CIVIL 468: Dynamics of Structures

FACULTE ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT ENAC
INSTITUT D’INGENIERIE CIVILE IIC : F
Laboratoire des Structures Métalliques Résilientes - RESSLab I l

Téléphone : +41 21 693 24 27

Fax: +41 21 693 28 68

E-mail : dimitrios.lignos@epfl.ch R E S S La b

Site web : —u /lresslab.epfl.ch Resilient Steel Structures Laboratory

Address: EPFL ENAC IIC RESSLAB
GC B3 485, Station 18,

CH-1015, Lausanne

CIVIL 468: Dynamics of structures

Assignment #1

Notes:

1. You are allowed to work in groups of 2 people
2. Submissions shall be done through Moodle
3. Both students working in groups shall submit the same assignment in Moodle

Prof. Dr. Dimitrios G. Lignos, RESSLab, EPFL


mailto:dimitrios.lignos@epfl.ch
http://resslab.epfl.ch/

CIVIL 468: Dynamics of Structures

Question 1 — (25 points) CORRECTED BY G. NAJID.

A rigid disk of mass m is mounted at the end of a flexible shaft as shown in Figure 1-1.
Neglecting the weight of the shaft and neglecting damping, derive the equation of free torsional
vibration of the disk. The shear modulus (of rigidity) of the shaft is G.

NOTE: You will have to review a bit your structural mechanics note on pure torsion.

Figure 1-1 — Rigid disk and shaft in pure torsion
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CIVIL 468: Dynamics of Structures

Solution

The forces acting on the disk are illustrated in the figure below.

Figure 2: Forces acting on the disk

Writing the equation of motion using Newton’s second law of motion in polar
coordinates:

—fi=1,-0; (5 points) (1)
Where:
[y =m" R; ; (5 points) (2)
Writing the torque-twist relation:
fs = (%) 0, (5 points) (3)
Where:
d4
J=m-2; (4)

Substituting Eq.(3) into Eq. (1):
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CIVIL 468: Dynamics of Structures

L-d+(2)e=0; (5 points) (5)
Or:
(m : R;)é + (n : :—:%) 6 =0; (5points) (6)
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CIVIL 468: Dynamics of Structures

Question 2 — (25 points) CORRECTED BY A. BONZLI

A heavy rigid platform of weight w is supported by four columns, hinged at the top and the
bottom, and braced laterally in each side panel by two diagonal steel wires as shown in Figure
2-1. Each diagonal wire is pretensioned to a high stress; its cross-sectional area is A and
elastic modulus is E. Neglecting the mass of the columns and wires, derive the equation of
motion governing free vibration in (a) the x-direction, and (b) the y-direction.

NOTE: Because of high pretension, all wires contribute to the structural stiffness (not the same
with cables that in compression do not provide stiffness)
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Figure 3-1 — single story building with wires
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CIVIL 468: Dynamics of Structures

Solution

Part (a)

The first step to deriving the equation of motion is to determine the rigidity of the system. In
the x-direction the stiffness is provided by the braces in tension as well as in compression.
Since the braces are symmetrical, the stiffness from the brace in compression is the same as
the stiffness of the brace in tension.

Note: In this case the braces working in compression add the same rigidity to the system as the
braces in tension. This is only possible due to the prestressing. Without this prestressing the
braces would start to buckle in compression and lose their resistance as soon as the buckling
starts.

The stiffness of one frame with one brace is equal to:

iy {F=r - Lateral Frame Stiffness,
- — Y E— X
= ,Aan\_y,./// i J,‘ ’;.;/,”/ i k\\ ‘J{ F EA BR LZB
= El Lo | L 1 te —
; e i/‘ﬂ ;"T/</ if‘/ A (L + L3/
/ \\—\\ 1l a ,‘, i

In our case this would give us:

E-A-h? E-Ah? _ E-Ah? _ EA

kbrace = (h2+h2)g = (2-h2)% = 2+2:h3 ~ 2+/2'h (2-1)

8 points for stiffness
of one brace

In the x-direction we have four braces, therefore we have four times the rigidity (2.1):

_4. _ YEA _V2EA 5 points for total
o =4 Korace = 370 = T @2) stiffness

The second step is to determine the mass of the system. In this problem all weight from the
structural elements is neglected. The only weight there is, is the weight of the platform. Weight
is given in Newton/Kilonewton. To determine the mass of the platform, we need to divide it

by the gravitational acceleration:

m=w/g (2.3) of weight in mass

2 points for transformation

Thus, the equation of motion governing free vibration in the x-direction can be written as:

mit, + kyu, = %ﬁx n \/7:'/1 u, 5 points for total

=0 (2.4) equation of motion

Part (b)

As can be seen in the figure above, the system has exactly same structural features as in x-
direction. It has the same height, width, mass and number of braces, with the same cross
section. Therefore, we can deduce:

ky = ky = ﬁfﬂ (2.5) 5 points for saying
And the equation of motion can be written as: that system in y is
w.. VZ-E-A the same.
0 (2.6)

mii, + kyuy = ;uy +

h Uy =
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CIVIL 468: Dynamics of Structures

Question 3 — (25 points) CORRECTED BY A. BONZLI

A machine weighting 1kN is mounted on a supporting system consisting of four springs and
four dampers (i.e., device that supplements high levels of damping ratio). The vertical
deflection of the supporting system under the weight of the machine is measured as 20mm.
The dampers are designed to reduce the amplitude of vertical vibration to one-eighth of the
initial amplitude after two complete cycles of free vibration. Answer the following questions:

3.1. Calculate the undamped natural frequency.

3.2. Calculate the damping ratio.

3.3. Calculate the damped natural frequency.

3.4. Comment on the effect of damping on the natural frequency.

5 points for having

Solution ) .
consistent units.

Part3.1 | 6points
The first step is to calculate the natural frequency. We know that:

0, = |E (3.1)

m

Therefore, we need to determine the seismic mass, as well as the rigidity of the system. We
know that the machine weights w = 1 kN and we neglect the weight of the structural system.
We can calculate the seismic mass as:

m=%=220" _ 101.94 kg (3.2) 216

g 9.81m/s?

To determine the total rigidity of the springs we can compare the deflection due to the weight
of the machine to the weight of the machine:

k = 229N _ 50/000 N /m (3.3) 216
0.02m
Finally, we can calculate the circular natural frequency as in formula (3.1)
216
k 50’000 N/m 50’000 kg * m/s?/m
= |—= = = /490.48/s? = 22.15 rad
“n= I \/ 101.94 kg j 101.94 kg /s rad/s

The natural frequency then is: f, = ‘;’—; =3.52/s

Note: Make sure the units cancel each other out under the square root. It does not matter what
units are used if you are consistent.

Part3.2 | 6points
The next step Is to determine the damping ratio of the system. We are given the information
that the dampers reduce the amplitude of the vibration to 1/8 of the initial amplitude within two
complete cycles. Assuming small damping, we can use the following relation:
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CIVIL 468: Dynamics of Structures

ln(ul)z2n-(-j (3.4) 2/6

Uj+1

1

Knowing that in two cycles the amplitude reduces to 1/8 we can determine j = 2 and uz = %
Thus, we find:

(8) 2/ 6 for assuming

In
2/6 (= Tk 0.165 =16.5% the right j and u3

Note: It is also right to assume the exact relationship between damping and amplitude. The
formula would be the following:

ln( ! ) = 2mdJ (3.5)

Ujt1 1-42

Solving the equation with the same j and u; we get:

¢=0.163=16.3%

Part3.3 | 4points
Next, we want to know the damped circular natural frequency of the system. The damped
natural frequency is defined as:

Wp = Wy /1 — {2 (3.6)

Implementing it numerically we get:

wp = wy /1 — (% =22.15-4/1 - 0.1652 = 21.84/sec

Part3.4 | 4points
By comparing the natural Trequency w,, to the damped natural frequency wp, we can see that
the damping slightly reduces the natural frequency of vibration of the system. This effect can
be seen by comparing the curves of a damped to an undamped system as in the figure below.
Some people call this damped period also “pseudo-period” as it is not the natural period of the
system but the one measurable. Usually, the difference between the two periods is not very big
and oftentimes we can assume wp = w,,.
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Figure 3-1: period of vibration with/without damping
(Figure from the book “Dynamique des Structures” de P. Lestuzzi et L.F.C. Smith)
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CIVIL 468: Dynamics of Structures

Question 4 — (25 points) CORRECTED BY G. NAJID.

An undamped single-degree-of-freedom system is subjected to the triangular pulse in Figure
4-1. Answer to the following questions:

p

3

Do\ |

v

tg t

Figure 4-1 — Triangular pulse

4.1. Show that the displacement response is as follows:

t 1 (Tn) ) <2nt) D<i<i

u(t) )ty 2m\ty sin T, /)’ Slstg
(Ust)o 2n 1 (Tn) _2m 1 (Tn>  2mt

— (-t —|— —(t—tg) —=—\|— - t=>t

cos T (t—tg) + 27\t sin T (t—tq) 27\t sin T d

Plot the response for two values of t; /T, = 1/2 and 2.

4.2. Derive the equations for the dynamic response factor R, during (i) the forced vibration
phase and (ii) the free vibration phase.

4.3. Plot R, for the two phases against t;/T,. Also plot the shock spectrum (overall
maximum response from both the forced and free vibration phases).

4.4. During the lecture series and the in-class exercise of Week #3, we showed that for
small values of t; /T, the shock spectrum can be determined by treating the acting
force as an impulse of a certain amplitude I. Determine the shock spectrum by this
approach and superimpose it on the plot from Question 4.3. Determine the error in this
approximate result for t;/T,, = 1/4?
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Solution
p
A
Do |
tq t
4.1. (10 points)
The equation of motion is given as:
mii + k u—{o £>t, (1)
i- Forced vibration phase: (4 points)
The response is given by:
t in(wnt)
u(®) = (o (5 -5 ) s e <ty 2)
(2/4)
Rewriting in terms of ;—d gives:
2
ut) _t Sin(ﬁt) ot 1 Ty . (21
G Ty o (a) sin (E t) st <ty 3)
(2/4)
ii- Free vibration phase: (4 points)

The free vibration resulting from u(t,) and u(t,) is:

u(t) = u(ty) cos[wy(t — ta)] + L sin[w, (t — t4)] (4)
(2/4)

From equation (3), u(t,) and u(t,) are determined:

u(ty) = (ue)o (1 - 75 22) )
(0.5/4)
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i(ta) = (5o (1 = cos(wyt)) (6)
(0.5/4)
Substituting equation (5) and (6) in equation (4) gives:

u(t) . _sin(wnt) sinfwn (t-tg)] |
e = cos[w, (t — tg)] s oty st =ty (7
(1/4)
Rewriting in terms of ;—d gives:
wo) _ 2 2 (mYgin (28 (¢ — — 2 (™Y sin (2"¢):
29— cos[E2 -] + 2 (2)on (2 - ) - 2 (2) sin (20)
t=tg (8
(1/4)
ii- Plotting the responses: (2 points)

Response for td/Tn=1/2

u(t)/ustO [-]

Forced Vibration phase 0 <t <td
Free Vibration phase t > td

_1-5 1 1 1 | |
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Response for td/Tn=2

=)
@ i
=
S 02 - — .
orced Vibration phase 0 <t <td
Free Vibration phase t > td
04 =
-0.6 7
-0.8 7
-1 | 1 | I 1
0 0.5 1 1.5 2 2.5 3 3.5 4
t/Tn [-]
4.2. (5 points)

During the forced vibration phase, u is a non-decreasing function of t. Thus, the maximum
value of u during this phase can be found by evaluating equation (3) at t = t;:

=20 1T gin(Fe):
Rd - (ust)o =1 2mtg s (Tn td)’ (9)
(2/5)
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In the free vibration phase, the response of the system is given by equation (4) with the

amplitude:
. 2
uo = ult)? + [<2]" (10
(2/5)
Substituting equations (5) and (6) and manipulating gives:
_ Ta o (2mta\]P TR ., (mtd
Rq = \/[1 2mty sm( T, )] + nzté'51n4 ( T, ) (11)
(1/5)
4.3. (3 points)

The equations (11) and (9) are plotted: (2/3)

14

Forced Vibration
Free Vibration

td/Tn [-]

The overall maximum response is the larger of the maxima shown in the figure above, it is
plotted in the following figure to obtain the shock spectrum: (1/3)
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14 T T T T T

1.2 4

Rd [-]

td/Tn [-]

4.4, (7 points)

For small enough values of the ratio t, /T, the force acting on the system is considered as an
impulse as:

I= [ te.p(t) dt =224 (12)
217
Hence:
w. = Po L.
" kT,
arm)
With :
4
Ust = ?;
t
Ro=2=72; (13)
217

The shock spectrum by this approach superimposed on the plot from Question 4.3 gives:
arm
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Precise Shock spectrum
Approximation Shock spectrum (small values of td/Tn

t 1. .
The error for the value of T—d =, Isgivenas:
n

tq 1 tq 1
Rd,precise(ﬁ—z) _Rd,approximate (ﬁ_Z)

error = = 7.09 % arm

t 1
Raprecise (ﬁzz)

ty 1

Rd,precise (T_n = Z) = 0.733 [—]

ta 1

Rd:approximate <T_n = Z) = 0.785[—]
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