

Course CIVIL 469

Summary of week#01 (19.02.2025), 4 hours

Presentation:

- Lecturers and assistants
- Course time schedule
- Evaluation
- Accident de Sayano-Shushenskaya 2009

1. Water cycle and background hydrology

- Solar power
- Key water resource => river flow discharge
- Definition of a watershed / river catchment area
- Hydrometry, from measuring water levels and section geometry, through velocities, to obtain discharges. Inherent uncertainty.
- Hydrological variability vs. forced variability & climate warming

2. Physical principles of hydropower

- Gross head
- Energy yield (or energy production)
- Methods to assess hydropower potential
 - Surface potential
 - Linear potential
 - Usable potential (or technically feasible)
- Examples

3. Hydropower definitions

- a. Flow Duration curve
- b. Energy yield (in kWh)
- c. Mean annual runoff (MAR, in hm³)
- d. Modulus or Q_{mean}
- e. Floods & Spillage
- f. Eco-flows
- g. Water use (in hm³)

4. Exercise 1

- Low-head run-of-the-river plant (“follower”) – Lavey HPP
 - Additional background data
 - The Lavey HPP is equipped with vertical Kaplan units (3 x 30 MW)
 - The hydraulic tunnel runs with pressurized flow, is concrete lined, is 4 km long and has an internal diameter of 7.70 m
 - The maximum operational water level upstream is 446 masl.
 - The minimum tailwater level downstream is 412 masl (note: when considering the powerhouse is stopped and there is no river backwater effect).
 - High-head pumping scheme – Lutry SP