

Spring 2025

04 Optimization Primer

CML-477 Transportation network modeling & analysis

- Linear programming
 - Shortest path problem
- Convex optimization
 - Shortest path problem
 - Traffic equilibrium
- Variational inequality
 - Traffic equilibrium

Linear programming

- Minimize a *linear* objective function of decision variables
 - Subject to *linear* equality and inequality constraints
- General formulation

$$\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A_1 \mathbf{x} \leq \mathbf{b}_1$$

$$A_2 \mathbf{x} = \mathbf{b}_2$$

- Objective: $\mathbf{c} \in \mathbb{R}^n, \mathbf{x} \in \mathbb{R}^n$
- Inequality constraints: $A_1 \in \mathbb{R}^{m_1 \times n}, \mathbf{b}_1 \in \mathbb{R}^{m_1}$
- Equality constraints: $A_2 \in \mathbb{R}^{m_2 \times n}, \mathbf{b}_2 \in \mathbb{R}^{m_2}$

Linear programming

- Example I: Shipping goods

- Optimize the shipping plan from n factories to m warehouses that minimizes the total shipping cost

$$\min_{x_{ij}} \sum_{i=1}^n \sum_{j=1}^m c_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^m x_{ij} \leq S_i, \quad \forall i$$

$$\sum_{i=1}^n x_{ij} \geq D_j, \quad \forall j$$

$$x_{ij} \geq 0, \quad \forall i, j$$

- c_{ij} : shipping cost from factory i to warehouse j
- x_{ij} : shipping amount from factory i to warehouse j
- S_i : total supply of factory i
- D_j : total demand of warehouse j

- **Q: How to rewrite the problem in the general form?**

Linear programming

- Example I: Shipping goods

- Optimize the transport plan from n factories to m warehouses that minimizes the total shipping cost

$$\min_{x_{ij}} \sum_{i=1}^n \sum_{j=1}^m c_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^m x_{ij} \leq S_i, \quad \forall i$$

$$\sum_{i=1}^n x_{ij} \geq D_j, \quad \forall j$$

$$x_{ij} \geq 0, \quad \forall i, j$$

e.g., $n = 2, m = 3$

- Cost vector $c = (c_{11}, c_{12}, \dots, c_{23})^T \in \mathbb{R}^6$
- Transport plan $x = (x_{11}, x_{12}, \dots, x_{23})^T \in \mathbb{R}^6$
- Incidence matrix $A_1 = \begin{bmatrix} \Lambda \\ -I \end{bmatrix} \in \mathbb{R}^{5 \times 6}$

$$\Lambda = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

- Demand/Supply/Feasibility vector $b_1 = (S_1, S_2, -D_1, -D_2, -D_3, 0, \dots, 0)^T \in \mathbb{R}^{11}$

Linear programming

- Example II: Shortest path problem
 - Send one unit of flow from origin r to destination s with minimum path cost

$$\min_{x_{ij}} \sum_{(i,j)} t_{ij} x_{ij}$$

$$s.t. \quad \sum_{j \in N_i^+} x_{ij} - \sum_{j \in N_i^-} x_{ji} = \begin{cases} 1 & i = r \\ -1 & i = s \\ 0 & \text{otherwise} \end{cases}, \quad \forall i \in N$$

$$x_{ij} \geq 0, \quad \forall (i,j)$$

- x_{ij} : flow on link (i,j)
- t_{ij} : cost on link (i,j)
- N_i^- : upstream nodes of node i
- N_i^+ : downstream nodes of node i

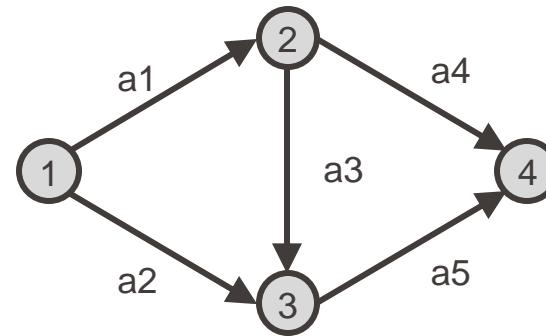
- **Q: How to rewrite the problem in the general form?**

Linear programming

- Example II: Shortest path problem
 - Send one unit of flow from origin r to destination s with minimum path cost

$$\begin{aligned}
 \min_x \quad & t^T x \\
 \text{s.t. } & A_2 x = b_2 \\
 & x \geq 0
 \end{aligned}$$

- x : vector of link flows
- t : vector of link costs
- A_2 : node-link matrix
- b_2 : vector of node net flows
- $A_1 = -I, b_1 = 0$



$$A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

$$b_2 = [1 \ 0 \ 0 \ -1]^T$$

Linear programming

- Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

- $\mathbf{x}, \mathbf{c} \in \mathbb{R}^n$
- $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$

- Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq 0$$

- $\mathbf{y}, \mathbf{b} \in \mathbb{R}^m$
- $A \in \mathbb{R}^{m \times n}, \mathbf{c} \in \mathbb{R}^n$

Linear programming

- Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

- Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq 0$$

- Weak duality

- If \mathbf{x} is a feasible solution to the primal problem and \mathbf{y} is a feasible solution to the dual problem, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$

- **Q: How to prove it?**

▪ Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

▪ Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq 0$$

▪ Weak duality

- If \mathbf{x} is a feasible solution to the primal problem and \mathbf{y} is a feasible solution to the dual problem, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$
 - Proof. Directly from feasible constraints

$$\mathbf{c}^T \mathbf{x} \leq (A^T \mathbf{y})^T \mathbf{x} = \mathbf{y}^T (A\mathbf{x}) \leq \mathbf{y}^T \mathbf{b} = \mathbf{b}^T \mathbf{y}$$

▪ ***Q: What is the implication of weak duality?***

▪ Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

▪ Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq 0$$

▪ Weak duality

- If \mathbf{x} is a feasible solution to the primal problem and \mathbf{y} is a feasible solution to the dual problem, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$
 - **Boundness:** Any feasible primal solution offers a lower bound of the dual problem, and vice versa.

▪ **Q: What if $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$?**

▪ Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

▪ Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq 0$$

▪ Weak duality

- If \mathbf{x} is a feasible solution to the primal problem and \mathbf{y} is a feasible solution to the dual problem, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$
 - **Boundness:** Any feasible primal solution offers a lower bound of the dual problem, and vice versa.
 - **Optimality:** \mathbf{x} and \mathbf{y} are both optimal solutions if $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$

▪ **Q: What if there is no feasible primal/dual solution?**

▪ Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq \mathbf{0}$$

▪ Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq \mathbf{0}$$

▪ Weak duality

- If \mathbf{x} is a feasible solution to the primal problem and \mathbf{y} is a feasible solution to the dual problem, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$
 - **Boundness:** Any feasible primal solution offers a lower bound of the dual problem, and vice versa.
 - **Optimality:** \mathbf{x} and \mathbf{y} are both optimal solutions if $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$
 - **Unboundedness:** If the primal/dual problem is unbounded, then the dual/primal problem is infeasible

▪ Primal problem

$$\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

▪ Dual problem

$$\min_{\mathbf{y}} \mathbf{b}^T \mathbf{y}$$

$$s.t. \quad A^T \mathbf{y} \geq \mathbf{c}$$

$$\mathbf{y} \geq 0$$

▪ Strong duality

- If the primal/dual problem has a finite optimal solution $\mathbf{x}^*/\mathbf{y}^*$, then the dual/primal problem also has a finite optimal solution $\mathbf{y}^*/\mathbf{x}^*$.
- Further, the optimal objective value is the same, i.e., $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$.
 - Proof. Based on weak duality, but more complex

▪ General rules of conversion

Primal	Dual
max	min
objective coeff	RHS value
# vars	# constraints
= constraint	unrestricted var
\leq constraint	≥ 0 var
\geq constraint	≤ 0 var
≥ 0 var	\geq constraint
≤ 0 var	\leq constraint
unrestricted var	= constraint

- Dual of shortest path problem
 - Primal

$$\max_x -t^T x$$

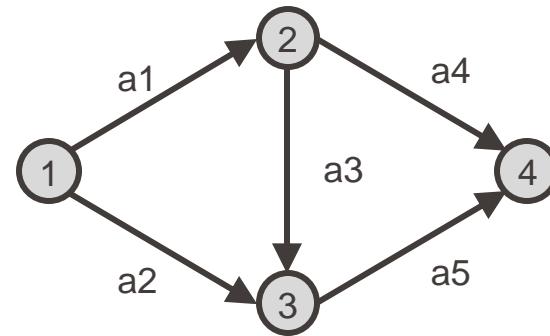
$$s.t. A_2 x = b_2$$

$$x \geq 0$$

- Dual

$$\min_y b_2^T y$$

$$s.t. A_2^T y \geq -t$$



$$A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

$$b_2 = [1 \ 0 \ 0 \ -1]^T$$

- Dual of shortest path problem
 - Primal

$$\max_x -t^T x$$

$$s.t. A_2 x = b_2$$

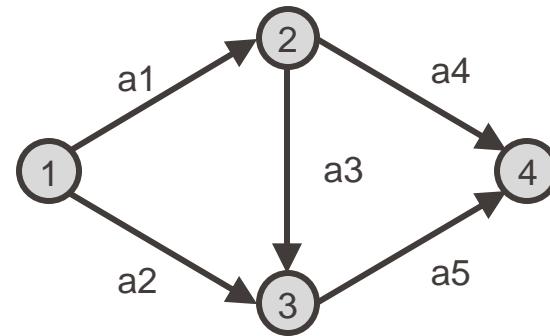
$$x \geq 0$$

- Dual

$$\max_u b_2^T u$$

$$s.t. A_2^T u \leq t$$

- replace $y = -u$



$$A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

$$b_2 = [1 \ 0 \ 0 \ -1]^T$$

- Dual of shortest path problem
 - Primal

$$\begin{aligned} \min_{x_{ij}} \quad & \sum_{(i,j)} t_{ij} x_{ij} \\ \text{s.t.} \quad & \sum_{j \in N_i^+} x_{ij} - \sum_{j \in N_i^-} x_{ji} = \begin{cases} 1 & i = r \\ -1 & i = s \\ 0 & \text{otherwise} \end{cases}, \quad \forall i \in N \\ & x_{ij} \geq 0, \quad \forall (i,j) \end{aligned}$$

- Dual

$$\begin{aligned} \max_{u_i} \quad & u_r - u_s \\ \text{s.t.} \quad & u_i - u_j \leq t_{ij}, \quad \forall i \in N \end{aligned}$$

- **Q: What is the physical meaning of u_i^* ?**

- Dual of shortest path problem
 - Primal

$$\begin{aligned}
 & \min_{x_{ij}} \sum_{(i,j)} t_{ij} x_{ij} \\
 \text{s.t.} \quad & \sum_{j \in N_i^+} x_{ij} - \sum_{j \in N_i^-} x_{ji} = \begin{cases} 1 & i = r \\ -1 & i = s \\ 0 & \text{otherwise} \end{cases}, \quad \forall i \in N \\
 & x_{ij} \geq 0, \quad \forall (i,j)
 \end{aligned}$$

- Dual

$$\begin{aligned}
 & \max_{u_i} u_r - u_s \\
 \text{s.t.} \quad & u_i - u_j \leq t_{ij}, \quad \forall i \in N
 \end{aligned}$$

- when restricting $u_s = 0$, u_r^* is the min cost from origin r to destination s
- **Q: Does it remind you some shortest path algorithm?**

Questions?

- Minimize a **convex** objective function of decision variables
 - Subject to **convex** constraints
- General formulation

$$\min_x f(x)$$

$$s.t. \quad g(x) \leq 0$$

$$h(x) = 0$$

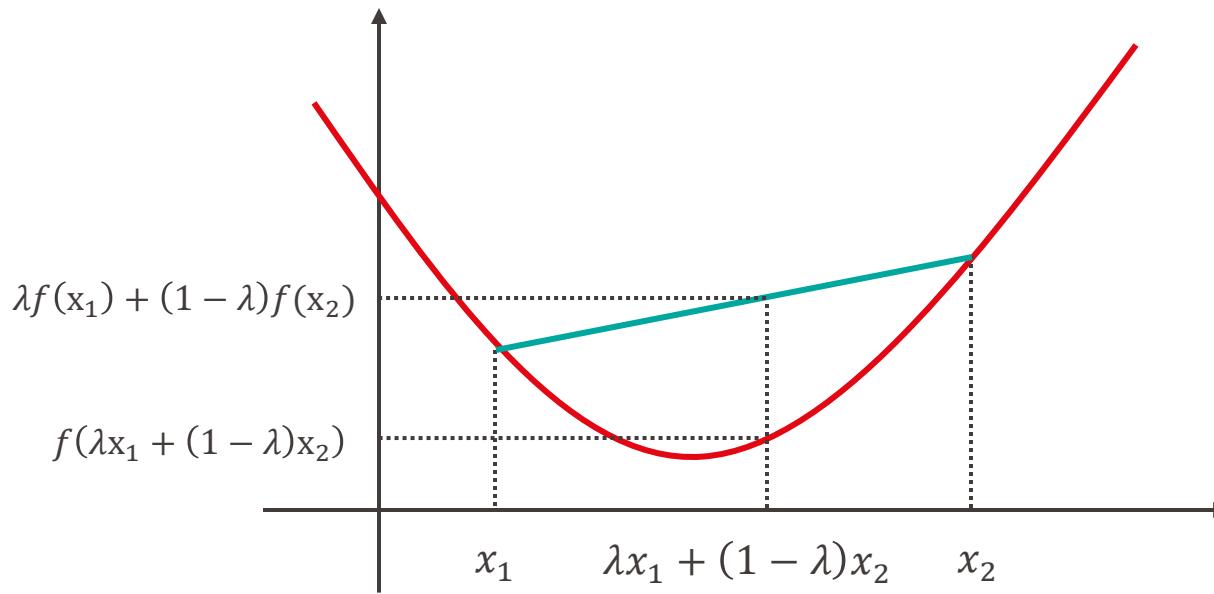
- **Q: What are convex function and convex set?**

Convex optimization

- Convex function

- A function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\forall x_1, x_2 \in X$ and $\lambda \in [0, 1]$

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$



▪ Convex function

- A function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\forall x_1, x_2 \in X$ and $\lambda \in [0, 1]$

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

▪ ***Q: Which of the following are convex?***

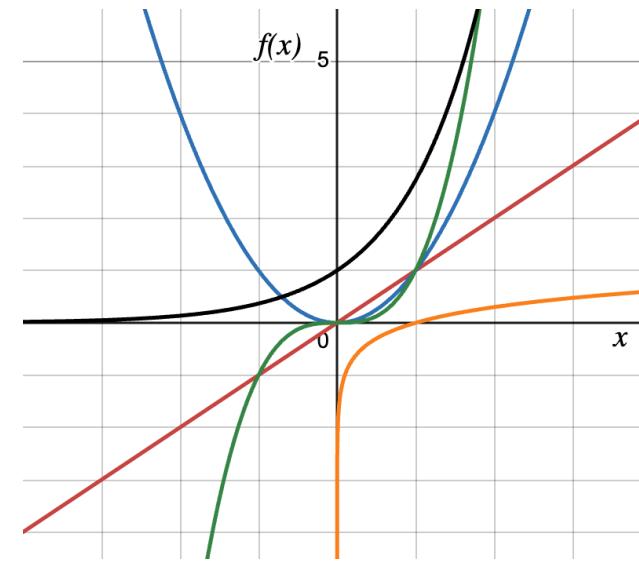
- $f(x) = x$
- $f(x) = x^2$
- $f(x) = x^3$
- $f(x) = e^x$
- $f(x) = \log x$

▪ Convex function

- A function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\forall x_1, x_2 \in X$ and $\lambda \in [0, 1]$

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

- $f(x) = x$
- $f(x) = x^2$
- $f(x) = x^3$
- $f(x) = e^x$
- $f(x) = \log x$



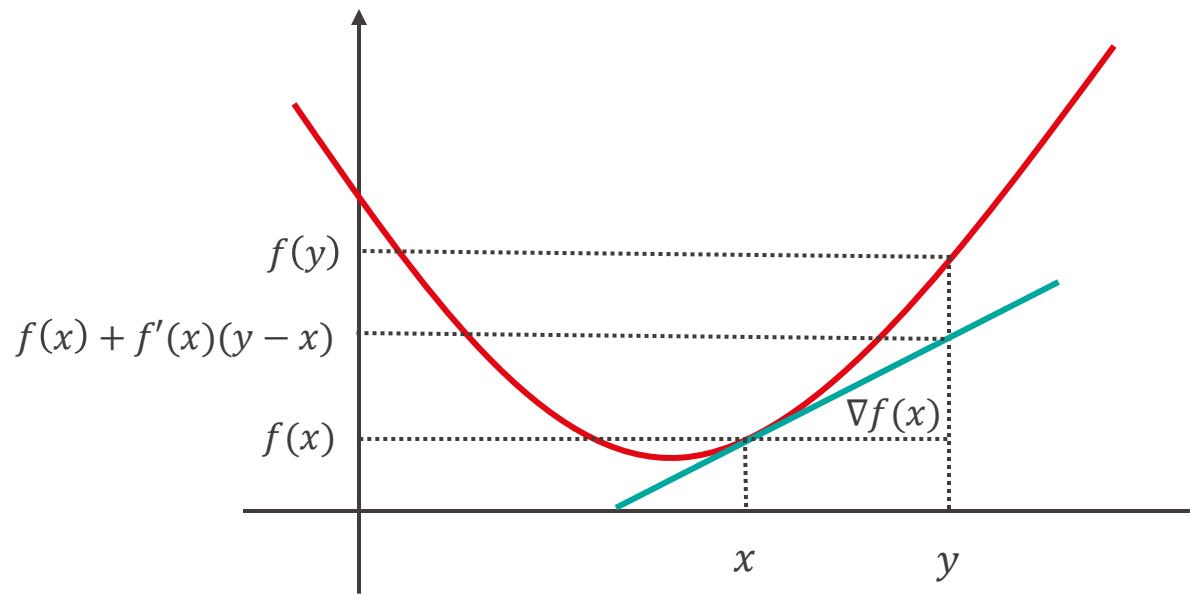
▪ **Q: Is there an easier way to check convexity?**

▪ Convex function

- A **differentiable** function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex iff $\forall x, y \in X$

$$f(y) \geq f(x) + \nabla f(x)^T(y - x)$$

where $\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n} \right] \in \mathbb{R}^n$ is the gradient of f at x



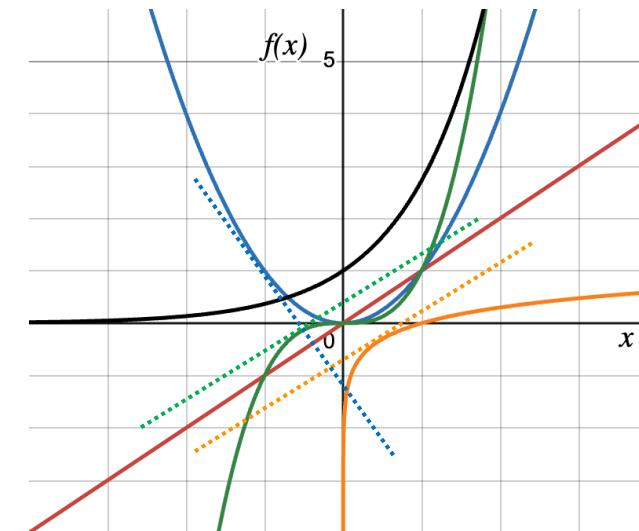
▪ Convex function

- A **differentiable** function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex iff $\forall x, y \in X$

$$f(y) \geq f(x) + \nabla f(x)^T(y - x)$$

where $\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n} \right] \in \mathbb{R}^n$ is the gradient of f at x

- $f(x) = x$
- $f(x) = x^2$
- $f(x) = x^3$
- $f(x) = e^x$
- $f(x) = \log x$

▪ **Q: What if $f(x)$ is twice-differentiable?**

▪ Convex function

- A **twice-differentiable** function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex iff $\forall x \in X$, Hessian matrix

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2}, \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1}, \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix} \geq 0$$

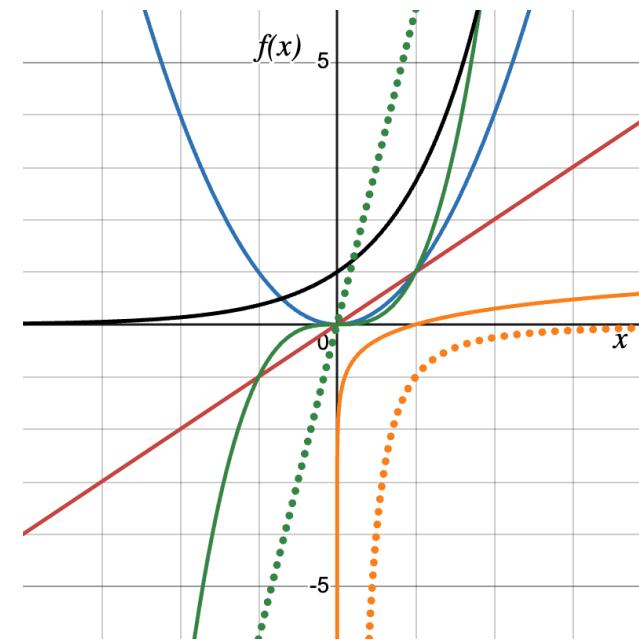
- Matrix A is called **positive semidefinite**, i.e., $A \geq 0$, if $x^T A x \geq 0, \forall x \neq 0$

Convex optimization

- Convex function

- A **twice-differentiable** function $f: X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is convex iff $\forall x, y \in X$, Hessian matrix $\nabla^2 f(x) \geq 0$

- $f(x) = x \Rightarrow f''(x) = 0$
- $f(x) = x^2 \Rightarrow f''(x) = 2$
- $f(x) = x^3 \Rightarrow f''(x) = 6x$
- $f(x) = e^x \Rightarrow f''(x) = e^x$
- $f(x) = \log x \Rightarrow f''(x) = -\frac{1}{x^2}$

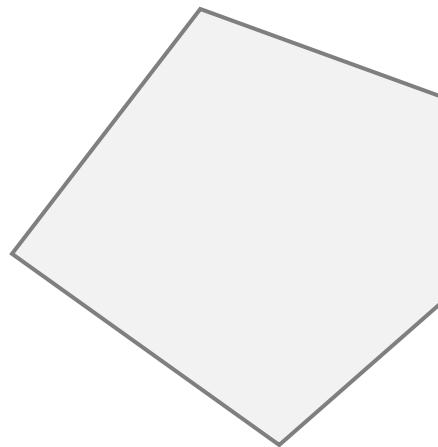
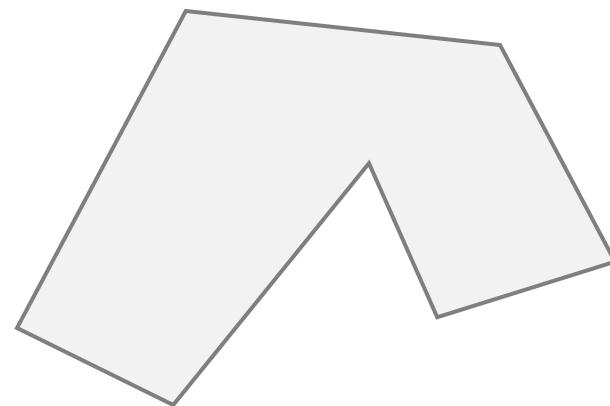


▪ Convex set

- A set $X \subseteq \mathbb{R}^n$ is convex iff $\forall x_1, x_2 \in X$ and $\lambda \in [0, 1]$,

$$\lambda x_1 + (1 - \lambda)f(x_2) \in X$$

- a **convex combination** of any two points in the set also belongs to the set



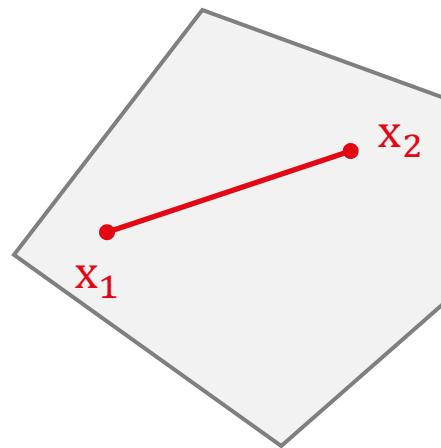
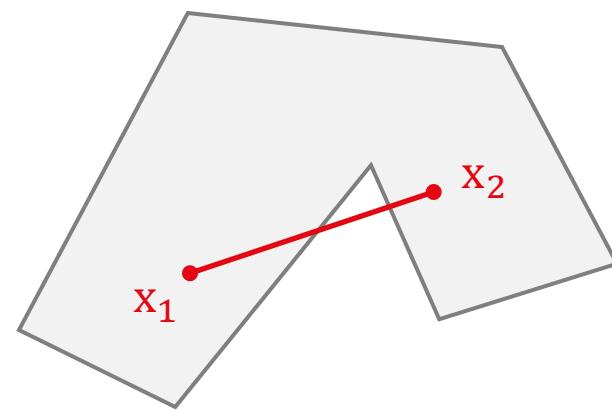
- **Q: Are these convex sets? Why and why not?**

▪ Convex set

- A set $X \subseteq \mathbb{R}^n$ is convex iff $\forall x_1, x_2 \in X$ and $\lambda \in [0, 1]$,

$$\lambda x_1 + (1 - \lambda)f(x_2) \in X$$

- a **convex combination** of any two points in the set also belongs to the set



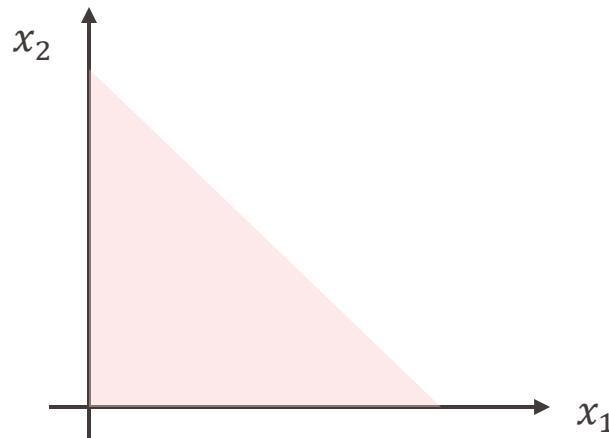
Convex optimization

- Convex set

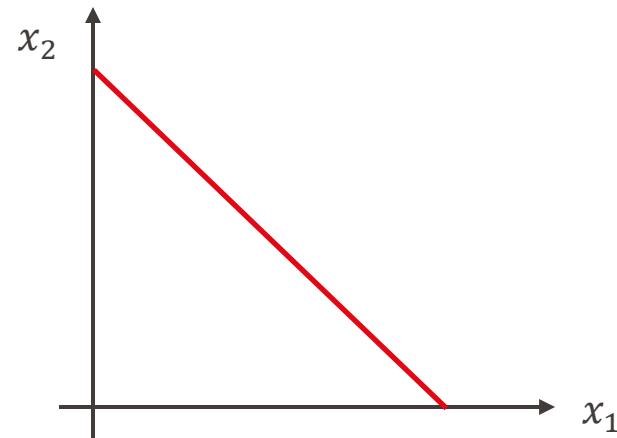
- A set $X \subseteq \mathbb{R}^n$ is convex iff $\forall x_1, x_2 \in X$ and $\lambda \in [0, 1]$,

$$\lambda x_1 + (1 - \lambda)f(x_2) \in X$$

- a **convex combination** of any two points in the set also belongs to the set



$$X = \{(x_1, x_2) | x_1 + x_2 \leq 1, x_1, x_2 \geq 0\}$$



$$X = \{(x_1, x_2) | x_1 + x_2 = 1, \}$$

- **Q: Are these convex sets? Why and why not?**

Questions?

- Minimize a **convex** objective function of decision variables
 - Subject to **convex** constraints
- General formulation

$$\min_{\mathbf{x}} f(\mathbf{x})$$

$$s.t. \quad g(\mathbf{x}) \leq 0$$

$$h(\mathbf{x}) = 0$$

$$\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad A_1 \mathbf{x} \leq \mathbf{b}_1$$

$$A_2 \mathbf{x} = \mathbf{b}_2$$

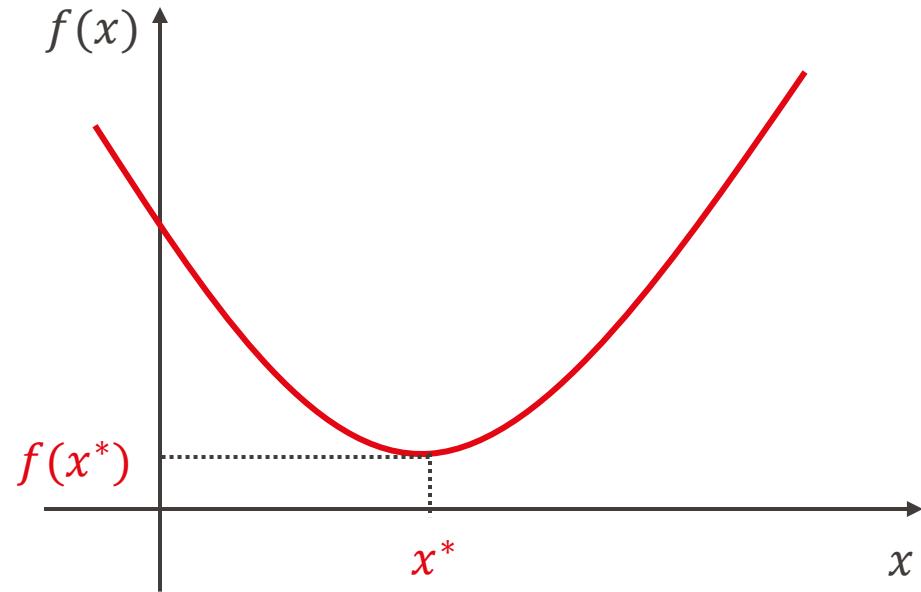
- **Q: Does linear programming belong to convex optimization?**

Convex optimization

- How to solve a convex optimization problem?

- Single variable x
 - Differentiable objective $f(x)$

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s.t.} \quad & x \in \mathbb{R} \end{aligned}$$



- **Q: What is the optimal solution and its property?**

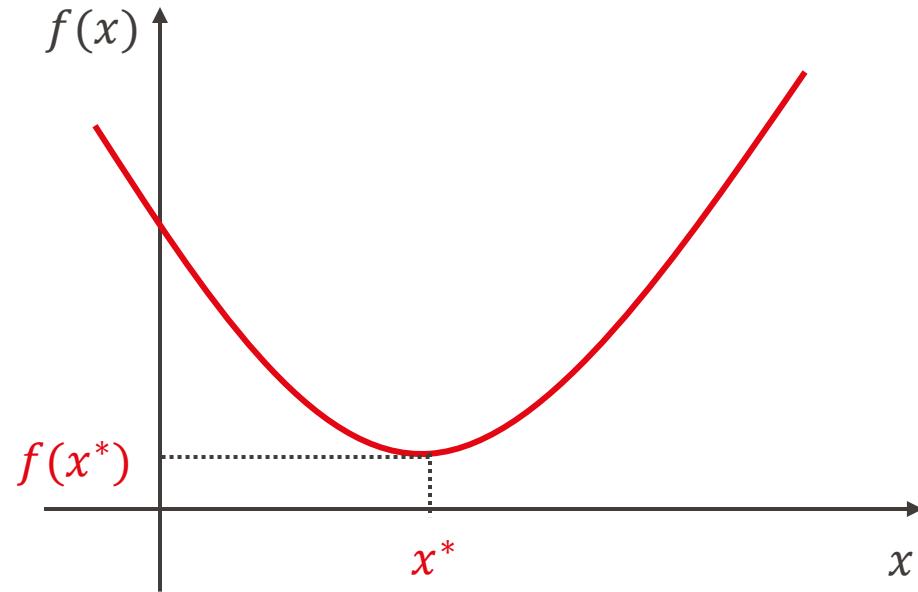
- How to solve a convex optimization problem?

- Single variable x
 - Differentiable objective $f(x)$

$$\min_x f(x)$$

$$s.t. \quad x \in \mathbb{R}$$

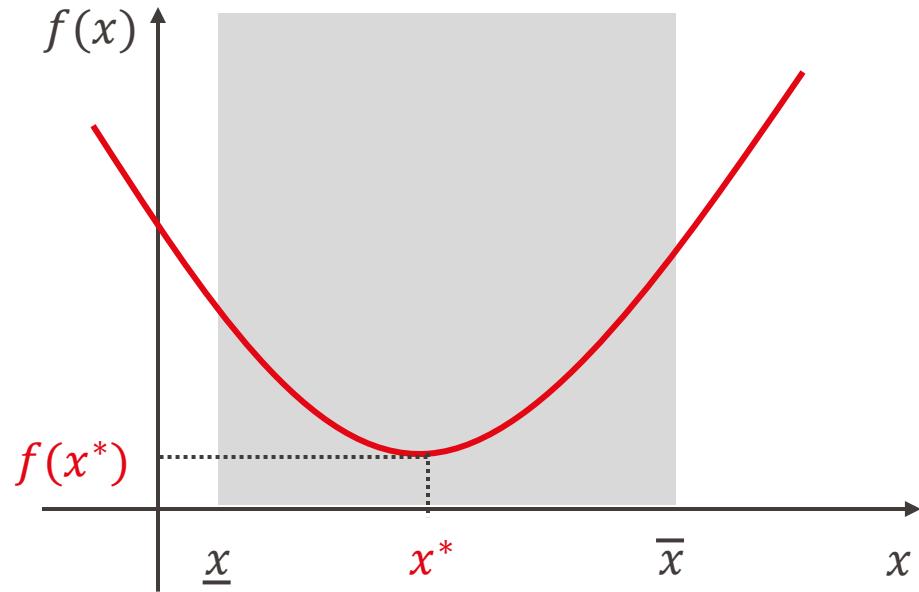
$$\nabla f(x^*) = 0$$



Convex optimization

- How to solve a convex optimization problem?
 - Single variable x
 - Differentiable objective $f(x)$

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s.t.} \quad & x \in [\underline{x}, \bar{x}] \end{aligned}$$



- **Q: Where is the optimal solution?**

Convex optimization

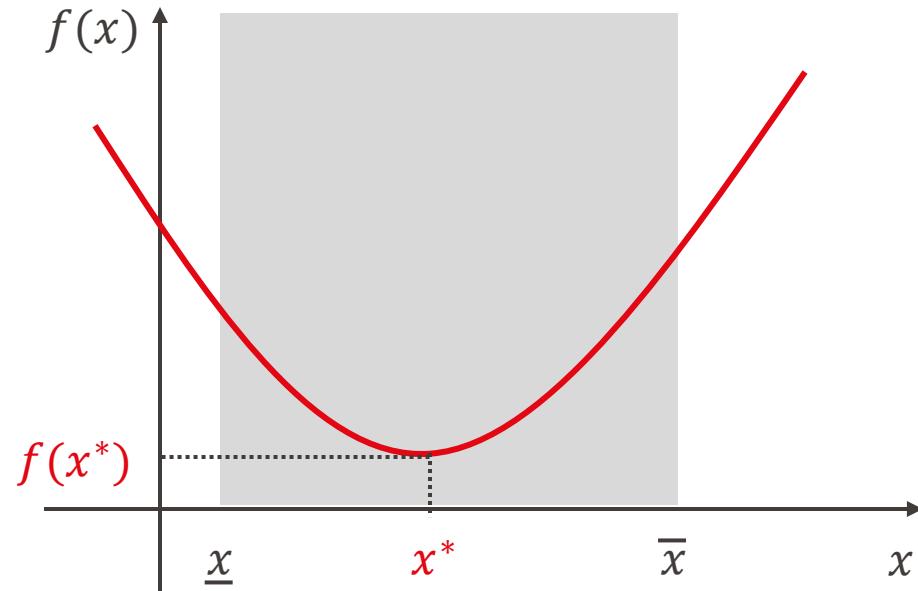
- How to solve a convex optimization problem?

- Single variable x
- Differentiable objective $f(x)$

$$\min_x f(x)$$

$$s.t. \quad x \in [\underline{x}, \bar{x}]$$

$$\nabla f(x^*) = 0 \text{ if } x^* \in [\underline{x}, \bar{x}]$$



- How to solve a convex optimization problem?

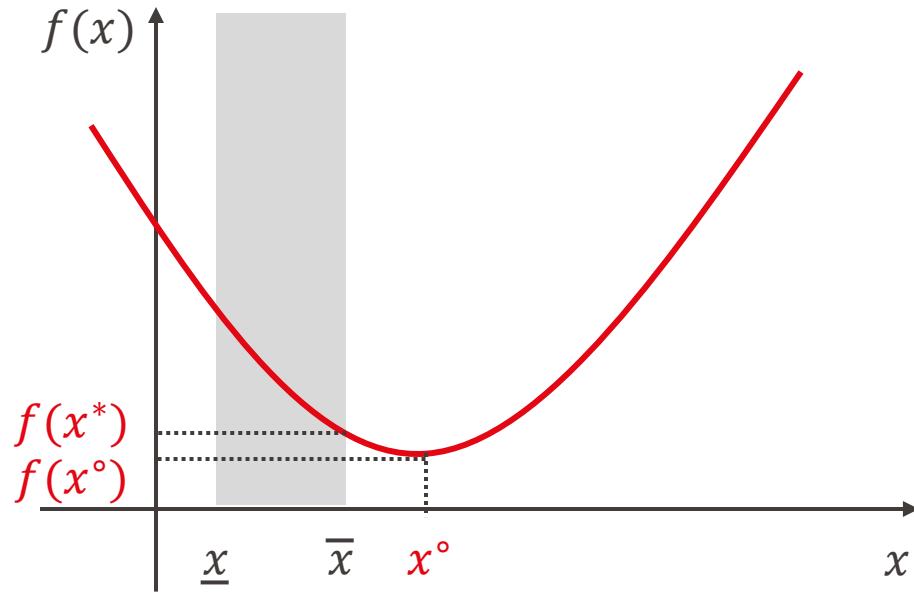
- Single variable x
- Differentiable objective $f(x)$

$$\min_x f(x)$$

$$s.t. \quad x \in [\underline{x}, \bar{x}]$$

$$\nabla f(x^\circ) = 0$$

$$x^* = \bar{x} \text{ if } x^\circ \geq \bar{x}$$



Convex optimization

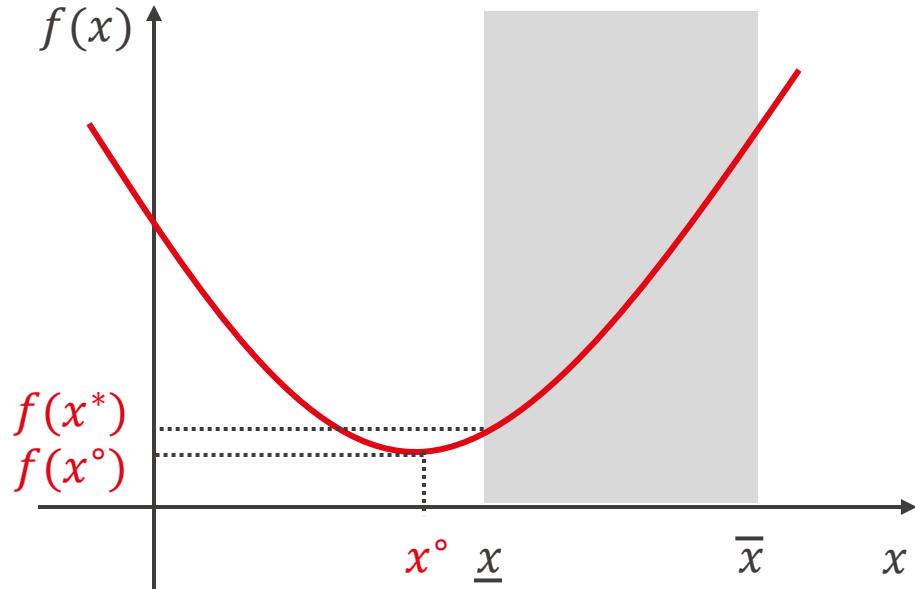
- How to solve a convex optimization problem?

- Single variable x
- Differentiable objective $f(x)$

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s.t.} \quad & x \in [\underline{x}, \bar{x}] \end{aligned}$$

$$\nabla f(x^\circ) = 0$$

$$x^* = \underline{x} \text{ if } x^\circ \leq \underline{x}$$



Convex optimization

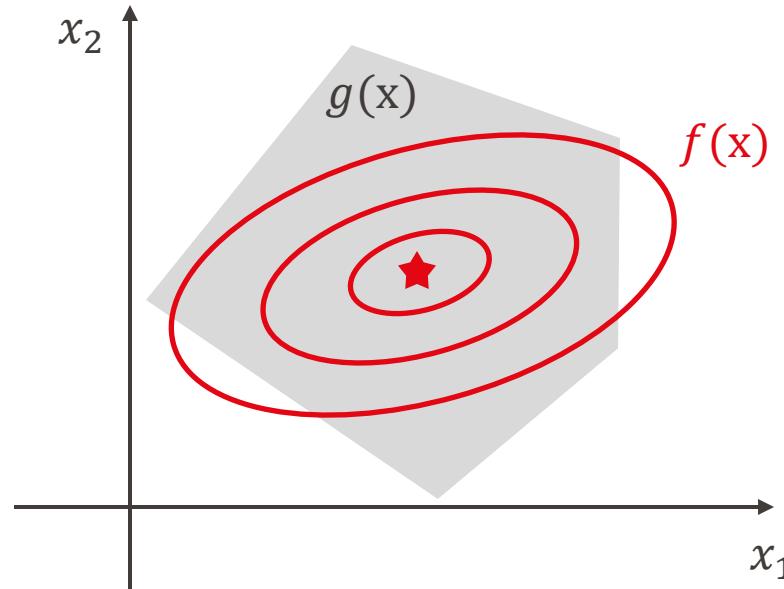
- How to solve a convex optimization problem?

- Multi-variable $x = (x_1, \dots, x_n)^T$
- Differentiable objective $f(x)$

$$\min_x f(x)$$

$$s.t. \quad g(x) \leq 0$$

$$\nabla f(x^*) = 0 \text{ if } g(x^*) \leq 0$$

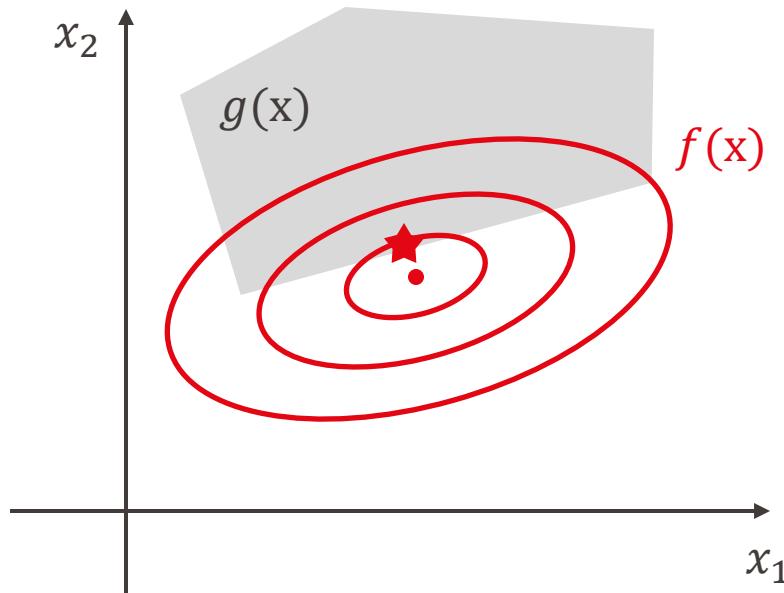


Convex optimization

- How to solve a convex optimization problem?

- Multi-variable $x = (x_1, \dots, x_n)^T$
 - Differentiable objective $f(x)$

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s.t.} \quad & g(x) \leq 0 \end{aligned}$$



- **Q: What if x° s.t. $\nabla f(x^\circ) = 0$ does not satisfy $g(x^\circ) \leq 0$**

- Lagrangian function

$$\mathcal{L}(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$$

where λ, μ are called Lagrange multipliers (dual variables)

- Primal problem

$$\min_x f(x)$$

$$s.t. \quad g(x) \leq 0$$

$$h(x) = 0$$

- Feasible set

$$X = \{x | g(x) \leq 0, h(x) = 0\}$$

- Dual problem

$$\max_{\lambda, \mu} \mathcal{F}(\lambda, \mu) = \inf_{x \in X} \mathcal{L}(x, \lambda, \mu)$$

$$s.t. \quad \lambda \geq 0$$

- Lower bound of primal problem

$$\mathcal{F}(\lambda, \mu) \leq \mathcal{L}(x, \lambda, \mu) \leq f(x), \quad \forall x \in X$$

▪ Primal problem

$$\min_x f(x)$$

$$s.t. \quad g(x) \leq 0$$

$$h(x) = 0$$

▪ Dual problem

$$\max_{\lambda, \mu} \mathcal{F}(\lambda, \mu) = \inf_{x \in X} \mathcal{L}(x, \lambda, \mu)$$

$$s.t. \quad \lambda \geq 0$$

▪ Weak duality

- Suppose f^* and \mathcal{F}^* are the optimal values of primal and dual problems, then $\mathcal{F}^* \leq f^*$.

▪ Strong duality

- Suppose f^* and \mathcal{F}^* are the optimal values of primal and dual problems, then $\mathcal{F}^* = f^*$.

▪ **Q: When do weak and strong duality hold?**

▪ Primal problem

$$\min_x f(x)$$

$$s.t. \quad g(x) \leq 0$$

$$h(x) = 0$$

▪ Dual problem

$$\max_{\lambda, \mu} \mathcal{F}(\lambda, \mu) = \inf_{x \in X} \mathcal{L}(x, \lambda, \mu)$$

$$s.t. \quad \lambda \geq 0$$

▪ Weak duality (always true)

- Suppose f^* and \mathcal{F}^* are the optimal values of primal and dual problems, then $\mathcal{F}^* \leq f^*$.

▪ Strong duality (require some constraint qualifications)

- Suppose f^* and \mathcal{F}^* are the optimal values of primal and dual problems, then $\mathcal{F}^* = f^*$.

- Suppose strong duality holds, then

$$f(\mathbf{x}^*) = \mathcal{F}(\lambda^*, \mu^*)$$

$$= \inf_{\mathbf{x} \in X} \mathcal{L}(\mathbf{x}, \lambda^*, \mu^*) = \inf_{\mathbf{x} \in X} (f(\mathbf{x}) + (\lambda^*)^T g(\mathbf{x}) + (\mu^*)^T h(\mathbf{x}))$$

$$\leq f(\mathbf{x}^*) + (\lambda^*)^T g(\mathbf{x}^*) + (\mu^*)^T h(\mathbf{x}^*) = 0$$

$$\Rightarrow (\lambda^*)^T g(\mathbf{x}^*) \geq 0$$

- Suppose strong duality holds, then

$$f(\mathbf{x}^*) = \mathcal{F}(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= \inf_{\mathbf{x} \in X} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in X} (f(\mathbf{x}) + (\boldsymbol{\lambda}^*)^T \mathbf{g}(\mathbf{x}) + (\boldsymbol{\mu}^*)^T \mathbf{h}(\mathbf{x}))$$

$$\leq f(\mathbf{x}^*) + (\boldsymbol{\lambda}^*)^T \mathbf{g}(\mathbf{x}^*)$$

$$\Rightarrow (\boldsymbol{\lambda}^*)^T \mathbf{g}(\mathbf{x}^*) \geq 0$$

- Primal and dual feasibility requires $\mathbf{g}(\mathbf{x}^*) \leq 0, \boldsymbol{\lambda}^* \geq 0 \Rightarrow (\boldsymbol{\lambda}^*)^T \mathbf{g}(\mathbf{x}^*) \leq 0$

- Suppose strong duality holds, then

$$\begin{aligned} f(\mathbf{x}^*) &= \mathcal{F}(\lambda^*, \mu^*) \\ &= \inf_{\mathbf{x} \in X} \mathcal{L}(\mathbf{x}, \lambda^*, \mu^*) = \inf_{\mathbf{x} \in X} (f(\mathbf{x}) + (\lambda^*)^T g(\mathbf{x}) + (\mu^*)^T h(\mathbf{x})) \\ &\leq f(\mathbf{x}^*) + (\lambda^*)^T g(\mathbf{x}^*) \\ \Rightarrow \quad &(\lambda^*)^T g(\mathbf{x}^*) \geq 0 \end{aligned}$$

- Primal and dual feasibility requires $g(\mathbf{x}^*) \leq 0, \lambda^* \geq 0 \Rightarrow (\lambda^*)^T g(\mathbf{x}^*) \leq 0$
- Complementary conditions

$$(\lambda^*)^T g(\mathbf{x}^*) = 0$$

- **Q: What does it imply?**

- Suppose strong duality holds, then

$$\begin{aligned} f(\mathbf{x}^*) &= \mathcal{F}(\lambda^*, \mu^*) \\ &= \inf_{\mathbf{x} \in X} \mathcal{L}(\mathbf{x}, \lambda^*, \mu^*) = \inf_{\mathbf{x} \in X} (f(\mathbf{x}) + (\lambda^*)^T g(\mathbf{x}) + (\mu^*)^T h(\mathbf{x})) \\ &\leq f(\mathbf{x}^*) + (\lambda^*)^T g(\mathbf{x}^*) \\ \Rightarrow \quad &(\lambda^*)^T g(\mathbf{x}^*) \geq 0 \end{aligned}$$

- Primal and dual feasibility requires $g(\mathbf{x}^*) \leq 0, \lambda^* \geq 0 \Rightarrow (\lambda^*)^T g(\mathbf{x}^*) \leq 0$
- Complementary conditions

$$(\lambda^*)^T g(\mathbf{x}^*) = 0$$

- If $\lambda^* > 0$, then $g(\mathbf{x}^*) = 0$, and if $g(\mathbf{x}^*) < 0$, then $\lambda^* = 0$
- **Q: Does it remind you the traffic equilibrium conditions?**

- Karush-Kuhn-Tucker (KKT) conditions
 - Necessary conditions for the optimal solution to the primal and dual problem
 - Suppose strong duality holds, then x^* and λ^*, μ^* must satisfy
 - Primal feasibility $g(x^*) \leq 0, h(x^*) = 0$
 - Dual feasibility $\lambda^* \geq 0$
 - Complementary $(\lambda^*)^T g(x^*) = 0$
 - Stationarity $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$
 - ***Q: Why the last condition hold at optimal solutions?***

- Karush-Kuhn-Tucker (KKT) conditions
 - Necessary conditions for the optimal solution to the primal and dual problem

- Suppose strong duality holds, then x^* and λ^*, μ^* must satisfy

- Primal feasibility $g(x^*) \leq 0, \quad h(x^*) = 0$

- Dual feasibility $\lambda^* \geq 0$

- Complementary $(\lambda^*)^T g(x^*) = 0$

- Stationarity $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$

Proof. Due to strong duality,

$$f(x^*) = \mathcal{F}(\lambda^*, \mu^*) = \inf_{x \in X} \mathcal{L}(x, \lambda^*, \mu^*)$$

Hence, x^* minimizes $\mathcal{L}(x, \lambda^*, \mu^*)$, an unconstrained optimization, which implies $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$.

- Karush-Kuhn-Tucker (KKT) conditions
 - Necessary conditions for the optimal solution to the primal and dual problem
 - ***also sufficient when f, g, h are all differentiable and convex***
 - Suppose strong duality holds, then x^* and λ^*, μ^* must satisfy
 - Primal feasibility $g(x^*) \leq 0, h(x^*) = 0$
 - Dual feasibility $\lambda^* \geq 0$
 - Complementary $(\lambda^*)^T g(x^*) = 0$
 - Stationarity $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$

Questions?

- KKT conditions of shortest path

$$\min_{x_{ij}} \sum_{(i,j)} t_{ij} x_{ij}$$

$$s.t. \quad \sum_{j \in N_i^+} x_{ij} - \sum_{j \in N_i^-} x_{ji} = b_i = \begin{cases} 1 & i = r \\ -1 & i = s \\ 0 & \text{otherwise} \end{cases}, \quad \forall i \in N$$

$$x_{ij} \geq 0, \quad \forall (i,j)$$

- Lagrangian

$$\mathcal{L}(x, \lambda, \mu) = \sum_{(i,j)} t_{ij} x_{ij} + \sum_{(i,j)} \lambda_{ij} (-x_{ij}) + \sum_i \mu_i \left(\sum_{j \in N_i^+} x_{ij} - \sum_{j \in N_i^-} x_{ji} - b_i \right)$$

- KKT conditions of shortest path
 - Stationarity

$$\frac{\partial \mathcal{L}}{\partial x_{ij}} = t_{ij} - \lambda_{ij} + \mu_i - \mu_j = 0 \Rightarrow \lambda_{ij} = t_{ij} + \mu_i - \mu_j$$

- Primal feasibility $Mx = b, x \geq 0$
- Dual feasibility $\lambda_{ij} \geq 0$
- Complementary $\lambda_{ij}x_{ij} = 0$

- ***Q: How these conditions relate to the shortest path?***

- KKT conditions of shortest path
 - Stationarity

$$\frac{\partial \mathcal{L}}{\partial x_{ij}} = t_{ij} - \lambda_{ij} + \mu_i - \mu_j = 0 \Rightarrow \lambda_{ij} = t_{ij} + \mu_i - \mu_j$$

- Primal feasibility $Mx = b, x \geq 0$

- Dual feasibility $\lambda_{ij} \geq 0$

- Complementary $\lambda_{ij}x_{ij} = 0$

forward Bellman optimality condition

- Link (i, j) is on the shortest path $\Rightarrow x_{ij} = 1 \Rightarrow \lambda_{ij} = 0 \Rightarrow \mu_j = \mu_i + t_{ij}$
 - μ_i as the shortest distance from origin to node i

Questions?

- KKT conditions vs traffic equilibrium
 - Complementary conditions for deterministic UE

$$f_k^*(c_k^* - \mu_w^*) = 0, \quad \forall k \in P_w, w \in W$$

$$c_k^* \geq \mu_w^*, \quad \forall k \in P_w, w \in W$$

where

- f_k^*, c_k^* : equilibrium flow and cost of path k
- μ_w^* : equilibrium min path cost between OD pair w
- P_w, W : set of path between OD pair w and set of OD pairs

- KKT conditions vs traffic equilibrium
 - Complementary conditions for deterministic UE

$$(f^*)^T(c^* - \Lambda^T \mu^*) = 0$$

$$c^* - \Lambda^T \mu^* \geq 0$$

$$\Lambda f^* = q$$

$$f^* \geq 0$$

- f^* : equilibrium path flow
- c^* : equilibrium path cost
- μ^* : equilibrium min path cost
- Λ : OD-path incidence matrix
- q : demand vector

- KKT conditions

$$\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$$

$$g(x^*) \leq 0$$

$$h(x^*) = 0$$

$$\lambda^* \geq 0$$

$$(\lambda^*)^T g(x^*) = 0$$

- Replace x by f , $g(x) = -x$, and $h(x) = q - \Lambda f$

- KKT conditions vs traffic equilibrium
 - Complementary conditions for deterministic UE

$$(f^*)^T(c^* - \Lambda^T \mu^*) = 0$$

$$c^* - \Lambda^T \mu^* \geq 0$$

$$\Lambda f^* = q$$

$$f^* \geq 0$$

- f^* : equilibrium path flow
- c^* : equilibrium path cost
- μ^* : equilibrium min path cost
- Λ : path-OD incidence matrix
- q : demand vector

- KKT conditions

$$\nabla_f \mathcal{L}(f^*, \lambda^*, \mu^*) = 0$$

$$f^* \geq 0$$

$$\Lambda f^* = q$$

$$\lambda^* \geq 0$$

$$(\lambda^*)^T f^* = 0$$

- Replace x by f , $g(x) = -x$, and $h(x) = q - \Lambda f$
- Set $\nabla_f \mathcal{L}(f^*, \lambda^*, \mu^*) = c^* - \lambda^* - \Lambda^T \mu^*$

- KKT conditions vs traffic equilibrium
 - Complementary conditions for deterministic UE

$$(f^*)^T(c^* - \Lambda^T \mu^*) = 0$$

$$c^* - \Lambda^T \mu^* \geq 0$$

$$\Lambda f^* = q$$

$$f^* \geq 0$$

- f^* : equilibrium path flow
- c^* : equilibrium path cost
- μ^* : equilibrium min path cost
- Λ : path-OD incidence matrix
- q : demand vector

- KKT conditions

$$c^* - \Lambda^T \mu^* = \lambda^*$$

$$f^* \geq 0$$

$$\Lambda f^* = q$$

$$\lambda^* \geq 0$$

$$(\lambda^*)^T f^* = 0$$

- Replace x by f , $g(x) = -x$, and $h(x) = q - \Lambda f$
- Set $\nabla_f \mathcal{L}(f^*, \lambda^*, \mu^*) = c^* - \lambda^* - \Lambda^T \mu^*$
- Combine 1st and 4th condition and plug 1st condition into 5th condition

- KKT conditions vs traffic equilibrium
 - Complementary conditions for deterministic UE

$$(f^*)^T(c^* - \Lambda^T \mu^*) = 0$$

$$c^* - \Lambda^T \mu^* \geq 0$$

$$\Lambda f^* = q$$

$$f^* \geq 0$$

- f^* : equilibrium path flow
- c^* : equilibrium path cost
- μ^* : equilibrium min path cost
- Λ : path-OD incidence matrix
- q : demand vector

- KKT conditions

$$c^* - \Lambda^T \mu^* \geq 0$$

$$f^* \geq 0$$

$$\Lambda f^* = q$$

$$(c^* - \Lambda^T \mu^*)^T f^* = 0$$

- Replace x by f , $g(x) = -x$, and $h(x) = q - \Lambda f$
- Set $\nabla_f \mathcal{L}(f^*, \lambda^*, \mu^*) = c^* - \lambda^* - \Lambda^T \mu^*$
- Combine 1st and 4th condition and plug 1st condition into 5th condition

- KKT conditions vs traffic equilibrium
 - Complementary conditions for deterministic UE

$$(f^*)^T(c^* - \Lambda^T \mu^*) = 0$$

$$c^* - \Lambda^T \mu^* \geq 0$$

$$\Lambda f^* = q$$

$$f^* \geq 0$$

- f^* : equilibrium path flow
- c^* : equilibrium path cost
- μ^* : equilibrium min path cost
- Λ : path-OD incidence matrix
- q : demand vector

- ***Q: What does this equivalence imply?***

- We can construct an optimization problem whose optimal solution must satisfy the equilibrium conditions

Questions?

- Consider a convex optimization problem

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s. t.} \quad & x \leq X \end{aligned}$$

- $f(\cdot)$: differentiable convex function with gradient $F(x) = \nabla f(x)$
- X : convex set

- Equivalent variational inequality (VI) problem

- Find $x^* \in X$ such that

$$\langle F(x^*), x - x^* \rangle \geq 0, \quad \forall x \in X$$

- **Q: What does this equivalent imply?**

- Consider a convex optimization problem

$$\begin{aligned} \min_x \quad & f(x) \\ \text{s. t.} \quad & x \leq X \end{aligned}$$

- $f(\cdot)$: differentiable convex function with gradient $F(x) = \nabla f(x)$
- X : convex set

- Equivalent variational inequality (VI) problem

- Find $x^* \in X$ such that

$$\langle F(x^*), x - x^* \rangle \geq 0, \quad \forall x \in X$$

- All differentiable convex programs have corresponding VI formulations
 - However, the reverse only holds under certain conditions

- VI conditions vs traffic equilibrium

- Find $x^* \in X$ such that

$$\langle F(x^*), x - x^* \rangle \geq 0, \quad \forall x \in X$$

- Replace x by f , $F(x)$ by $c(f)$, and specify $X = \{f \mid \Lambda f = q, f \geq 0\}$

$$\langle c(f^*), f - f^* \rangle \geq 0, \quad \forall f \in X$$

- VI conditions vs traffic equilibrium

- Find $x^* \in X$ such that

$$\langle F(x^*), x - x^* \rangle \geq 0, \quad \forall x \in X$$

- Replace x by f , $F(x)$ by $c(f)$, and specify $X = \{f \mid \Lambda f = q, f \geq 0\}$

$$\langle c(f^*), f - f^* \rangle \geq 0, \quad \forall f \in X$$

$$\Rightarrow c(f^*)^T f \geq c(f^*)^T f^*, \quad \forall f \in X$$

- The inequality conditions implies that, given the equilibrium path cost $c(f^*)$, the equilibrium path flows f^* lead to the minimum total cost
 - Meanwhile, the total cost is minimized when all travelers take the shortest paths
 - Hence, f^* is the best response for all travelers, which implies equilibrium

- **Q: Does the reverse also hold? How to prove it?**

Questions?