
Geothermal Resource Development

Hydrology of geothermal systems
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Large portions of Europe have 

subsurface temperatures in excess

of 100°C

How can we extract that heat?

What is geothermal energy?
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Primary resource: 

Heat

Resource vector:

Water

Extracting geothermal energy

Source: https://www.greenfireenergy.com/geothermal-energy/how-does-geothermal-energy-work/
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Primary resource: 

Heat

Resource vector:

Water

How do we get from the injection well to the 

production well?

Extracting geothermal energy

Source: https://www.greenfireenergy.com/geothermal-energy/how-does-geothermal-energy-work/
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1. Matrix porosity and permeability

2. Fracture porosity and permeability

3. Effect of depth

4. Hydrological properties of real geothermal systems

Topics covered today...
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Porosity recap: 

• Fraction of pore space in a material

• Scalar

• Different types of porosity are important for 
different physical properties:

• total porosity  uniaxial compressive 
strength

• connected porosity  permeability

Bourbié and Zinszner, 1985
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Porosity

𝝓 =
𝑽𝒑

𝑽𝒕
=
𝑽𝒕 − 𝑽𝒔
𝑽𝒕

𝑽𝒑 → pore volume

𝑽𝒔 (𝑜𝑟 𝑉𝑚) → solid (matrix) volume

𝑽𝒕 (𝑜𝑟 𝑉𝑏) → total (bulk) volume

Porosity 𝝓 is defined as the ratio of pore volume to total 

volume.
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• Property that describes the ease with 

which fluid can travel through a 

material

• Material constant

• Varies over several orders of 

magnitude

• Permeability is controlled by the 

connectivity, geometry, and 

tortuosity of the pore space.

• Critical parameter for geosciences 

problems, especially in the lithosphere

Permeability recap: 
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Rock masses
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https://www.worldatlas.com/articles/how-

are-sedimentary-rocks-formed.html

https://www.isleofmullcottages.com/blog/top-5-

locations-for-columnar-basalt/

https://stock.adobe.com/fr/search?k=m

etamorphic+rocks

https://www.nps.gov/moru/learn/nature/geologicactivi

ty.htm

A. KushnirA. Kushnir

A. Kushnir

A. Kushnir
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Components of rock masses

https://hardscape.co.uk/granite-facts-geology/
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Matrix porosity and permeability
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Pore sizes in rocks and sediments are extremely
variable.

Pore size distribution of rocks can be approximated by 
a log-normal probability density function (PDF)

PDFs are mathematical simplifications that we apply to 
geometrically complex systems 

• they can provide quantitative approximations for 
modelling the behaviour of natural systems, 
including fluid flow.

Matrix porosity

Source: Glassley, W. E., Geothermal Energy
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Fluids need connected pore spaces through which to flow.

Pore connectivity

Source: Glassley, W. E., Geothermal Energy

Other factors:

• Tortuosity

• Pore throat size

• Fluid viscosity
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Consider a cylinder of permeable material.

Darcy’s Law
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L

A

L – length of the sample

A – cross-sectional area of the sample

Darcy’s Law
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L

A

P
u

P
d

L – length of the sample

A – cross-sectional area of the sample

Pu – pore fluid pressure at the inlet of the sample

Pd – pore fluid pressure at the outlet of the sample

x=0 x=L

Darcy’s Law
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L

A

P
u

P
dΔP

L – length of the sample

A – cross-sectional area of the sample

Pu – pore fluid pressure at the inlet of the sample

Pd – pore fluid pressure at the outlet of the sample

ΔP = Pu - Pd

x=0 x=L

Darcy’s Law
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L

AQ
v

P
u

P
dΔP

L – length of the sample

A – cross-sectional area of the sample

Pu – pore fluid pressure at the inlet of the sample

Pd – pore fluid pressure at the outlet of the sample

ΔP = Pu - Pd

Darcy’s Law:

Qv is the volumetric flow rate

μ is the viscosity of the pore fluid

k is the permeability of the material and does not depend on the fluid

Qv =
-kA

m

dP

dx

x=0 x=L

Darcy’s Law
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L

AQ
v

P
u

P
dΔP

L – length of the sample

A – cross-sectional area of the sample

Pu – pore fluid pressure at the inlet of the sample

Pd – pore fluid pressure at the outlet of the sample

ΔP = Pu - Pd

Darcy’s Law:

Integrated over the sample length

Qv is the volumetric flow rate

μ is the viscosity of the pore fluid

k is the permeability of the material and does not depend on the fluid

Qv =
-kA(Pd -Pu )

mL
Qv =

-kA

m

dP

dx

x=0 x=L

Darcy’s Law
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L

AQ
v

P
u

P
dΔP

L – length of the sample

A – cross-sectional area of the sample

Pu – pore fluid pressure at the inlet of the sample

Pd – pore fluid pressure at the outlet of the sample

ΔP = Pu - Pd

x=0 x=L

Darcy’s Law

Darcy’s Law:

Qv is the volumetric flow rate

μ is the viscosity of the pore fluid

k is the permeability of the material

Qv =
-kA(Pd -Pu )

mL

Five conditions must be met for this equation to 
be valid: 

• Laminar flow 

• No fluid accumulation

• Single-phase fluid flow 

• The porous media is not reactive with the flowing 
fluid

• The fluid is incompressible 
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𝑞 =
𝑄

𝐴
= −

𝑘

𝜇
×
∆ 𝑃 − 𝜌𝑔𝑧

∆𝐿

Where:

q – flux (m3/m2.s = m/s)

Q – volumetric flow rate (m3/s)

A – area (m2)

P – pressure (MPa)

k – permeability (m2)

∆ L – length of the flow regime over the pressure gradient (m)

𝜌 – fluid density (kg/m3)

g – acceleration due to gravity (m2/s)

z – vertical distance of the system (m)

𝜇 – dynamic viscosity (kg/m.s)

Darcy’s Law

Pressure gradient

L

A
Q

v

P
u

P
d

Δ
P∆ 𝑃 − 𝜌𝑔𝑧
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Which flow path is most permeable?

Permeability

Source: Glassley, W. E., Geothermal Energy

Flow path 1

Flow path A

Flow path B
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k1 = 0 m2 < kB < kA

Permeability

Source: Glassley, W. E., Geothermal Energy

Flow path A

Flow path B

Flow path 1
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• Permeability k has dimensions of area, or m2 in SI units. 

• But the traditional unit is the Darcy:

1 Darcy ≅ 10−12 m2

(In a water saturated rock with permeability of 1 Darcy, a pressure gradient of 

1 bar/cm gives a flow velocity of 1 cm/sec.)

Permeability
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𝑘 =
𝑛3/ 1 − 𝑛 2

5 × 𝑆𝐴 2

Where:

k – permeability (m2)

𝑛 – porosity, as a fraction

𝑆𝐴 – specific surface area of the pore spaces per unit 

volume of solid (cm2/cm3)

Kozeny-Carman Equation
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𝑘 =
𝑛3/ 1 − 𝑛 2

5 × 𝑆𝐴 2

Where:

k – permeability (m2)

𝑛 – porosity, as a fraction

𝑆𝐴 – specific surface area of the pore spaces per unit 

volume of solid (cm2/cm3)

Kozeny-Carman Equation

𝑘 = 𝑐𝑜 ×
1

𝑇
×

𝑛3/ 1 − 𝑛 2

𝑆𝐴 2

Where:

k – permeability (m2)

𝑛 – porosity, as a fraction

𝑆𝐴 – specific surface area of the pore spaces per unit 

volume of solid (cm2/cm3)

T – tortuosity of the flow pathway (ratio of the 

actual path taken between two points, Lt, and a 

straight path between two points, L, T=Lt /L)

co – a constant characteristic of the system
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Measure of the ability of a rock to allow fluid flow.

The volume of fluid flowing through a specified cross-sectional area under the influence of a unit 

hydraulic gradient. 

𝐾 =
𝑘

𝜇
× 𝜌𝑔

Units: m/s

Permeability and hydraulic conductivity are related by the characteristics of the fluid.

Hydraulic conductivity is fluid-dependent; permeability is not!

Hydraulic conductivity
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Fracture porosity and permeability
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Fracture permeability depends on:

• Fracture aperture

• Fracture orientation

• Fracture length

• Fracture roughness

• Interconnectedness with other

fractures

Fracture permeability
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Hydraulic conductivity of a fracture:

𝐾𝑓 =
𝜌 × 𝑔

𝜇
×
𝑎2

12

a – fracture aperture (m)

Permeability of a fracture:

?

Hydraulic conductivity and permeability of a fracture
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Fracture transmissivity

32



The discharge through a fracture at some velocity across a given unit aperture.

𝑇𝑓 =
𝜌×𝑔

𝜇
×

𝑎2

12
× 𝑎 =

𝜌×𝑔×𝑎3

12×𝜇

Note: This is often referred to the cubic law because of the dependence of the transmissivity on the 

cube of the aperture of the fracture. 

Fracture transmissivity
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The discharge through a fracture at some velocity across a given unit aperture.

𝑇𝑓 =
𝜌×𝑔

𝜇
×

𝑎2

12
× 𝑎 =

𝜌×𝑔×𝑎3

12×𝜇

Note: This is often referred to the cubic law because of the dependence of the transmissivity on the 

cube of the aperture of the fracture. 

Fracture transmissivity

Fluid properties Fracture aperture
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The discharge through a fracture at some velocity across a given unit aperture.

𝑇𝑓 =
𝜌×𝑔

𝜇
×

𝑎2

12
× 𝑎 =

𝜌×𝑔×𝑎3

12×𝜇

Careful: Fracture aperture can vary widely within a fracture set and within individual fractures! 

Fracture surface roughness also contributes to the tortuosity of fractures and may reduce the 

effective fracture aperture.

Fracture transmissivity

Fluid properties Fracture aperture
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Fracture aperture matters!

For a given fracture spacing:

• Increasing fracture width by an order of 

magnitude increases permeability by 2 

orders of magnitude

For a given fracture width:

• Increasing fracture spacing by and order of 

magnitude increases permeability by one 

order of magnitude

Permeability is sensitive to fracture 

aperture.

Source: Glassley, W. E., Geothermal Energy
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Effect of depth
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Porosity and permeability with depth

Source: Glassley, W. E., Geothermal Energy

North Sea sandstones
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Porosity and permeability with depth

Source: Glassley, W. E., Geothermal Energy

In general: 

• porosity decreases with 

increasing depth, due to 

compaction and recrystallisation

Magnitude of decrease in porosity 

depends on the rock strength, when 

porosity reduction is compaction-

controlled. 

What happens to fractures with 

depth?

North Sea sandstones
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Empirical relationships for permeability reduction with depth

Consider fracture aperture change with depth:

𝑞 = 𝐶 × 𝑎𝑐
3 × ∇𝑃

Where : 

𝑞 – fluid flux

𝐶 – empirical constant

𝑎𝑐 – « conducting » aperture

∇𝑃 – pressure change with depth

Caveats:
• Conducting aperture depends on roughness, tortuosity, etc.

• This approximation is ok at depths less than a kilometer

• Below 1 km depth, permeability becomes hard to predict: need on-site investigations!
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Porosity and permeability with depth

Source: Glassley, W. E., Geothermal Energy

North Sea sandstones

Depth of 

deepest 

borhole in the 

world
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Hydrological properties of real geothermal systems
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Hydrological properties of real geothermal systems

Permeability-porosity ranges for various 

geothermal systems.

What are some conclusions that we can 

draw?

Source: Glassley, W. E., Geothermal Energy
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Hydrological properties of real geothermal systems

• To achieve the same permeability, matrix-dominated 

geothermal systems need higher connected porosities.

• Practicality: Geothermal exploration focusses on 

regions where there is pre-existing hydrological data; this 

saves resources and reduces project risk!

Source: Glassley, W. E., Geothermal Energy
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Hydrological properties of real geothermal systems

• To achieve the same permeability, matrix-dominated 

geothermal systems need higher connected porosities.

• Practicality: Geothermal exploration focusses on 

regions where there is pre-existing hydrological data; this 

saves resources and reduces project risk!

• Low fracture porosities (as low as 0.2%) can support 

sufficient fluid flow for power production.

• Practicality: Fractures are key, but they can be hard to 

locate by drilling. We need high-quality, high-resolution 

subsurface data on fracture properties.

Source: Glassley, W. E., Geothermal Energy
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Hydrological properties of real geothermal systems

• To achieve the same permeability, matrix-dominated 

geothermal systems need higher connected porosities.

• Practicality: Geothermal exploration focusses on 

regions where there is pre-existing hydrological data; this 

saves resources and reduces project risk!

• Low fracture porosities (as low as 0.2%) can support 

sufficient fluid flow for power production.

• Practicality: Fractures are key, but they can be hard to 

locate by drilling. We need high-quality, high-resolution 

subsurface data on fracture properties.

• Porosity and permeability variability in natural systems 

can span orders of magnitude at a single site. 

• Practicality: Extensive exploration programs need to 

assess for porosity-permeability anisotropies. 

Source: Glassley, W. E., Geothermal Energy
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Key points:

Subsurface fluid flow depends on the characteristics of porosity, including pores and 

cracks.

Permeability controls the volumetric flow rate that can be accommodated by a system. 

Volumetric flow rate controls the rate at which energy can be transferred from to the 

surface.

Variables controlling flow in porous media include: the extent to which pores are 

connected, tortuosity, and surface area (geometry) affecting flow.

Variables controlling flow in fracture media include: aperture and number of fractures per 

rock volume.

Porosity and permeability are affected by lithostatic pressure (i.e., they vary with depth).
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