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Notes:  

 

1. You are allowed to work in groups of 2 people 

2. Submissions shall be done through Moodle 

3. Both students working in groups shall submit the same assignment in Moodle 
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Question 1 – (25 points) CORRECTED BY G. NAJID. 

 

 

A rigid disk of mass 𝑚 is mounted at the end of a flexible shaft as shown in Figure 1-1. 

Neglecting the weight of the shaft and neglecting damping, derive the equation of free torsional 

vibration of the disk. The shear modulus (of rigidity) of the shaft is 𝐺. 

 

NOTE: You will have to review a bit your structural mechanics note on pure torsion. 

 

 

Figure 1-1 – Rigid disk and shaft in pure torsion 
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Solution 

 

 

The forces acting on the disk are illustrated in the figure below. 

 

 

 

 
Figure 2: Forces acting on the disk 

Writing the equation of motion using Newton’s second law of motion in polar 

coordinates: 

 

 

−𝑓𝑠 = 𝐼0 ⋅ 𝜃̈ ;                 (5 points)               (1) 

Where: 

 

𝐼0 = 𝑚 ∙
𝑅2

2
 ;               (5 points)               (2) 

 

Writing the torque-twist relation: 

 

 

𝑓𝑠 = (
𝐺𝐽

𝐿
) 𝜃 ;             (5 points)               (3) 

 

Where: 

 𝐽 = 𝜋 ⋅
𝑑4

32
 ;                                               (4) 

 

 

Substituting Eq.(3) into Eq. (1): 
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𝐼0 ⋅ 𝜃̈ + (
𝐺𝐽

𝐿
) 𝜃 = 0;               (5 points)              (5) 

 

Or: 

 

(𝑚 ∙
𝑅2

2
 ) 𝜃̈ + (𝜋 ⋅

𝑑4

32

𝐺

𝐿
) 𝜃 = 0;      (5 points)              (6) 
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Question 2 – (25 points) CORRECTED BY A. BONZLI 

 

A heavy rigid platform of weight w is supported by four columns, hinged at the top and the 

bottom, and braced laterally in each side panel by two diagonal steel wires as shown in Figure 

2-1. Each diagonal wire is pretensioned to a high stress; its cross-sectional area is A and 

elastic modulus is E. Neglecting the mass of the columns and wires, derive the equation of 

motion governing free vibration in (a) the x-direction, and (b) the y-direction.  

 

NOTE: Because of high pretension, all wires contribute to the structural stiffness (not the same 

with cables that in compression do not provide stiffness) 

 

 

Figure 3-1 – single story building with wires 
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Solution  

Part (a)  

The first step to deriving the equation of motion is to determine the rigidity of the system. In 

the x-direction the stiffness is provided by the braces in tension as well as in compression. 

Since the braces are symmetrical, the stiffness from the brace in compression is the same as 

the stiffness of the brace in tension. 

 

Note: In this case the braces working in compression add the same rigidity to the system as the 

braces in tension. This is only possible due to the prestressing. Without this prestressing the 

braces would start to buckle in compression and lose their resistance as soon as the buckling 

starts. 

 

The stiffness of one frame with one brace is equal to: 

 
In our case this would give us: 

𝑘𝑏𝑟𝑎𝑐𝑒 =
𝐸∙𝐴∙ℎ2

(ℎ2+ℎ2)
3
2

=
𝐸∙𝐴∙ℎ2

(2∙ℎ2)
3
2

=
𝐸∙𝐴∙ℎ2

2∙√2∙ℎ3
=

𝐸∙𝐴

2∙√2∙ℎ
    (2.1) 

 

In the x-direction we have four braces, therefore we have four times the rigidity (2.1): 

𝑘𝑥 = 4 ∙ 𝑘𝑏𝑟𝑎𝑐𝑒 =
4∙𝐸∙𝐴

2∙√2∙ℎ
=

√2∙𝐸∙𝐴

ℎ
    (2.2) 

The second step is to determine the mass of the system. In this problem all weight from the 

structural elements is neglected. The only weight there is, is the weight of the platform. Weight 

is given in Newton/Kilonewton. To determine the mass of the platform, we need to divide it 

by the gravitational acceleration: 

𝑚 = 𝑤/𝑔   (2.3) 

Thus, the equation of motion governing free vibration in the x-direction can be written as: 

𝑚𝑢̈𝑥 + 𝑘𝑥𝑢𝑥 =
𝑤

𝑔
𝑢̈𝑥 +

√2∙𝐸∙𝐴

ℎ
𝑢𝑥 = 0    (2.4) 

Part (b)  

As can be seen in the figure above, the system has exactly same structural features as in x-

direction. It has the same height, width, mass and number of braces, with the same cross 

section. Therefore, we can deduce: 

𝑘𝑦 = 𝑘𝑥 =
√2∙𝐸∙𝐴

ℎ
       (2.5) 

And the equation of motion can be written as: 

𝑚𝑢̈𝑦 + 𝑘𝑦𝑢𝑦 =
𝑤

𝑔
𝑢̈𝑦 +

√2∙𝐸∙𝐴

ℎ
𝑢𝑦 = 0    (2.6) 

8 points for stiffness 

of one brace 

5 points for total 

stiffness  

2 points for transformation 

of weight in mass  

5 points for total 

equation of motion  

5 points for saying 

that system in y is 

the same.  
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Question 3 – (25 points) CORRECTED BY A. BONZLI 

 

 

A machine weighting 1𝑘𝑁 is mounted on a supporting system consisting of four springs and 

four dampers (i.e., device that supplements high levels of damping ratio). The vertical 

deflection of the supporting system under the weight of the machine is measured as 20𝑚𝑚. 

The dampers are designed to reduce the amplitude of vertical vibration to one-eighth of the 

initial amplitude after two complete cycles of free vibration. Answer the following questions: 

 

3.1. Calculate the undamped natural frequency. 

3.2. Calculate the damping ratio. 

3.3. Calculate the damped natural frequency. 

3.4. Comment on the effect of damping on the natural frequency. 

 

 

Solution  

Part 3.1 

The first step is to calculate the natural frequency. We know that: 

𝜔𝑛 = √
𝑘

𝑚
        (3.1) 

Therefore, we need to determine the seismic mass, as well as the rigidity of the system. We 

know that the machine weights 𝑤 = 1 𝑘𝑁 and we neglect the weight of the structural system. 

We can calculate the seismic mass as: 

𝑚 =
𝑤

𝑔
=

1000 𝑁

9.81 𝑚 𝑠2⁄
=  101.94 𝑘𝑔     (3.2) 

To determine the total rigidity of the springs we can compare the deflection due to the weight 

of the machine to the weight of the machine: 

𝑘 =
1000 𝑁

0.02 𝑚
= 50′000𝑁 𝑚⁄       (3.3) 

Finally, we can calculate the circular natural frequency as in formula (3.1) 

𝜔𝑛 = √
𝑘

𝑚
= √

50′000 𝑁/𝑚

101.94 𝑘𝑔
= √

50′000 𝑘𝑔 ∗ 𝑚/𝑠2/𝑚

101.94 𝑘𝑔
=  √490.48/𝑠2 = 22.15 𝑟𝑎𝑑/𝑠 

The natural frequency then is: 𝑓𝑛 =
𝜔𝑛

2𝜋
= 3.52 /𝑠 

Note: Make sure the units cancel each other out under the square root. It does not matter what 

units are used if you are consistent. 

Part 3.2 

The next step is to determine the damping ratio of the system. We are given the information 

that the dampers reduce the amplitude of the vibration to 1/8 of the initial amplitude within two 

complete cycles. Assuming small damping, we can use the following relation: 

5 points for having 

consistent units. 

6 points  

6 points 

2 / 6 

2 / 6 

2 / 6 
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ln (
𝑢1

𝑢𝑗+1
) ≈ 2𝜋 ∙ 𝜁 ∙ 𝑗       (3.4) 

Knowing that in two cycles the amplitude reduces to 1/8 we can determine 𝑗 = 2 and 𝑢3 =
𝑢1

8
. 

Thus, we find: 

𝜁 =
ln(8)

2𝜋 ∙ 2
= 0.165 = 16.5 % 

Note: It is also right to assume the exact relationship between damping and amplitude. The 

formula would be the following: 

ln (
𝑢1

𝑢𝑗+1
) =

2𝜋∙𝜁∙𝑗

√1−𝜁2
       (3.5) 

Solving the equation with the same 𝑗 and 𝑢3 we get: 

𝜁 = 0.163 = 16.3 % 

Part 3.3 

Next, we want to know the damped circular natural frequency of the system. The damped 

natural frequency is defined as: 

𝜔𝐷 = 𝜔𝑛 ∙ √1 − 𝜁2       (3.6) 

Implementing it numerically we get: 

𝜔𝐷 = 𝜔𝑛 ∙ √1 − 𝜁
2 = 22.15 ∙ √1 − 0.1652 = 21.84/𝑠𝑒𝑐 

Part 3.4 

By comparing the natural frequency 𝜔𝑛 to the damped natural frequency 𝜔𝐷, we can see that 

the damping slightly reduces the natural frequency of vibration of the system. This effect can 

be seen by comparing the curves of a damped to an undamped system as in the figure below. 

Some people call this damped period also “pseudo-period” as it is not the natural period of the 

system but the one measurable. Usually, the difference between the two periods is not very big 

and oftentimes we can assume 𝜔𝐷 ≈ 𝜔𝑛. 

 
Figure 3-1: period of vibration with/without damping 
(Figure from the book “Dynamique des Structures” de P. Lestuzzi et I.F.C. Smith) 

 

  

4 points 

4 points 

2 / 6 

2 / 6 for assuming 

the right j and u3 2 / 6 
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Question 4 – (25 points) CORRECTED BY G. NAJID. 

 

An undamped single-degree-of-freedom system is subjected to the triangular pulse in Figure 

4-1. Answer to the following questions: 

 

 

Figure 4-1 – Triangular pulse 

 

 

4.1. Show that the displacement response is as follows: 

 

𝑢(𝑡)

(𝑢𝑠𝑡)𝑜
=

{
 

 
𝑡

𝑡𝑑
−
1

2𝜋
(
𝑇𝑛
𝑡𝑑
) sin (

2𝜋𝑡

𝑇𝑛
) ,                                                                        0 ≤ 𝑡 ≤ 𝑡𝑑

cos
2𝜋

𝑇𝑛
(𝑡 − 𝑡𝑑) +

1

2𝜋
(
𝑇𝑛
𝑡𝑑
) 𝑠𝑖𝑛

2𝜋

𝑇𝑛
(𝑡 − 𝑡𝑑) −

1

2𝜋
(
𝑇𝑛
𝑡𝑑
) 𝑠𝑖𝑛

2𝜋𝑡

𝑇𝑛
,          𝑡 ≥ 𝑡𝑑

 

 

Plot the response for two values of 𝑡𝑑 𝑇𝑛⁄ = 1 2⁄  and 2. 

 

4.2. Derive the equations for the dynamic response factor 𝑅𝑑 during (i) the forced vibration 

phase and (ii) the free vibration phase. 

 

4.3. Plot 𝑅𝑑 for the two phases against 𝑡𝑑/𝑇𝑛. Also plot the shock spectrum (overall 

maximum response from both the forced and free vibration phases). 

 

4.4. During the lecture series and the in-class exercise of Week #3, we showed that for 

small values of 𝑡𝑑/𝑇𝑛, the shock spectrum can be determined by treating the acting 

force as an impulse of a certain amplitude 𝐼. Determine the shock spectrum by this 

approach and superimpose it on the plot from Question 4.3. Determine the error in this 

approximate result for 𝑡𝑑/𝑇𝑛 = 1 4⁄ ? 
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Solution 

 

 

 
 

4.1.                                                                                                                              (10 points) 

 

The equation of motion is given as: 

 

𝑚𝑢̈ + 𝑘 ⋅ 𝑢 = {
𝑝0(𝑡/𝑡𝑑);          0 ≤ 𝑡 ≤ 𝑡𝑑
0                                 𝑡 ≥ 𝑡𝑑

                      (1) 

 

i- Forced vibration phase:                                                            (4 points) 

 

The response is given by: 

 

𝑢(𝑡) = (𝑢𝑠𝑡)0  (
𝑡

𝑡𝑑
−
sin(𝜔𝑛𝑡)

𝜔𝑛⋅𝑡𝑑
) ;  𝑡 ≤ 𝑡𝑑                        (2)   

(2/4) 

Rewriting in terms of 
𝑡𝑑

𝑇𝑛
 gives: 

 

𝑢(𝑡)

(𝑢𝑠𝑡)0
=

𝑡

𝑡𝑑
−
sin(

2𝜋

𝑇𝑛
𝑡)

2𝜋

𝑇𝑛
⋅𝑡𝑑

=
𝑡

𝑡𝑑
−

1

2𝜋
(
𝑇𝑛

𝑡𝑑
) sin (

2𝜋

𝑇𝑛
𝑡) ;  𝑡 ≤ 𝑡𝑑           (3) 

(2/4)    

          

ii- Free vibration phase:                                                                (4 points) 

 

 

The free vibration resulting from 𝑢(𝑡𝑑) and 𝑢̇(𝑡𝑑) is: 

 

𝑢(𝑡) = 𝑢(𝑡𝑑) cos[𝜔𝑛(𝑡 − 𝑡𝑑)] +
𝑢̇(𝑡𝑑)

𝜔𝑛
sin[𝜔𝑛(𝑡 − 𝑡𝑑)]              (4) 

(1/4)             

 

From equation (3), 𝑢(𝑡𝑑) and 𝑢̇(𝑡𝑑) are determined: 

 

 

𝑢(𝑡𝑑) = (𝑢𝑠𝑡)0 (1 −
sin(𝜔𝑛𝑡)

𝜔𝑛⋅𝑡𝑑
)                               (5) 

(0.5/4)             
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𝑢̇(𝑡𝑑) = (𝑢𝑠𝑡)0
1

𝑡𝑑
(1 − cos(𝜔𝑛𝑡))                             (6) 

(0.5/4)             

Substituting equation (5) and (6) in equation (4) gives: 

 
𝑢(𝑡)

(𝑢𝑠𝑡)0
= cos[𝜔𝑛(𝑡 − 𝑡𝑑)] −

sin(𝜔𝑛𝑡)

𝜔𝑛⋅𝑡𝑑
+
sin[𝜔𝑛(𝑡−𝑡𝑑)]

𝜔𝑛𝑡𝑑
  ;  𝑡 ≥ 𝑡𝑑           (7) 

(1/4)             

 

Rewriting in terms of  
𝑡𝑑

𝑇𝑛
 gives: 

 

𝑢(𝑡)

(𝑢𝑠𝑡)0
= cos [

2𝜋

𝑇𝑛
(𝑡 − 𝑡𝑑)] +

1

2𝜋
(
𝑇𝑛

𝑡𝑑
) sin (

2𝜋

𝑇𝑛
(𝑡 − 𝑡𝑑)) −

1

2𝜋
(
𝑇𝑛

𝑡𝑑
) sin (

2𝜋

𝑇𝑛
𝑡);  

𝑡 ≥ 𝑡𝑑      (8) 

 

(1/4)             

 

iii- Plotting the responses:                                                             (2 points) 
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4.2.                                                                                                          (5 points) 

 

During the forced vibration phase, 𝑢 is a non-decreasing function of 𝑡. Thus, the maximum 

value of 𝑢 during this phase can be found by evaluating equation (3) at 𝑡 = 𝑡𝑑: 

𝑅𝑑 =
𝑢(𝑡)

(𝑢𝑠𝑡)0
= 1 −

𝑇𝑛

2𝜋𝑡𝑑
 sin (

2𝜋

𝑇𝑛
𝑡𝑑);                            (9) 

(2/5)
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In the free vibration phase, the response of the system is given by equation (4) with the 

amplitude: 

 

𝑢0 = √𝑢(𝑡𝑑)2 + [
𝑢̇(𝑡𝑑)

𝜔𝑛
]
2

 ;                                 (10) 

(2/5) 

 

Substituting equations (5) and (6) and manipulating gives: 

 

𝑅𝑑 = √[1 −
𝑇𝑛

2𝜋𝑡𝑑
⋅ sin (

2𝜋⋅𝑡𝑑

𝑇𝑛
)]
2

+
𝑇𝑛
2

𝜋2𝑡𝑑
2 . sin

4 (
𝜋⋅𝑡𝑑

𝑇𝑛
)             (11) 

(1/5) 

 

4.3.                                                                                                          (3 points) 

 

The equations (11) and (9) are plotted: (2/3) 

 
 

The overall maximum response is the larger of the maxima shown in the figure above, it is 

plotted in the following figure to obtain the shock spectrum: (1/3) 
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4.4.                                                                                                          (7 points) 

 

 

For small enough values of the ratio 𝑡𝑑/𝑇𝑛, the force acting on the system is considered as an 

impulse as: 

 

𝐼 =  ∫ 𝑡𝑑 . 𝑝(𝑡) 𝑑𝑡0
=

𝑝0⋅𝑡𝑑

2
;                                      (12) 

 

(2/7) 

 

Hence: 

 

𝑢0 =
𝑝0
𝑘
.
𝑡𝑑𝜋

𝑇𝑛
; 

(1/7) 

 

With :  

𝑢𝑠𝑡 =
𝑝0
𝑘
; 

 

𝑅𝑑 =
𝑢0

𝑢𝑠𝑡
=

𝑡𝑑𝜋

𝑇𝑛
;                                            (13) 

(2/7) 

 

 

The shock spectrum by this approach superimposed on the plot from Question 4.3 gives: 

(1/7) 
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The error for the value of 
𝑡𝑑

𝑇𝑛
=

1

4
 is given as: 

 

𝑒𝑟𝑟𝑜𝑟 =
|𝑅𝑑,𝑝𝑟𝑒𝑐𝑖𝑠𝑒(

𝑡𝑑
𝑇𝑛
=
1

4
)−𝑅𝑑,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒(

𝑡𝑑
𝑇𝑛
=
1

4
)|

𝑅𝑑,𝑝𝑟𝑒𝑐𝑖𝑠𝑒(
𝑡𝑑
𝑇𝑛
=
1

4
)

= 7.09 %            (1/7) 

 

𝑅𝑑,𝑝𝑟𝑒𝑐𝑖𝑠𝑒 (
𝑡𝑑
𝑇𝑛
=
1

4
) = 0.733 [−] 

𝑅𝑑,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 (
𝑡𝑑
𝑇𝑛
=
1

4
) =  0.785 [−] 

 

 


