▪ Minimize a convex objective function of decision variables

• Subject to convex constraints

▪ General formulation

▪ Q: Does linear programming belong to convex optimization?
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min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

ℎ(x) = 0

min
x

c𝑇x

𝑠. 𝑡. 𝐴1x ≤ b1

𝐴2x = b2



▪ How to solve a convex optimization problem?

• Single variable 𝑥

• Differentiable objective 𝑓(𝑥)

▪ Q: What is the optimal solution and its property?
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min
𝑥

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ ℝ

𝑥∗ 𝑥

𝑓(𝑥)

𝑓(𝑥∗)



▪ How to solve a convex optimization problem?

• Single variable 𝑥

• Differentiable objective 𝑓(𝑥)
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min
𝑥

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ ℝ

𝑥∗ 𝑥

𝑓(𝑥)

𝑓(𝑥∗)∇𝑓 𝑥∗ = 0



▪ How to solve a convex optimization problem?

• Single variable 𝑥

• Differentiable objective 𝑓(𝑥)

▪ Q: Where is the optimal solution?
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min
𝑥

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ [𝑥, 𝑥]

𝑥∗ 𝑥

𝑓(𝑥)

𝑓(𝑥∗)

𝑥 𝑥



▪ How to solve a convex optimization problem?

• Single variable 𝑥

• Differentiable objective 𝑓(𝑥)
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min
𝑥

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ [𝑥, 𝑥]

𝑥∗ 𝑥

𝑓(𝑥)

𝑓(𝑥∗)

𝑥 𝑥

∇𝑓 𝑥∗ = 0 if 𝑥∗ ∈ [𝑥, 𝑥]



▪ How to solve a convex optimization problem?

• Single variable 𝑥

• Differentiable objective 𝑓(𝑥)
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min
𝑥

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ [𝑥, 𝑥]

𝑥∘ 𝑥

𝑓(𝑥)

𝑓(𝑥∗)

𝑥 𝑥

∇𝑓 𝑥∘ = 0

𝑥∗ = 𝑥 if 𝑥∘ ≥ 𝑥

𝑓(𝑥∘)



▪ How to solve a convex optimization problem?

• Single variable 𝑥

• Differentiable objective 𝑓(𝑥)
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min
𝑥

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ [𝑥, 𝑥]

𝑥∘ 𝑥

𝑓(𝑥)

𝑓(𝑥∘)

𝑥 𝑥

∇𝑓 𝑥∘ = 0

𝑥∗ = 𝑥 if 𝑥∘ ≤ 𝑥

𝑓(𝑥∗)



min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

▪ How to solve a convex optimization problem?

• Multi-variable x = 𝑥1, … , 𝑥𝑛
𝑇

• Differentiable objective 𝑓(x)
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𝑓(x)

𝑥1

𝑥2

∇𝑓 x∗ = 0 if 𝑔(x∗) ≤ 0

𝑔(x)



min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

▪ How to solve a convex optimization problem?

• Multi-variable x = 𝑥1, … , 𝑥𝑛
𝑇

• Differentiable objective 𝑓(x)

▪ Q: What if 𝒙∘ s.t. 𝜵𝒇 𝒙∘ = 𝟎 does not satisfy 𝒈(𝒙∘) ≤ 𝟎
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𝑥1

𝑥2

𝑓(x)
𝑔(x)



▪ Lagrangian function

ℒ x, 𝜆, 𝜇 = 𝑓 x + 𝜆𝑇𝑔 𝑥 + 𝜇𝑇ℎ(𝑥)

where 𝜆, 𝜇 are called Lagrange multipliers (dual variables)

▪ Primal problem

• Feasible set 

𝑋 = {x|𝑔 x ≤ 0, ℎ x = 0}
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min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

ℎ(x) = 0

▪ Dual problem

• Lower bound of primal problem 

ℱ 𝜆, 𝜇 ≤ ℒ x, 𝜆, 𝜇 ≤ 𝑓 x , ∀x ∈ 𝑋

max
𝜆,𝜇

ℱ 𝜆, 𝜇 = inf
x∈𝑋

ℒ x, 𝜆, 𝜇

𝑠. 𝑡. 𝜆 ≥ 0



▪ Primal problem

▪ Weak duality 

• Suppose 𝑓∗ and ℱ∗ are the optimal values of primal and dual problems, 
then ℱ∗ ≤ 𝑓∗.

▪ Strong duality 

• Suppose 𝑓∗ and ℱ∗ are the optimal values of primal and dual problems, 
then ℱ∗ = 𝑓∗.

▪ Q: When do weak and strong duality hold?
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min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

ℎ(x) = 0

▪ Dual problem

max
𝜆,𝜇

ℱ 𝜆, 𝜇 = inf
x∈𝑋

ℒ x, 𝜆, 𝜇

𝑠. 𝑡. 𝜆 ≥ 0



▪ Primal problem

▪ Weak duality (always true)

• Suppose 𝑓∗ and ℱ∗ are the optimal values of primal and dual problems, 
then ℱ∗ ≤ 𝑓∗.

▪ Strong duality (require some constraint qualifications)

• Suppose 𝑓∗ and ℱ∗ are the optimal values of primal and dual problems, 
then ℱ∗ = 𝑓∗.
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min
x

𝑓(x)

𝑠. 𝑡. 𝑔(x) ≤ 0

ℎ(x) = 0

▪ Dual problem

max
𝜆,𝜇

ℱ 𝜆, 𝜇 = inf
x∈𝑋

ℒ x, 𝜆, 𝜇

𝑠. 𝑡. 𝜆 ≥ 0



▪ Suppose strong duality holds, then
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𝑓 x∗ = ℱ 𝜆∗, 𝜇∗

≤ 𝑓 x∗ + 𝜆∗ 𝑇𝑔 x∗ + 𝜇∗ 𝑇ℎ x∗

= inf
x∈𝑋

ℒ x, 𝜆∗, 𝜇∗ = inf
x∈𝑋

𝑓 x + 𝜆∗ 𝑇𝑔 x + 𝜇∗ 𝑇ℎ x

= 0

⇒ 𝜆∗ 𝑇𝑔 x∗ ≥ 0



▪ Suppose strong duality holds, then

▪ Primal and dual feasibility requires 𝑔 x∗ ≤ 0, 𝜆∗ ≥ 0 ⇒ 𝜆∗ 𝑇𝑔 x∗ ≤ 0
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𝑓 x∗ = ℱ 𝜆∗, 𝜇∗

≤ 𝑓 x∗ + 𝜆∗ 𝑇𝑔 x∗

= inf
x∈𝑋

ℒ x, 𝜆∗, 𝜇∗ = inf
x∈𝑋

𝑓 x + 𝜆∗ 𝑇𝑔 x + 𝜇∗ 𝑇ℎ x

⇒ 𝜆∗ 𝑇𝑔 x∗ ≥ 0



▪ Suppose strong duality holds, then

▪ Primal and dual feasibility requires 𝑔 x∗ ≤ 0, 𝜆∗ ≥ 0 ⇒ 𝜆∗ 𝑇𝑔 x∗ ≤ 0

▪ Complementary conditions

𝜆∗ 𝑇𝑔 x∗ = 0

▪ Q: What does it imply?

Convex optimization
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

47

𝑓 x∗ = ℱ 𝜆∗, 𝜇∗

≤ 𝑓 x∗ + 𝜆∗ 𝑇𝑔 x∗

= inf
x∈𝑋

ℒ x, 𝜆∗, 𝜇∗ = inf
x∈𝑋

𝑓 x + 𝜆∗ 𝑇𝑔 x + 𝜇∗ 𝑇ℎ x

⇒ 𝜆∗ 𝑇𝑔 x∗ ≥ 0



▪ Suppose strong duality holds, then

▪ Primal and dual feasibility requires 𝑔 x∗ ≤ 0, 𝜆∗ ≥ 0 ⇒ 𝜆∗ 𝑇𝑔 x∗ ≤ 0

▪ Complementary conditions

𝜆∗ 𝑇𝑔 x∗ = 0

• If 𝜆∗ > 0, then 𝑔 x∗ = 0, and if 𝑔 x∗ < 0, then 𝜆∗ = 0

• Q: Does it remind you the traffic equilibrium conditions?
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𝑓 x∗ = ℱ 𝜆∗, 𝜇∗

≤ 𝑓 x∗ + 𝜆∗ 𝑇𝑔 x∗

= inf
x∈𝑋

ℒ x, 𝜆∗, 𝜇∗ = inf
x∈𝑋

𝑓 x + 𝜆∗ 𝑇𝑔 x + 𝜇∗ 𝑇ℎ x

⇒ 𝜆∗ 𝑇𝑔 x∗ ≥ 0



▪ Karush-Kuhn-Tucker (KKT) conditions

• Necessary conditions for the optimal solution to the primal and dual problem

• Suppose strong duality holds, then x∗ and 𝜆∗, 𝜇∗ must satisfy

▪ Primal feasibility

▪ Dual feasibility  

▪ Complementary 

▪ Stationarity

▪ Q: Why the last condition hold at optimal solutions?
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𝑔 x∗ ≤ 0, ℎ x∗ = 0

𝜆∗ ≥ 0

𝜆∗ 𝑇𝑔 x∗ = 0

∇xℒ x∗, 𝜆∗, 𝜇∗ = 0



▪ Karush-Kuhn-Tucker (KKT) conditions

• Necessary conditions for the optimal solution to the primal and dual problem

• Suppose strong duality holds, then x∗ and 𝜆∗, 𝜇∗ must satisfy

▪ Primal feasibility

▪ Dual feasibility  

▪ Complementary 

▪ Stationarity

Proof. Due to strong duality,  

𝑓 x∗ = ℱ 𝜆∗, 𝜇∗ = inf
x∈𝑋

ℒ x, 𝜆∗, 𝜇∗

Hence, x∗ minimizes ℒ x, 𝜆∗, 𝜇∗ , an unconstrained optimization, which implies ∇xℒ x∗, 𝜆∗, 𝜇∗ = 0.
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𝑔 x∗ ≤ 0, ℎ x∗ = 0

𝜆∗ ≥ 0

𝜆∗ 𝑇𝑔 x∗ = 0

∇xℒ x∗, 𝜆∗, 𝜇∗ = 0



▪ Karush-Kuhn-Tucker (KKT) conditions

• Necessary conditions for the optimal solution to the primal and dual problem

▪ also sufficient when 𝑓, 𝑔, ℎ are all differentiable and convex

• Suppose strong duality holds, then x∗ and 𝜆∗, 𝜇∗ must satisfy

▪ Primal feasibility

▪ Dual feasibility  

▪ Complementary 

▪ Stationarity
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𝑔 x∗ ≤ 0, ℎ x∗ = 0

𝜆∗ ≥ 0

𝜆∗ 𝑇𝑔 x∗ = 0

∇xℒ x∗, 𝜆∗, 𝜇∗ = 0
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Questions?



▪ KKT conditions of shortest path

• Lagrangian

Convex optimization
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

53

min
𝑥𝑖𝑗

෍

𝑖,𝑗

𝑡𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖 = 𝑏𝑖 = ቐ
1 𝑖 = 𝑟

−1 𝑖 = 𝑠
0 otherwise

, ∀𝑖 ∈ 𝑁

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗

ℒ x, 𝜆, 𝜇 = ෍

𝑖,𝑗

𝑡𝑖𝑗𝑥𝑖𝑗 +෍

(𝑖,𝑗)

𝜆𝑖𝑗(−𝑥𝑖𝑗) +෍

𝑖

𝜇𝑖 ෍

𝑗∈𝑁𝑖
+

𝑥𝑖𝑗 − ෍

𝑗∈𝑁𝑖
−

𝑥𝑗𝑖 − 𝑏𝑖



▪ KKT conditions of shortest path

• Stationarity 

• Primal feasibility 

• Dual feasibility

• Complementary

▪ Q: How these conditions relate to the shortest path?
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𝜕ℒ

𝜕𝑥𝑖𝑗
= 𝑡𝑖𝑗 − 𝜆𝑖𝑗 + 𝜇𝑖 − 𝜇𝑗 = 0 ⇒ 𝜆𝑖𝑗 = 𝑡𝑖𝑗 + 𝜇𝑖 − 𝜇𝑗

𝜆𝑖𝑗 ≥ 0

𝜆𝑖𝑗𝑥𝑖𝑗 = 0

𝑀x = b, x ≥ 0



▪ KKT conditions of shortest path

• Stationarity 

• Primal feasibility 

• Dual feasibility

• Complementary

▪ Link 𝑖, 𝑗 is on the shortest path ⇒ 𝑥𝑖𝑗 = 1 ⇒ 𝜆𝑖𝑗 = 0 ⇒ 𝜇𝑗 = 𝜇𝑖 + 𝑡𝑖𝑗
• 𝜇𝑖 as the shortest distance from origin to node 𝑖

Convex optimization
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𝜕ℒ

𝜕𝑥𝑖𝑗
= 𝑡𝑖𝑗 − 𝜆𝑖𝑗 + 𝜇𝑖 − 𝜇𝑗 = 0 ⇒ 𝜆𝑖𝑗 = 𝑡𝑖𝑗 + 𝜇𝑖 − 𝜇𝑗

𝜆𝑖𝑗 ≥ 0

𝜆𝑖𝑗𝑥𝑖𝑗 = 0

𝑀x = b, x ≥ 0

forward Bellman 

optimality condition 
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Questions?



▪ KKT conditions vs traffic equilibrium

• Complementary conditions for deterministic UE

𝑓𝑘
∗ 𝑐𝑘

∗ − 𝜇𝑤
∗ = 0, ∀𝑘 ∈ 𝑃𝑤, 𝑤 ∈ 𝑊

𝑐𝑘
∗ ≥ 𝜇𝑤

∗ , ∀𝑘 ∈ 𝑃𝑤, 𝑤 ∈ 𝑊

where

▪ 𝑓𝑘
∗, 𝑐𝑘

∗ : equilibrium flow and cost of path 𝑘

▪ 𝜇𝑤
∗ : equilibrium min path cost between OD pair 𝑤

▪ 𝑃𝑤, 𝑊: set of path between OD pair 𝑤 and set of OD pairs
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▪ KKT conditions vs traffic equilibrium

• Complementary conditions for deterministic UE

• KKT conditions

Convex optimization
C

IV
IL

-4
7

7
T

ra
n

s
p

o
rt

a
ti

o
n

n
e
tw

o
rk

m
o

d
e

lin
g

&
a

n
a

ly
s
is

58

(f ∗)𝑇 c∗ − Λ𝑇𝜇∗ = 0

c∗ − Λ𝑇𝜇∗ ≥ 0

Λf ∗ = q

f ∗ ≥ 0

▪ f ∗: equilibrium path flow

▪ c∗: equilibrium path cost
▪ 𝜇∗: equilibrium min path cost
▪ Λ: OD-path incidence matrix

▪ q: demand vector

∇xℒ x∗, 𝜆∗, 𝜇∗ = 0

𝑔 x∗ ≤ 0

ℎ x∗ = 0

𝜆∗ ≥ 0
𝜆∗ 𝑇𝑔 x∗ = 0

▪ Replace x by f, 𝑔 x = −x, and 

ℎ x = q − Λf



▪ KKT conditions vs traffic equilibrium

• Complementary conditions for deterministic UE

• KKT conditions
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(f ∗)𝑇 c∗ − Λ𝑇𝜇∗ = 0

c∗ − Λ𝑇𝜇∗ ≥ 0

Λf ∗ = q

f ∗ ≥ 0

▪ f ∗: equilibrium path flow

▪ c∗: equilibrium path cost
▪ 𝜇∗: equilibrium min path cost
▪ Λ: path-OD incidence matrix

▪ q: demand vector

∇fℒ f ∗, 𝜆∗, 𝜇∗ = 0

f ∗ ≥ 0

Λf ∗ = q

𝜆∗ ≥ 0
𝜆∗ 𝑇f ∗ = 0

▪ Replace x by f, 𝑔 x = −x, and 

ℎ x = q − Λf

▪ Set ∇fℒ f ∗, 𝜆∗, 𝜇∗ = 𝑐∗ − 𝜆∗ − Λ𝑇𝜇∗



▪ KKT conditions vs traffic equilibrium

• Complementary conditions for deterministic UE

• KKT conditions

Convex optimization
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(f ∗)𝑇 c∗ − Λ𝑇𝜇∗ = 0

c∗ − Λ𝑇𝜇∗ ≥ 0

Λf ∗ = q

f ∗ ≥ 0

▪ f ∗: equilibrium path flow

▪ c∗: equilibrium path cost
▪ 𝜇∗: equilibrium min path cost
▪ Λ: path-OD incidence matrix

▪ q: demand vector

𝑐∗ − Λ𝑇𝜇∗ = 𝜆∗

f ∗ ≥ 0

Λf ∗ = q

𝜆∗ ≥ 0
𝜆∗ 𝑇f ∗ = 0

▪ Replace x by f, 𝑔 x = −x, and 

ℎ x = q − Λf

▪ Set ∇fℒ f ∗, 𝜆∗, 𝜇∗ = 𝑐∗ − 𝜆∗ − Λ𝑇𝜇∗

▪ Combine 1st and 4th condition and 

plug 1st condition into 5th condition



▪ KKT conditions vs traffic equilibrium

• Complementary conditions for deterministic UE

• KKT conditions

Convex optimization
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(f ∗)𝑇 c∗ − Λ𝑇𝜇∗ = 0

c∗ − Λ𝑇𝜇∗ ≥ 0

Λf ∗ = q

f ∗ ≥ 0

▪ f ∗: equilibrium path flow

▪ c∗: equilibrium path cost
▪ 𝜇∗: equilibrium min path cost
▪ Λ: path-OD incidence matrix

▪ q: demand vector

𝑐∗ − Λ𝑇𝜇∗ ≥ 0

f ∗ ≥ 0

Λf ∗ = q

𝑐∗ − Λ𝑇𝜇∗ 𝑇f ∗ = 0

▪ Replace x by f, 𝑔 x = −x, and 

ℎ x = q − Λf

▪ Set ∇fℒ f ∗, 𝜆∗, 𝜇∗ = 𝑐∗ − 𝜆∗ − Λ𝑇𝜇∗

▪ Combine 1st and 4th condition and 

plug 1st condition into 5th condition



▪ KKT conditions vs traffic equilibrium

• Complementary conditions for deterministic UE

▪ Q: What does this equivalence imply?

• We can construct an optimization problem whose optimal solution must 
satisfy the equilibrium conditions

Convex optimization
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(f ∗)𝑇 c∗ − Λ𝑇𝜇∗ = 0

c∗ − Λ𝑇𝜇∗ ≥ 0

Λf ∗ = q

f ∗ ≥ 0

▪ f ∗: equilibrium path flow

▪ c∗: equilibrium path cost
▪ 𝜇∗: equilibrium min path cost
▪ Λ: path-OD incidence matrix

▪ q: demand vector
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Questions?



▪ Consider a convex optimization problem

▪ Equivalent variational inequality (VI) problem

• Find x∗ ∈ 𝑋 such that 

𝐹 x∗ , x − x∗ ≥ 0, ∀x ∈ 𝑋

• Q: What does this equivalent imply?

Variational inequality 
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

▪ 𝑓(⋅): differentiable convex function 

with gradient 𝐹 x = ∇𝑓(x)
▪ 𝑋: convex set



▪ Consider a convex optimization problem

▪ Equivalent variational inequality (VI) problem

• Find x∗ ∈ 𝑋 such that 

𝐹 x∗ , x − x∗ ≥ 0, ∀x ∈ 𝑋

• All differentiable convex programs have corresponding VI formulations

• However, the reverse only holds under certain conditions

Variational inequality 
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min
x

𝑓(x)

𝑠. 𝑡. x ≤ 𝑋

▪ 𝑓(⋅): differentiable convex function 

with gradient 𝐹 x = ∇𝑓(x)
▪ 𝑋: convex set



▪ VI conditions vs traffic equilibrium

• Find x∗ ∈ 𝑋 such that 

𝐹 x∗ , x − x∗ ≥ 0, ∀x ∈ 𝑋

▪ Replace x by f, 𝐹(x) by c(f), and specify 𝑋 = f Λf = q, f ≥ 0}

Variational inequality 
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c(f ∗), f − f ∗ ≥ 0, ∀f ∈ 𝑋



▪ VI conditions vs traffic equilibrium

• Find x∗ ∈ 𝑋 such that 

𝐹 x∗ , x − x∗ ≥ 0, ∀x ∈ 𝑋

▪ Replace x by f, 𝐹(x) by c(f), and specify 𝑋 = f Λf = q, f ≥ 0}

▪ The inequality conditions implies that, given the equilibrium path cost 
c(f ∗), the equilibrium path flows f ∗ lead to the minimum total cost

▪ Meanwhile, the total cost is minimized when all travelers take the 
shortest paths

▪ Hence, f ∗ is the best response for all travelers, which implies equilibrium

• Q: Does the reverse also hold? How to prove it?

Variational inequality 
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c(f ∗), f − f ∗ ≥ 0, ∀f ∈ 𝑋

⇒ c f ∗ 𝑇f ≥ c f ∗ 𝑇f ∗, ∀f ∈ 𝑋
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Questions?
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