

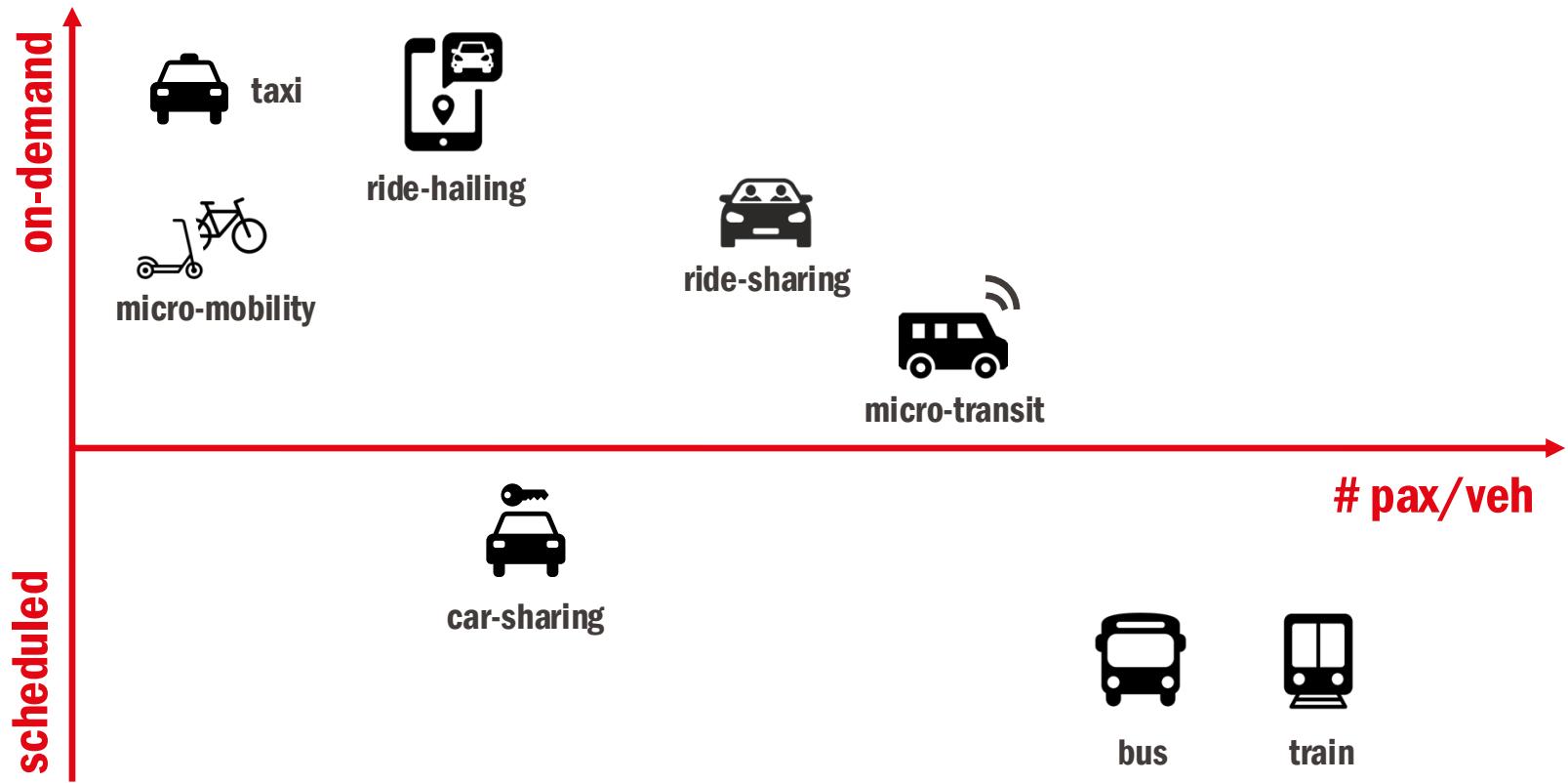
Spring 2025

10 Emerging Topic I: Shared mobility

CML-477 Transportation network modeling & analysis

Overview

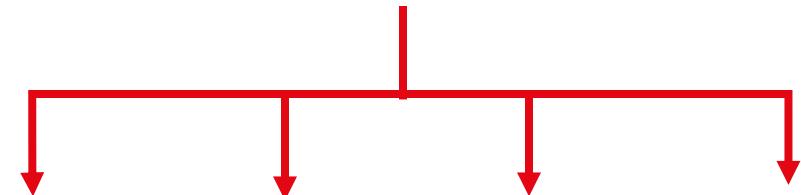
- A spectrum of shared mobility services



- Shared mobility services in the transportation system

Demand

Supply

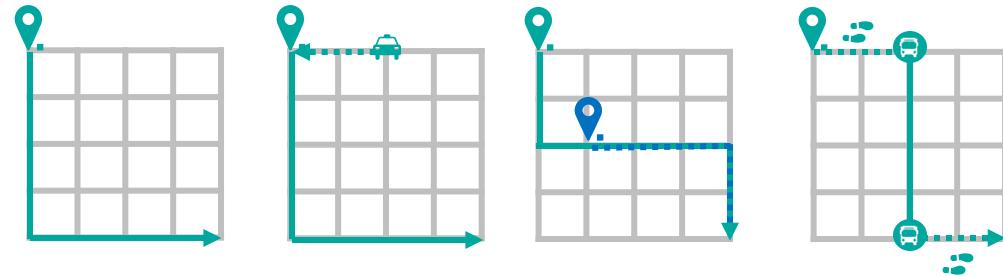


Monetary cost	\$\$\$	\$\$	\$\$	\$
Access time	+	++	++	+++
Riding time	+	+	++	+++

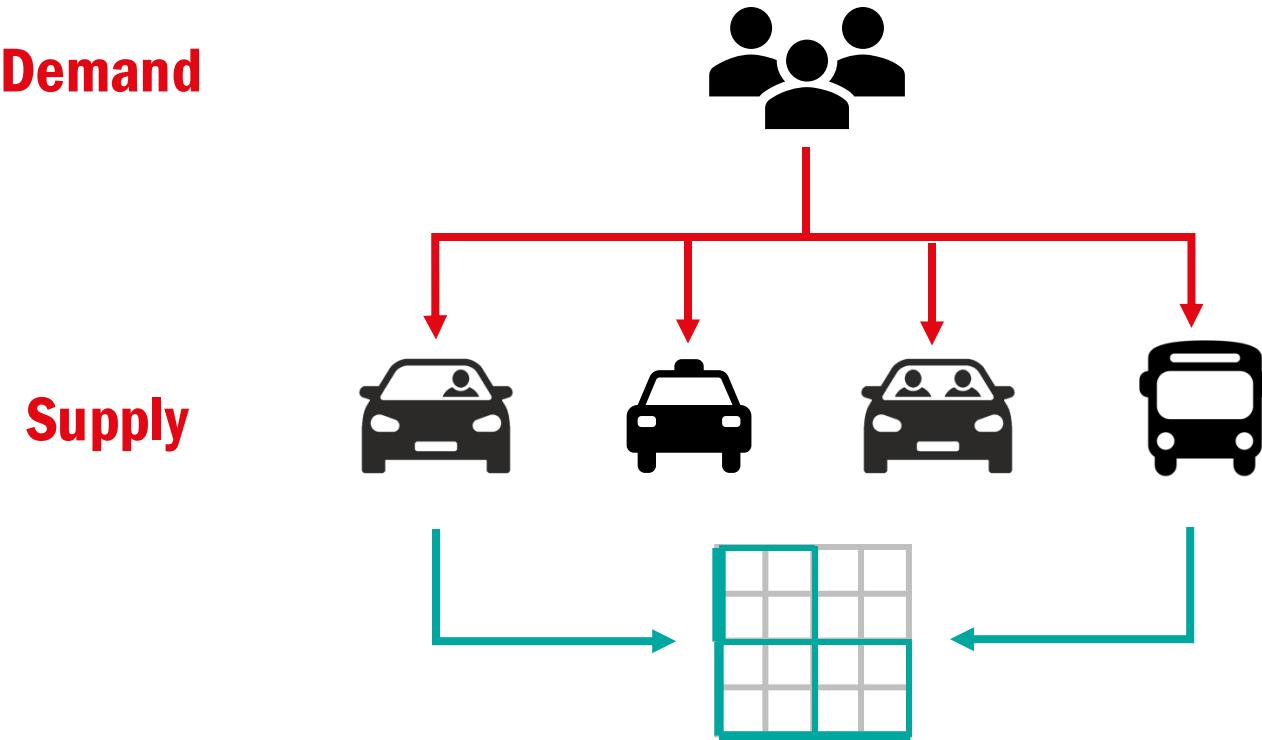
- Shared mobility services in the transportation system

Demand

Supply



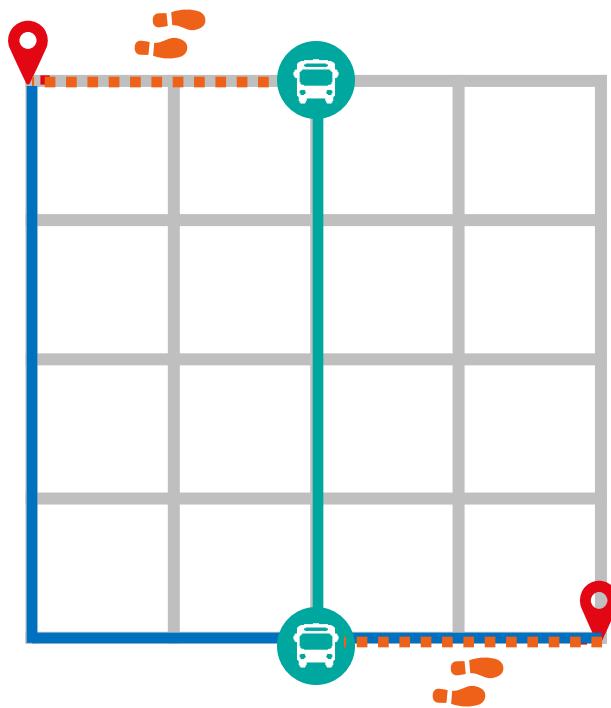
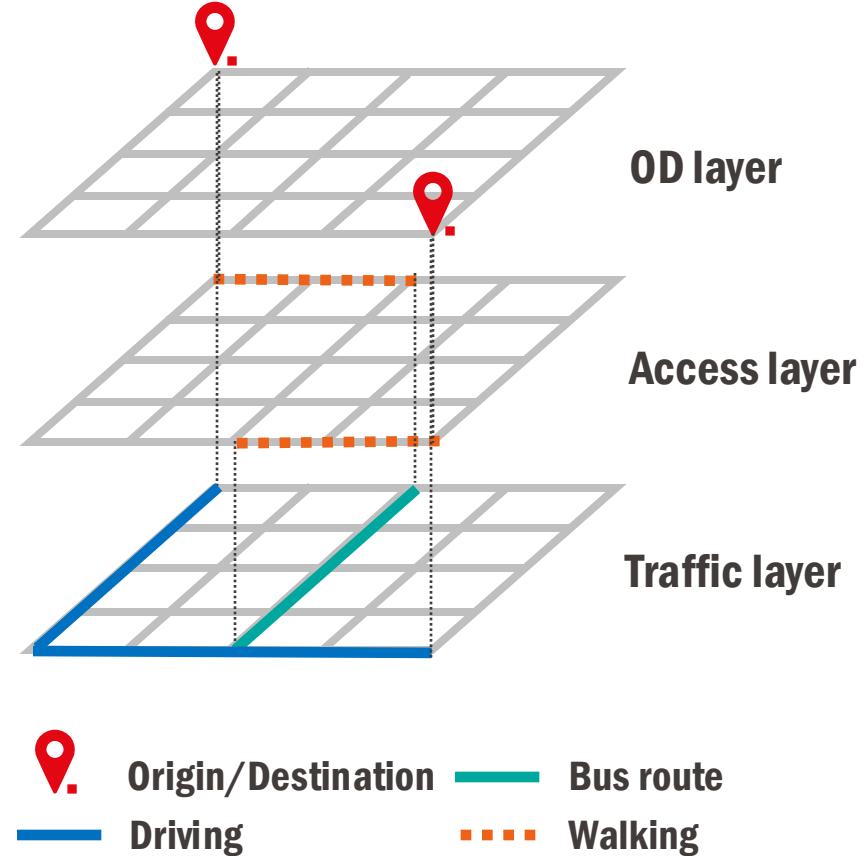
- Shared mobility services in the transportation system



- Bus
 - Multimodal network
- Ride-sharing
 - Same vs different OD
- Ride-hailing
 - Empty vehicle movements
- First-mile service
 - Integration to mass transit

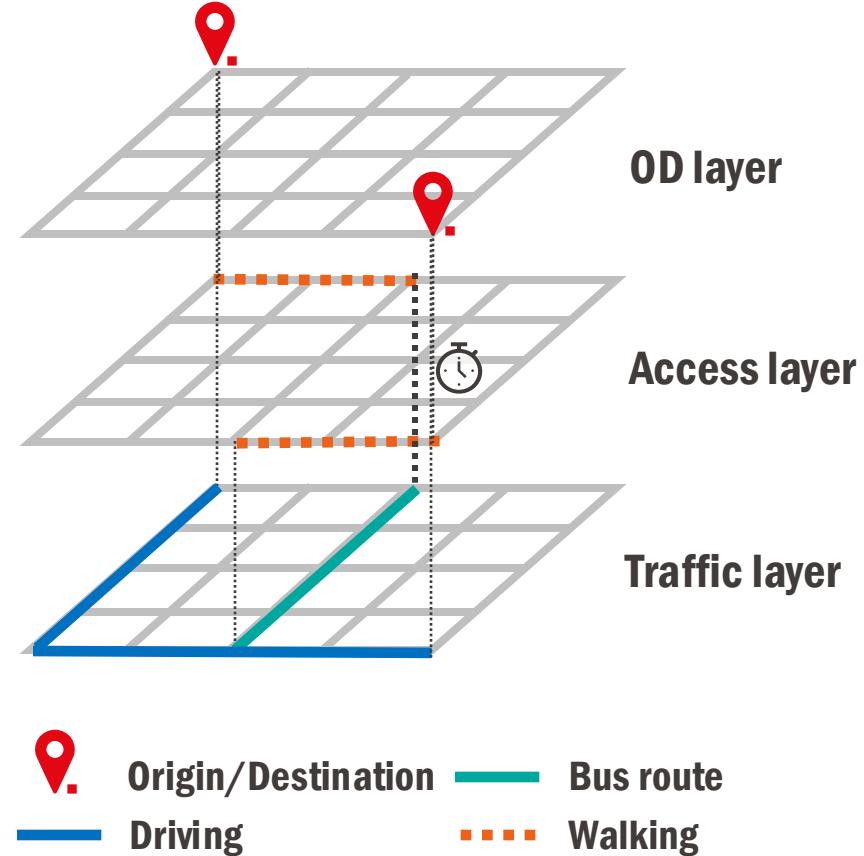
Mutlimodal network

- From physical to super network



Mutlimodal network

- From physical to super network
 - Waiting time for bus



Multimodal network

- Static traffic assignment in multimodal network

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq \mathbf{0}$$

Min path cost

$$\Lambda \mathbf{f}^* = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq \mathbf{0}$$

Path flow feasibility

- Multimodal path cost

- Driving path $c_k = \sum_{a \in A_3} \delta_{ak}^3 t_a^3 (x_a^{\text{veh}} + x_a^{\text{bus}})$

- Bus path $c_k = \sum_{a \in A_1} \delta_{ak}^1 t_a^1 + \sum_{a \in A_2} \delta_{ak}^2 t_a^2 + \sum_{a \in A_3} \delta_{ak}^3 t_a^3 (x_a^{\text{veh}} + x_a^{\text{bus}})$

access time

**wait/transfer
time**

riding time

- Static traffic assignment in multimodal network

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq \mathbf{0}$$

Min path cost

$$\Lambda \mathbf{f}^* = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq \mathbf{0}$$

Path flow feasibility

- Multimodal path cost

- Driving path $c_k = \sum_{a \in A_3} \delta_{ak}^3 t_a^3 (x_a^{\text{veh}} + x_a^{\text{bus}})$ * **independent of bus travel flow**

- Bus path $c_k = \sum_{a \in A_1} \delta_{ak}^1 t_a^1 + \sum_{a \in A_2} \delta_{ak}^2 t_a^2 + \sum_{a \in A_3} \delta_{ak}^3 t_a^3 (x_a^{\text{veh}} + x_a^{\text{bus}})$

Multimodal network

- Static traffic assignment in multimodal network

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq 0$$

Min path cost

$$\Lambda \mathbf{f}^* = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq 0$$

Path flow feasibility

- Multimodal path cost

- Driving path $c_k = \sum_{a \in A_3} \delta_{ak}^3 t_a^3 (x_a^{\text{veh}} + x_a^{\text{bus}})$

- Bus path $c_k = \sum_{a \in A_1} \delta_{ak}^1 t_a^1 + \sum_{a \in A_2} \delta_{ak}^2 t_a^2 + \sum_{a \in A_4} \delta_{ak}^4 t_a^4 (x_a^{\text{veh}} + x_a^{\text{bus}})$

* another set of bus links whose travel time depend on traffic link flows

Multimodal network

- Static traffic assignment in multimodal network

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq 0$$

Min path cost

$$\Lambda \mathbf{f}^* = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq 0$$

Path flow feasibility

- Multimodal path cost

- Driving path $c_k = \sum_{a \in A_3} \delta_{ak}^3 t_a^3 (x_a^{\text{veh}} + x_a^{\text{bus}})$

- Bus path $c_k = \sum_{a \in A_1} \delta_{ak}^1 t_a^1 + \sum_{a \in A_2} \delta_{ak}^2 t_a^2 + \sum_{a \in A_4} \delta_{ak}^4 t_a^4 (x_a^{\text{veh}} + x_a^{\text{bus}}, \omega)$

* additional stopping added
to each bus link

- Static traffic assignment in multimodal network

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq 0$$

Min path cost

$$\Lambda \mathbf{f}^* = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq 0$$

Path flow feasibility

- Multimodal path cost

- Driving path $c_k = \sum_{a \in A_3} \delta_{ak}^3 \mathbf{t}_a^3(x_a^{\text{veh}})$

- Bus path $c_k = \sum_{a \in A_1} \delta_{ak}^1 t_a^1 + \sum_{a \in A_2} \delta_{ak}^2 t_a^2 + \sum_{a \in A_4} \delta_{ak}^4 t_a^4(x_a^{\text{bus}}, \omega)$

* link interaction no longer exist when bus lanes are utilized, while link parameters also change

- Static traffic assignment in multimodal network

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq 0$$

Min path cost

$$\Lambda \mathbf{f}^* = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq 0$$

Path flow feasibility

- Multimodal path cost

- Driving path $c_k = c_0^{\text{drive}} + \sum_{a \in A_3} \delta_{ak}^3 t_a^3(x_a^{\text{veh}})$

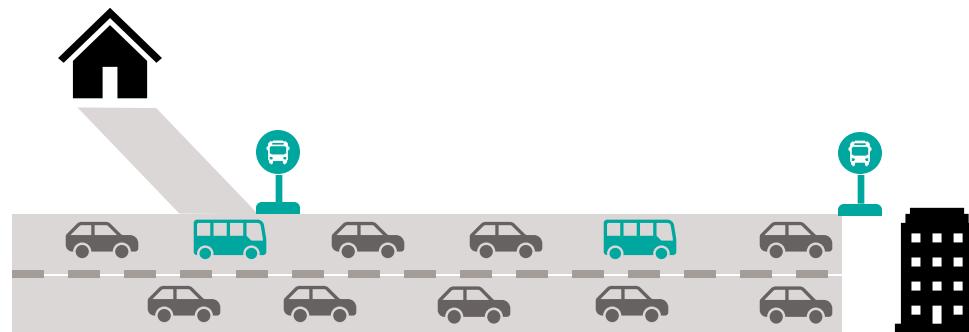
- Bus path $c_k = c_0^{\text{bus}} + \sum_{a \in A_1} \delta_{ak}^1 t_a^1 + \sum_{a \in A_2} \delta_{ak}^2 t_a^2 + \sum_{a \in A_4} \delta_{ak}^4 t_a^4(x_a^{\text{bus}}, \omega)$

*** include monetary cost that
makes bus trips more attractive**

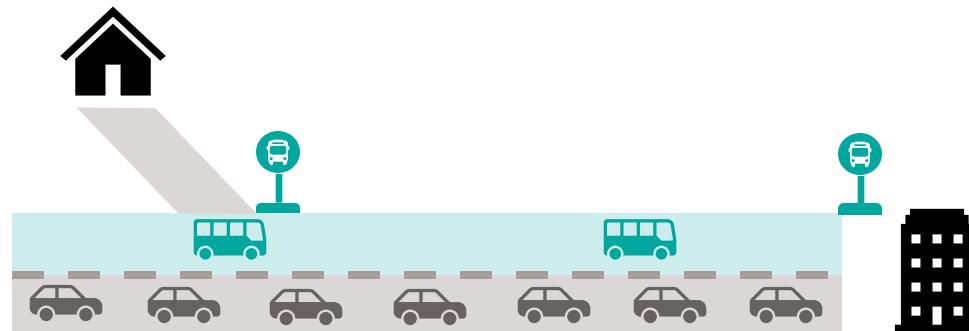
Multimodal network

- Static traffic assignment in multimodal network
 - A toy example of bus lane

w/o bus lane



w/ bus lane



Regular lane

Bus lane

Bus stop

Questions?

- Bus
 - Multimodal network

- Ride-sharing
 - Same vs different OD

- Ride-hailing
 - Empty vehicle movements

- First-mile service
 - Integration to mass transit

Ride-sharing vs ride-hailing

- Ride-sharing
 - Drivers have own trips
 - Often scheduled in ahead
 - Higher sensitivity on detour and other inconvenience
 - Decentralized matching and pricing
- Ride-hailing
 - Drivers deliver trips to make a revenue
 - Usually on-demand
 - Higher sensitivity on price and waiting time
 - Centralized matching and pricing

Ride-sharing between same OD

- Static traffic assignment + same OD ride-sharing

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq 0$$

Min path cost

$$\Lambda(\mathbf{f}_{\text{solo}}^* + m\mathbf{f}_{\text{share}}^*) = \mathbf{q}$$

Demand flow conservation

$$\mathbf{f}^* \geq 0$$

Path flow feasibility

- $\mathbf{f}_{\text{solo}}, \mathbf{f}_{\text{share}}$: path flow of solo-driving/ride-sharing vehicles
- m : vehicle occupancy

- Path cost

- Solo-driving $c_k = \sum_{a \in A} \delta t_a (x_a^{\text{solo}} + x_a^{\text{share}}), \quad k \in P_w, w \in W$

- Ride-sharing $c_k = c_0(q_w^{\text{share}}) + \sum_{a \in A} \delta t_a (x_a^{\text{solo}} + x_a^{\text{share}}), \quad k \in P_w, w \in W$
 - variable extra cost c_0 depends on the sharing demand $\mathbf{q}_{\text{share}} = m\Lambda\mathbf{f}_{\text{share}}$

- **Q: What is the issue with this model?**

Ride-sharing between same OD

- Static traffic assignment + same OD ride-sharing

$$(\mathbf{f}^*)^T(\mathbf{c}^* - \Lambda^T \mu^*) = 0$$

Complementary condition of path flows

$$\mathbf{c}^* - \Lambda^T \mu^* \geq 0$$

Min path cost

$$\Lambda(\mathbf{f}_{\text{solo}}^* + m\mathbf{f}_{\text{share}}^*) = \mathbf{q}$$

Demand flow conservation

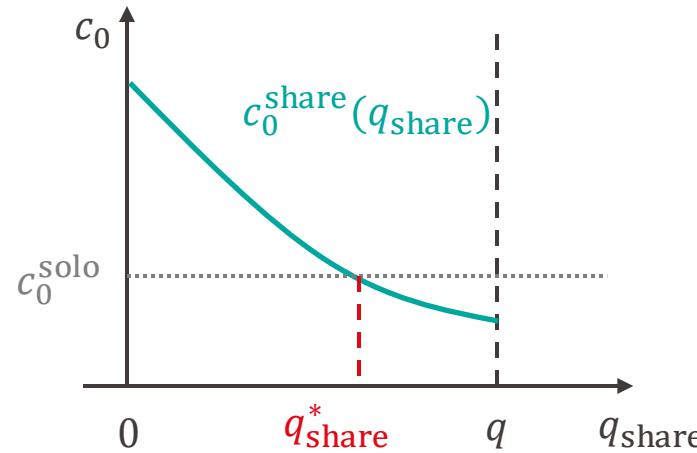
$$\mathbf{f}^* \geq 0$$

Path flow feasibility

- $\mathbf{f}_{\text{solo}}, \mathbf{f}_{\text{share}}$: path flow of solo-driving/ride-sharing vehicles
- m : vehicle occupancy
- Path cost
 - Solo-driving $c_k = c_0^{\text{solo}} + \sum_{a \in A} \delta t_a (x_a^{\text{solo}} + x_a^{\text{share}})$, $k \in P_w, w \in W$
 - fixed extra cost c_0^{solo}
 - Ride-sharing $c_k = c_0^{\text{share}}(q_w^{\text{share}}) + \sum_{a \in A} \delta t_a (x_a^{\text{solo}} + x_a^{\text{share}})$, $k \in P_w, w \in W$
 - variable extra cost c_0^{share} depends on the sharing demand $\mathbf{q}_{\text{share}} = m\Lambda\mathbf{f}_{\text{share}}$
- **Q: What is the easier way to solve the equilibrium?**

Ride-sharing between same OD

- Static traffic assignment + same OD ride-sharing
 - Step 1: Solve demand split $\mathbf{q}_{\text{solo}}, \mathbf{q}_{\text{share}}$
 - As all vehicles take the shortest path, the cost of solo-driving and ride-sharing only differs in the extra cost

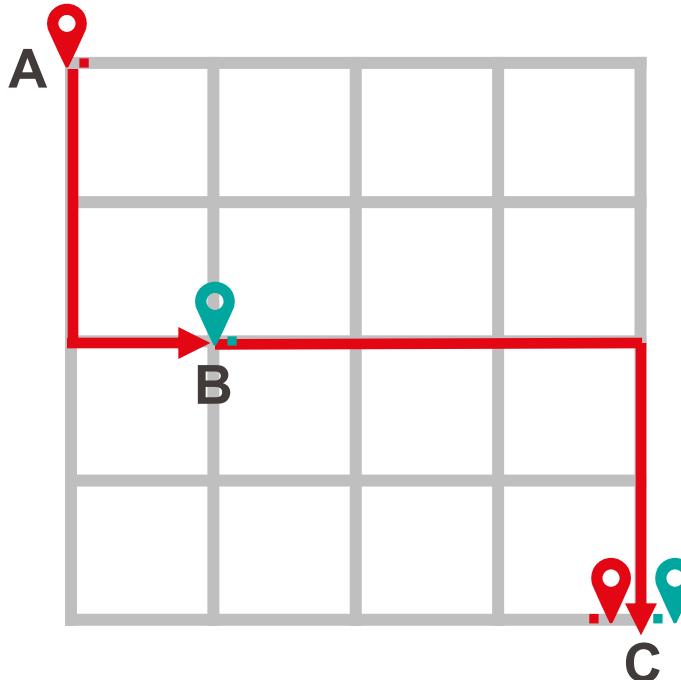


- Step 2: Solve traffic equilibrium with adjusted demand

$$\tilde{\mathbf{q}} = \mathbf{q}_{\text{solo}} + \frac{\mathbf{q}_{\text{share}}}{m}$$

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



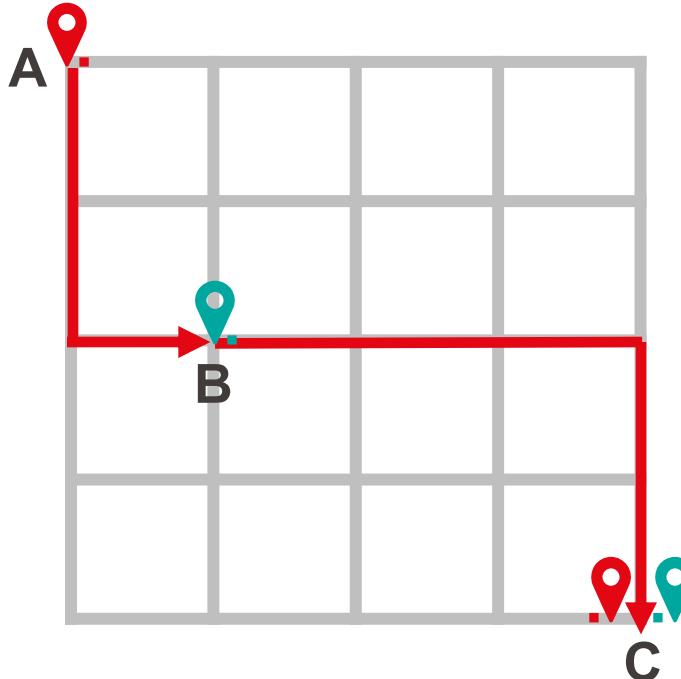
rider demand $q_{BC}^{\text{pax}} = 100$
w/o sharing $q_{AC} = 100$
w/ sharing $\tilde{q}_{AB} = 100, \tilde{q}_{BC} = 100$

	AB	AC	BC
q	0	100	0
\tilde{q}	100	0	100

- Q: How to express the demand segmentation in a compact way?

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



rider demand $q_{BC}^{\text{pax}} = 100$

w/o sharing $q_{AC} = 100$

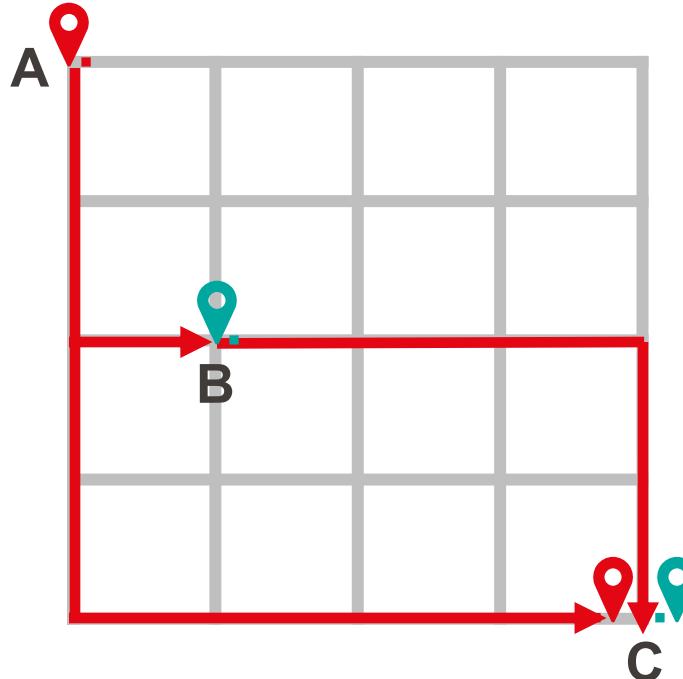
w/ sharing $\tilde{q}_{AB} = 100, \tilde{q}_{BC} = 100$

	Γ			q	\tilde{q}
AB	0	1	0	0	100
AC	0	0	0	100	0
BC	0	1	0	0	100

=

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



rider demand $q_{BC}^{\text{pax}} = 50$

w/o sharing $q_{AC} = 100$

w/ sharing $\tilde{q}_{AB} = 50, \tilde{q}_{AC} = 50, \tilde{q}_{BC} = 50$

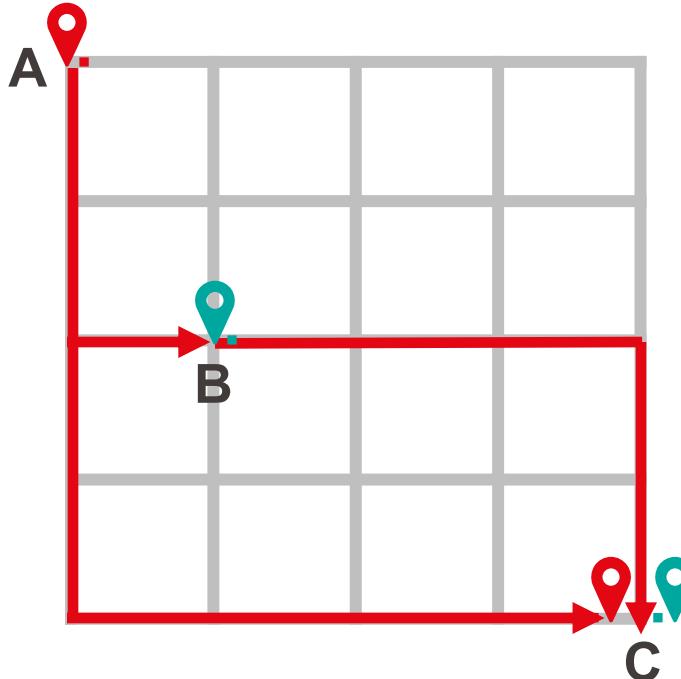
	Γ		
	AB	AC	BC
AB	0	0.5	0
AC	0	0.5	0
BC	0	0.5	0

	q	\tilde{q}
AB	0	50
AC	100	50
BC	0	50

* values from origin sums up to 1

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



rider demand $q_{BC}^{\text{pax}} = 50$

w/o sharing $q_{AC} = 100$

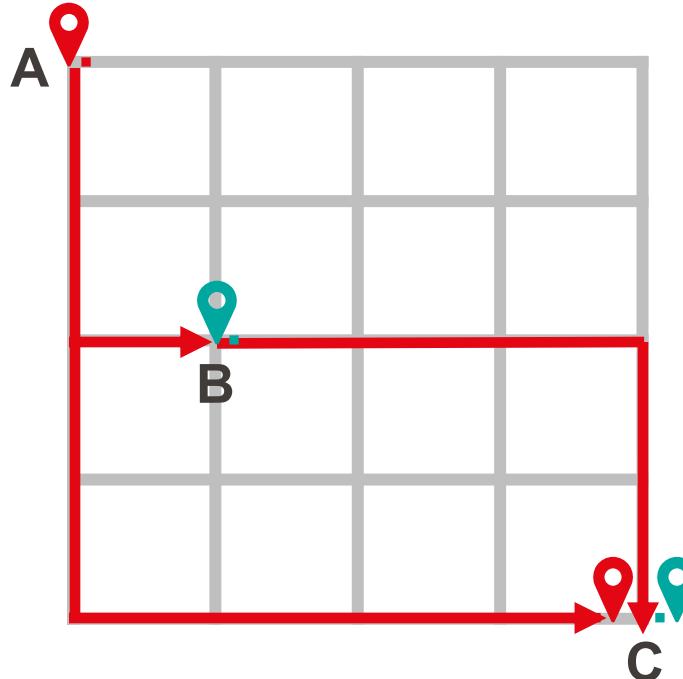
w/ sharing $\tilde{q}_{AB} = 50, \tilde{q}_{AC} = 50, \tilde{q}_{BC} = 50$

	Γ			q	\tilde{q}
AB	0	0.5	0	0	50
AC	0	0.5	0	100	50
BC	0	0.5	0	0	50

* values to destination sums up to 1

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



rider demand $q_{BC}^{\text{pax}} = 50$

w/o sharing $q_{AC} = 100$

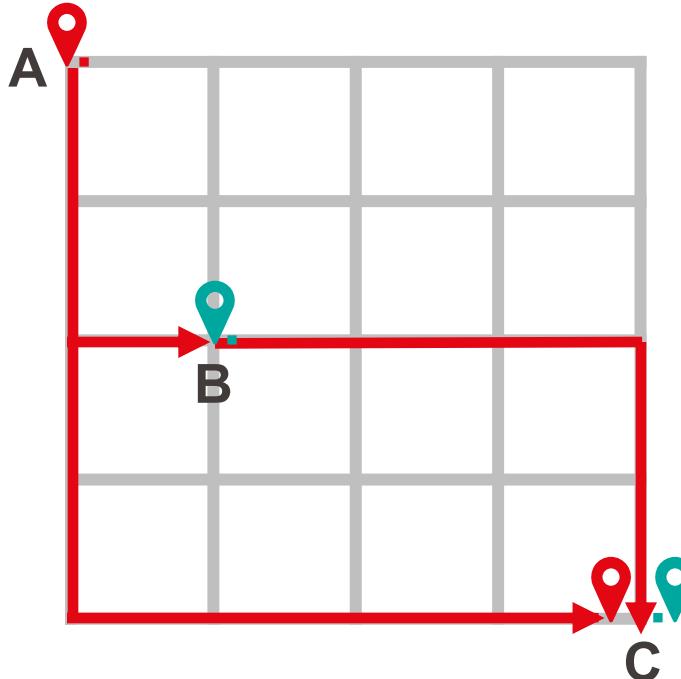
w/ sharing $\tilde{q}_{AB} = 50, \tilde{q}_{AC} = 50, \tilde{q}_{BC} = 50$

	Γ			q	\tilde{q}
AB	0	0.5	0	0	50
AC	0	0.5	0	100	50
BC	0	0.5	0	0	50

* inflow equals outflow at detour node

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



rider demand $q_{BC}^{\text{pax}} = 50$

w/o sharing $q_{AC} = 100$

w/ sharing $\tilde{q}_{AB} = 50, \tilde{q}_{AC} = 50, \tilde{q}_{BC} = 50$

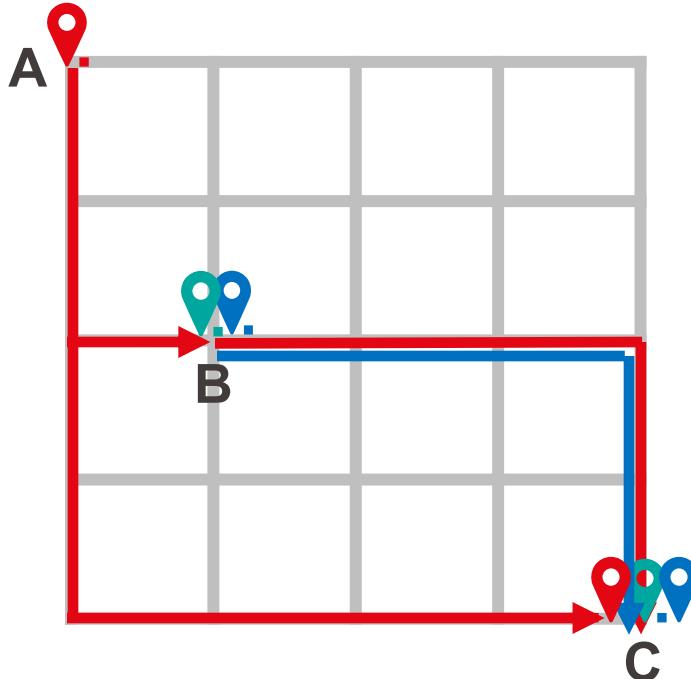
	Γ			q	\tilde{q}
AB	0	0.5	0	0	50
AC	0	0.5	0	100	50
BC	0	0.5	0	0	50

=

* **rider demand is satisfied**

Ride-sharing between different OD

- Segmentation of trips in ride-sharing



rider demand $q_{BC}^{\text{pax}} = 100$

w/o sharing $q_{AC} = 100, q_{BC} = 50$

w/ sharing $\tilde{q}_{AB} = 50, \tilde{q}_{AC} = 50, \tilde{q}_{BC} = 50$

	Γ			q	\tilde{q}
AB	0	0.5	0	0	50
AC	0	0.5	0	100	50
BC	0	0.5	1	50	100

=

* riders can be served by drivers between different ODs

Ride-sharing between different OD

- Static traffic assignment + different OD ride-sharing
 - Subproblem 1: Solve demand segmentation Γ
 - centralized matching

$$\min_{\Gamma} \sum_{w,w'} \Gamma_{ww'} q_{w'} \mu_w^*$$

$$s.t. \quad \sum_{w'} \Gamma_{w'} r_{w'} q_{w'} = q_w^r, \quad \forall w \in W^r$$

$$\sum_{w(r,:)} \Gamma_{ww'} = 1, \quad \forall w' = (r, s)$$

$$\sum_{w(:,s)} \Gamma_{ww'} = 1, \quad \forall w' = (r, s)$$

$$\Gamma_{w_1 w'} = \Gamma_{w_2 w'}, \quad \forall w' = (r, s), w_1 = (r, i), w_2 = (i, s)$$

$$\mathbf{0} \leq \Gamma \leq \mathbf{1}$$

- μ_w^* : min path cost by Subproblem 2
- Subproblem 2: Solve traffic equilibrium with adjusted demand

$$\tilde{\mathbf{q}} = \Gamma \mathbf{q}$$

Ride-sharing between different OD

- Static traffic assignment + different OD ride-sharing

- Subproblem 1: Solve demand segmentation Γ
 - centralized matching

$$\min_{\Gamma} \quad (\Gamma \mathbf{q})^T \boldsymbol{\mu}^* = \boldsymbol{\mu}^{*T} \Gamma \mathbf{q}$$

$$s. t. \quad B^{\text{pax}}(\Gamma \mathbf{q}) = \mathbf{q}^r$$

$$B^r \Gamma = \mathbf{1}$$

$$B^s \Gamma = \mathbf{1} \quad * \text{ linear programming given } \boldsymbol{\mu}^*$$

$$B^d \Gamma = \mathbf{0}$$

$$\mathbf{0} \leq \Gamma \leq \mathbf{1}$$

- $\boldsymbol{\mu}^*$: min path cost by Subproblem 2
 - $B^{\text{pax}}, B^r, B^s, B^d$ are all binary matrices
- Subproblem 2: Solve traffic equilibrium with adjusted demand

$$\tilde{\mathbf{q}} = \Gamma \mathbf{q}$$

Questions?

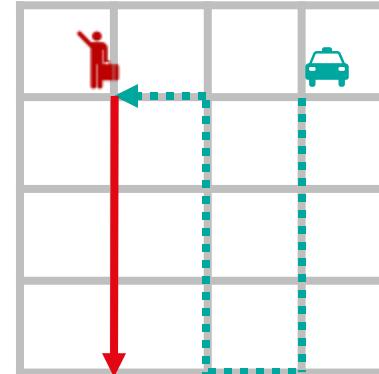
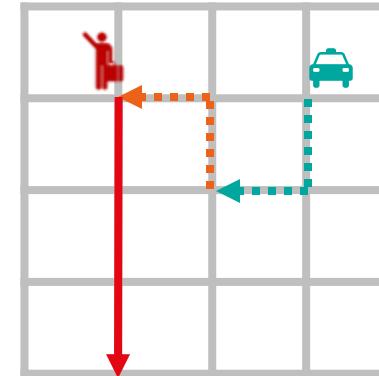
- Bus
 - Multimodal network
- Ride-sharing
 - Same vs different OD
- ▪ Ride-hailing
 - Empty vehicle movements
- First-mile service
 - Integration to mass transit

Empty ride-hailing vehicle movements

- Cruising and pickup in different ride-hailing services

street-hailing

e-hailing



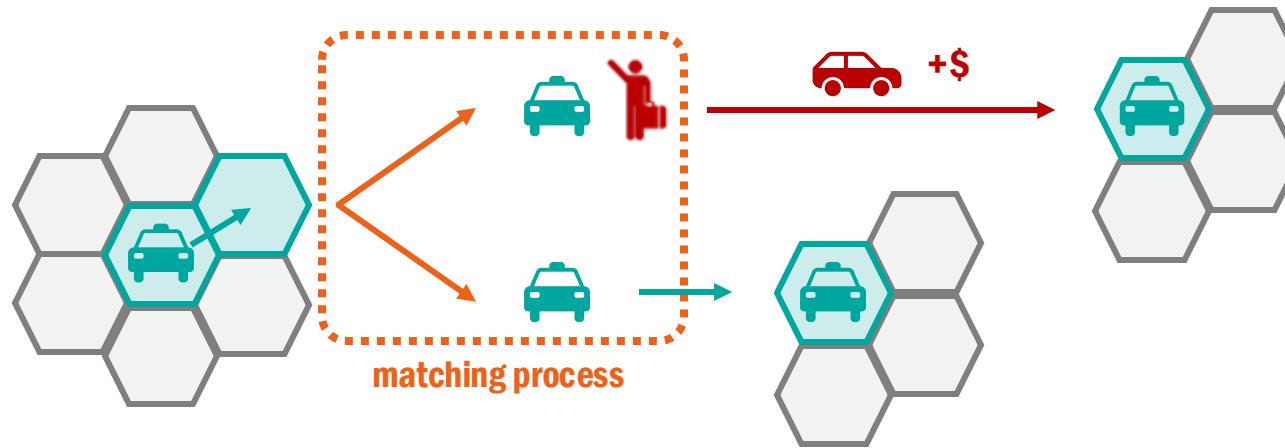
■ CIVIL-477 Transportation network modeling & analysis

■ --- Cruise
■ --- Pickup
■ --- Deliver

Empty ride-hailing vehicle movements

- Cruising and pickup in different ride-hailing services
 - Instead of following the shortest path as in regular trips, drivers make sequential decisions on the search location
 - The search decisions can be modeled as a Markov decision process (MDP)
 - solution of MDP is expressed a policy

“Where should I go to find passengers when I’m located in A (at time t)?”



Empty ride-hailing vehicle movements

- Static traffic assignment + ride-hailing
 - Simplifications
 - all travel demands are served by ride-hailing vehicles
 - demand is perfectly known and thus empty vehicles move to passenger trip origins in the most efficient way
 - Demand matching
 - Passenger demand q_{pax} and empty vehicle trips q_{veh}

$$\sum_{w:(\cdot,i) \in W} q_w^{\text{veh}} \geq \sum_{w:(i,\cdot) \in W} q_w^{\text{pax}}, \quad \forall i \in N$$

* empty vehicles arriving at each origin are more than departing passengers

$$\sum_{w:(\cdot,i) \in W} q_w^{\text{pax}} \geq \sum_{w:(i,\cdot) \in W} q_w^{\text{veh}}, \quad \forall i \in N$$

* vehicles ending trips at each destination are more than relocating empty vehicles

Empty ride-hailing vehicle movements

- Static traffic assignment + ride-hailing
 - Subproblem 1: Solve empty vehicle trips \mathbf{q}_{veh}
 - centralized rebalancing

$$\begin{aligned} & \min_{\mathbf{q}_{\text{veh}}} \sum_{w \in W} q_w^{\text{veh}} \mu_w^* \\ \text{s.t.} \quad & \sum_{w:(\cdot, i) \in W} q_w^{\text{veh}} \geq \sum_{w:(i, \cdot) \in W} q_w^{\text{pax}}, \quad \forall i \\ & \sum_{w:(\cdot, i) \in W} q_w^{\text{pax}} \geq \sum_{w:(i, \cdot) \in W} q_w^{\text{veh}}, \quad \forall i \\ & \mathbf{q}_{\text{veh}} \geq \mathbf{0} \end{aligned}$$

- μ_w^* : min path cost by Subproblem 2
- Subproblem 2: Solve traffic equilibrium with aggregate demand

$$\mathbf{q} = \mathbf{q}_{\text{pax}} + \mathbf{q}_{\text{veh}}$$

Empty ride-hailing vehicle movements

- Static traffic assignment + ride-hailing
 - Subproblem 1: Solve empty vehicle trips \mathbf{q}_{veh}
 - centralized rebalancing

$$\begin{aligned} \min_{\mathbf{q}_{\text{veh}}} \quad & \mathbf{q}_{\text{veh}}^T \boldsymbol{\mu}^* \\ \text{s. t.} \quad & B^s \mathbf{q}_{\text{veh}} \geq B^r \mathbf{q}_{\text{pax}} \\ & B^r \mathbf{q}_{\text{veh}} \leq B^s \mathbf{q}_{\text{pax}} \\ & \mathbf{q}_{\text{veh}} \geq \mathbf{0} \end{aligned}$$

* linear programming given $\boldsymbol{\mu}^*$

- $\boldsymbol{\mu}^*$: min path cost by Subproblem 2
- B^r, B^s are both binary matrices
- Subproblem 2: Solve traffic equilibrium with aggregate demand

$$\mathbf{q} = \mathbf{q}_{\text{pax}} + \mathbf{q}_{\text{veh}}$$

- **Q: What if the passenger trips are also centralized controlled?**

Empty ride-hailing vehicle movements

- Static traffic assignment + ride-hailing
 - Centralized trip routing and rebalancing (e.g., robotaxi)

$$\min_{\mathbf{f}, \mathbf{q}_{\text{veh}}} \mathbf{x}^T \mathbf{t}(\mathbf{x})$$

$$s. t. \quad \Delta \mathbf{f} = \mathbf{q}_{\text{pax}} + \mathbf{q}_{\text{veh}}$$

$$\Delta \mathbf{f} = \mathbf{x}$$

$$\mathbf{f} \geq \mathbf{0}$$

$$B^s \mathbf{q}_{\text{veh}} \geq B^r \mathbf{q}_{\text{pax}},$$

$$B^r \mathbf{q}_{\text{veh}} \leq B^s \mathbf{q}_{\text{pax}},$$

$$\mathbf{q}_{\text{veh}} \geq \mathbf{0}$$

* original SO problem

- Bus
 - Multimodal network
- Ride-sharing
 - Same vs different OD
- Ride-hailing
 - Empty vehicle movements

- First-mile service
 - Integration to mass transit

First-mile service

- On-demand mobility services that connect individual trip origins to mass transit hubs
 - Shuttles and microtransit
 - Ride-hailing
 - Bike-sharing and scooter sharing

- On-demand mobility services that connect individual trip origins to mass transit hubs
 - Shuttles and microtransit
 - Ride-hailing
 - Bike-sharing and scooter sharing
- Incentives of stakeholders
 - City
 - reduce traffic congestion and promote public transit
 - Mass transit operator
 - encourage ridership
 - Travelers
 - lower travel cost
 - ***Q: How about mobility service operator (e.g., Uber)?***

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

- All travelers go to the city center
 - option 1: door-to-door ride-hailing
 - option 2: first-mile ride-hailing + train
- ***Q: What are the trade-offs in mode choice and service operations?***

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

- Path cost
 - Door-to-door $c_{D2D} = c_0^{D2D} + w(V) + t_0 + t_{\text{highway}}(q_{D2D})$
 - First-mile $c_{1st} = c_0^{1st} + w(V) + t_0 + t_{\text{train}}$

* trip fare, designed by operator

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

- Path cost
 - Door-to-door $c_{D2D} = c_0^{D2D} + w(V) + t_0 + t_{\text{highway}}(q_{D2D})$
 - First-mile $c_{1st} = c_0^{1st} + w(V) + t_0 + t_{\text{train}}$

* waiting time, dependent of empty vehicles V

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

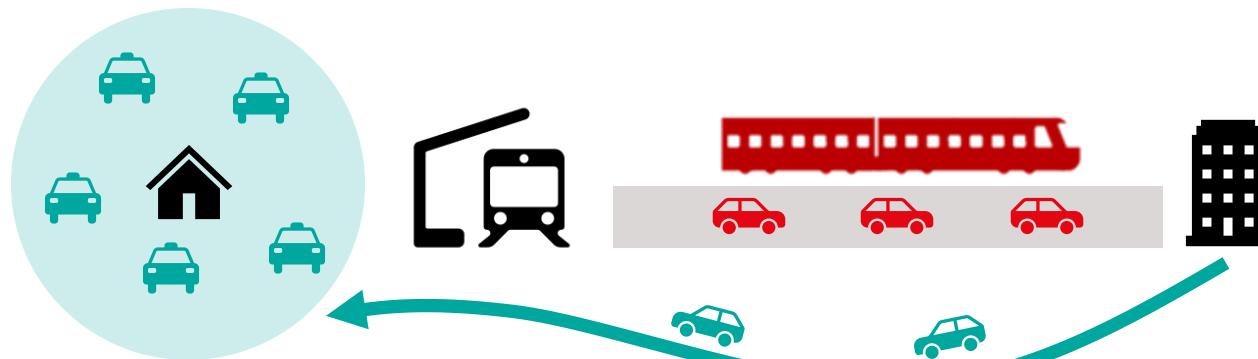


- Path cost
 - Door-to-door $c_{D2D} = c_0^{D2D} + w(V) + t_0 + t_{\text{highway}}(q_{D2D})$
 - First-mile $c_{1st} = c_0^{1st} + w(V) + t_0 + t_{\text{train}}$

* travel time to train station, assumed fixed

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service



- Path cost

- Door-to-door

$$c_{D2D} = c_0^{D2D} + w(V) + t_0 + t_{\text{highway}}(q_{D2D})$$

- First-mile

$$c_{1st} = c_0^{1st} + w(V) + t_0 + t_{\text{train}}$$

* travel time on highway,
dependent of D2D demand

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

- Path cost
 - Door-to-door $c_{D2D} = c_0^{D2D} + w(V) + t_0 + t_{\text{highway}}(q_{D2D})$
 - First-mile $c_{1st} = c_0^{1st} + w(V) + t_0 + t_{\text{train}}$

* travel time on train, assumed fixed

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

- Ride-hailing vehicle supply

$$N = V + (q_{D2D} + q_{1st})(w(V) + t_0) + q_{D2D}(t_{\text{highway}}(q_{D2D}) + t_r)$$

*** total vehicle time**

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

- Ride-hailing vehicle supply

$$N = V + (q_{D2D} + q_{1st})(w(V) + t_0) + q_{D2D}(t_{\text{highway}}(q_{D2D}) + t_r)$$

*** empty vehicle time**

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service

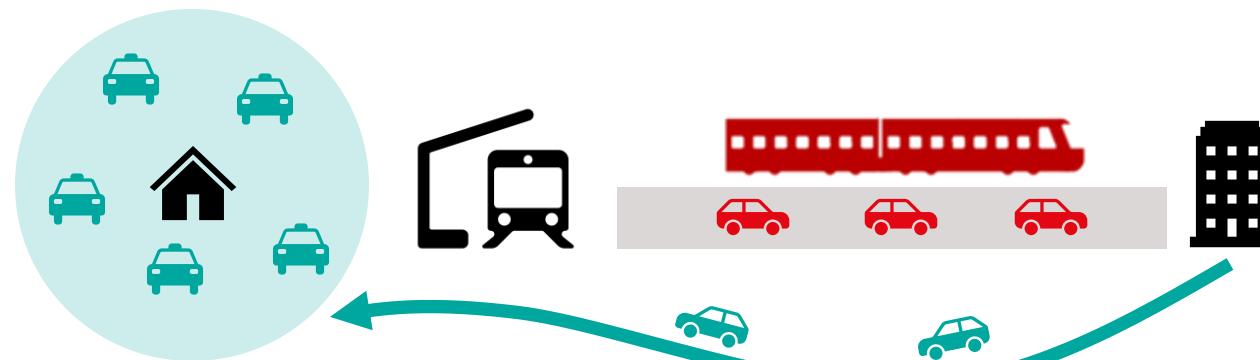
- Ride-hailing vehicle supply

$$N = V + (q_{D2D} + q_{1st})(w(V) + t_0) + q_{D2D}(t_{\text{highway}}(q_{D2D}) + t_r)$$

*** pickup and first-mile travel time**

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service



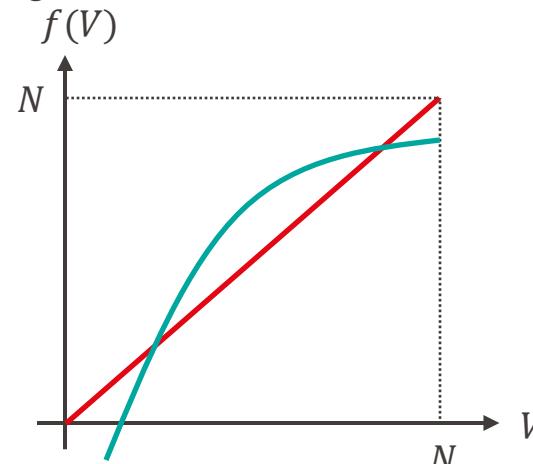
- Ride-hailing vehicle supply

$$N = V + (q_{D2D} + q_{1st})(w(V) + t_0) + q_{D2D}(t_{\text{highway}}(q_{D2D}) + t_r)$$

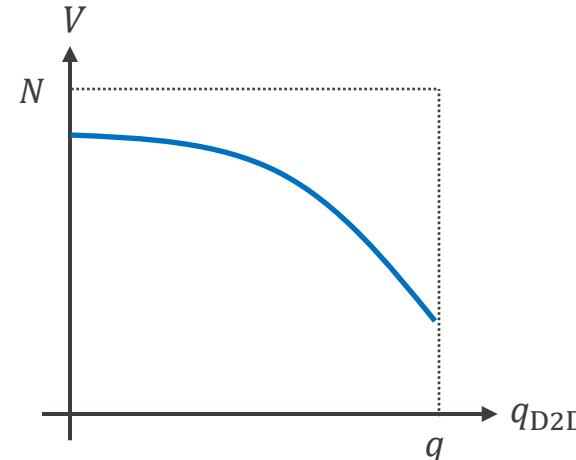
*** highway travel and return time**

First-mile service

- Static traffic assignment + first-mile service
 - A single OD network with ride-hailing service



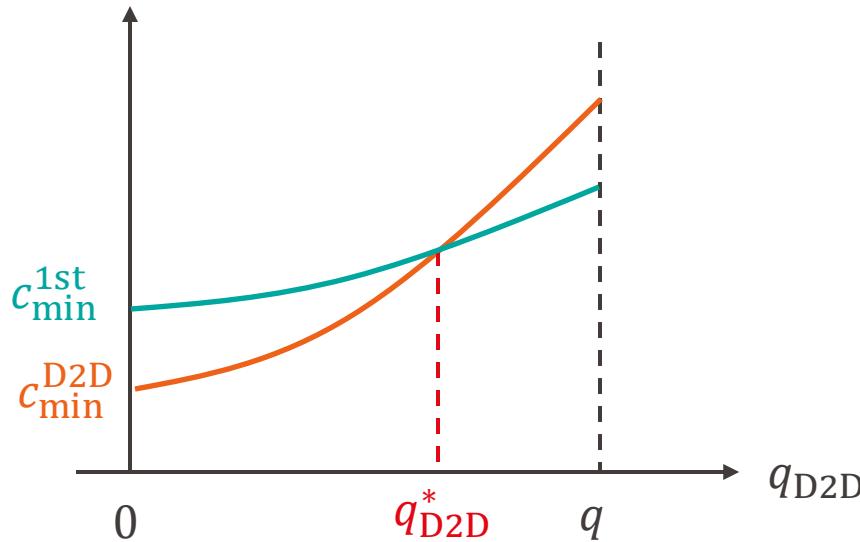
- Ride-hailing vehicle supply



$$N = V + (q_{D2D} + q_{1st})(w(V) + t_0) + q_{D2D}(t_{\text{highway}}(q_{D2D}) + t_r)$$

$$\Rightarrow V = N - (q_{D2D} + q_{1st})(w(V) + t_0) - q_{D2D}(t_{\text{highway}}(q_{D2D}) + t_r)$$

- Static traffic assignment + first-mile service
 - Equilibrium conditions



$$c_{\min}^{D2D} = c_0^{D2D} + w(V_{\max}) + t_0 + t_{\text{highway}}(0)$$

$$c_{\min}^{1st} = c_0^{1st} + w(V_{\max}) + t_0 + t_{\text{train}}$$