

Téléphone : +41 21 693 24 27
 Fax : +41 21 693 28 68
 E-mail : dimitrios.lignos@epfl.ch
 Site web : <http://resslab.epfl.ch>
 Address: EPFL ENAC IIC RESSLAB
 GC B3 485, Station 18,
 CH-1015, Lausanne

Exercise #3: Response to pulses and approximate analysis for short pulses

Problem 1

The 24-m-high full water tank shown in the figure is subjected to the force $p(t)$ shown in the figure caused by an aboveground explosion. The weight of the water when the tank is full is 160kN. The damping coefficient was measured from a free vibration test and was found to be, $c = 0.0063kN - sec/mm$ and its lateral stiffness $k = 0.5 kN/mm$. Determine the following:

1. The natural vibration period and damping ratio of the structure with the tank full;
2. The maximum base shear and bending moment at the base of the tower supporting the tank.

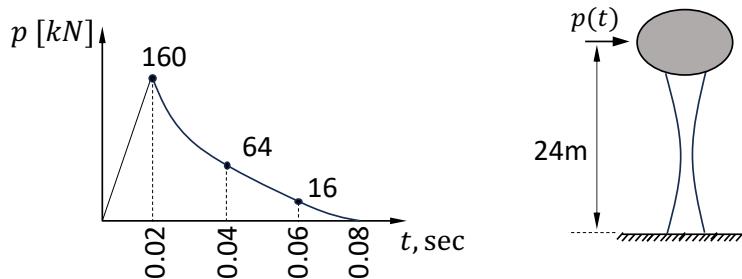


Figure 3.1

Problem 2

A one-storey building, idealized as a $h = 3.6\text{-m}$ -high frame with two columns hinged at the base and a rigid beam, has a natural period of 0.5 sec . Each column has a rectangular cross section of $270\text{ mm} \times 100\text{ mm}$. The Young's modulus of the material is 30 GPa . Neglecting damping, determine the maximum response of this frame due to a rectangular pulse force of amplitude 16 kN and duration $t_d = 0.2\text{ sec}$. Assume that the system is elastic. The response quantities of interest to be calculated are:

1. the displacement at the top of the frame; and
2. the maximum bending stress in the columns.

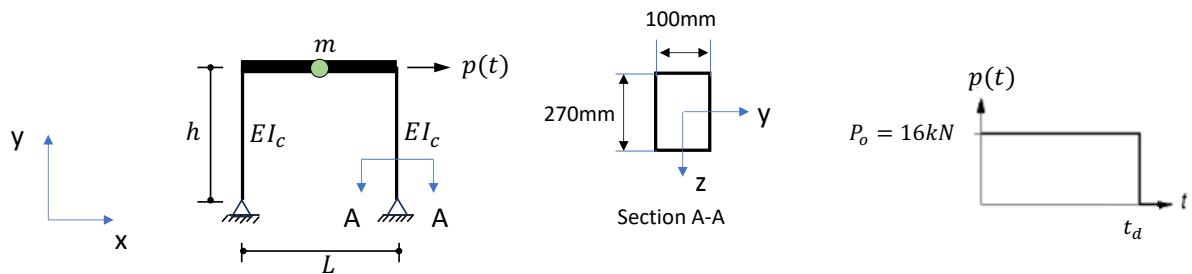


Figure 3.2