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CHAPTER 19

ANALYSIS AND MODELING
OF HYDROLOGIC TIME SERIES

Jose D. Salas
Engineering Research Center
Colorado State University
Fort Collins, Colorado

Time-series analysis has become a major tool in hydrology. It is used for building
mathematical models to generate synthetic hydrologic records, to forecast hydrologic
events, to detect trends and shifts in hydrologic records, and to fill in missing data and
extend records. This chapter includes definitions related to the stochastic structure of
hydrologic series; time-series analysis principles; stochastic models for single and
multiple series, disaggregation models, Markov chains, and point process models;
methods for filling in missing data and extension of records; data generation and
simulation principles; and a summary of software available for analysis, modeling,
and generation of hydrologic series. Applications of stochastic models to forecasting
are included in Chap. 26.

19.1 STOCHASTIC STRUCTURE OF
HYDROLOGIC TIME SERIES

19.1.1 Hydrologic Time Series

In general, hydrologic processes such as precipitation and runoff evolve on a contin-
uous time scale. For instance, a recording gauging station in a stream provides a
continuous record of water stage and discharge y(r) through time. A plot of the flow
hydrograph y(¢) versus time ¢ constitutes a stream-flow time series in continuous time
or a continuous time series (see Fig. 19.1.1a for illustration). However, most hydrolo-
gic processes of practical interest are defined in a discrete time scale. A discrete time
series may be derived by sampling the continuous process y(¢) at discrete points in
time, or by integrating the continuous time series over successive time intervals as
shown in Fig. 19.1.1a. For example, a daily stream-flow series may be derived by
sampling the flows of a stream once daily or by integrating the continuous-flow
hydrograph on a daily basis. Most hydrologic series are defined on hourly, daily,
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FIGURE 19.1.1 (a) A continuous time series y(¢). (b) A discrete time
series y, derived from the continuous series.

weekly, monthly, bimonthly, quarterly, and annual time intervals. The term sea-
sonal time series is used for series defined at time intervals which are fractions of a
year (usually multiples of a month). Figure 19.1.15 plots a discrete time series in the
form of a bar or stick diagram; however, because of convenience or preference, the
series is often plotted in the form of a continuous line by successively connecting the
tops of the sticks. A continuous plot of a discrete time series should not be confused
with a continuous time series.

Hydrologic time series may be classified into several categories depending on a
number of factors. Each of these categories is defined below.

Single Time Series. A single time series (or univariate series) is simply a time series
of one hydrologic variable at a given site. Consider a basin with five precipitation
gauges and a stream network system with three stream-flow gauging stations. The
precipitation time series measured at each site is a single time series. Likewise, the
series resulting from the areal average of the five precipitation series is also a single
time series. Slmllarly, the flow time series at any given site of the stream network
system is a single time series. !

Multiple Time Series. Consider the basin and flow network referred to above. The | ;

set of five precipitation time series of the basin represents a multivariate time series.
Likewise, the set of three flow time series represents a multivariate series. In general, a
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set of two or more time series constitutes a multiple time series or a multivariate time
series. Furthermore, multiple time series may be a set of time series of different
processes. For instance, the flow time series at sites 1, 2, and 3 and the corresponding
precipitation time series at gauges | through 5 constitute a multiple time series.
Additionally, a multiple time series may arise at a stream-flow gauging station when
the station measures different variables such as discharge, flow depth, water tempera-
ture, and sediment transport or at a given weather station when it measures variables
such as precipitation, air temperature, evaporation, and humidity.

Uncorrelated and Correlated Time Series. Figure 19.1.2 shows a single time series
x,. If the x’s at time 7 depend (linearly) on the x’s at time ¢t — k, fork=1,2, . . .,
then the time series is called autocorrelated, serially correlated, or correlated in time.
Otherwise, it is uncorrelated. An uncorrelated series is also called an independent
series. Autocorrelation or dependence in some hydrologic time series such as stream
flow usually arises from the effect of storage, such as surface, soil, and groundwater
storages, which causes the water to remain in the system through subsequent time
periods. For instance, basins with significant surface storage in the form of lakes,
swamps, or glaciers produce stream-flow series showing significant autocorrelation.
Likewise, subsurface storage, especially groundwater storage, produces significant
autocorrelation in the stream-flow series derived from groundwater outflow. Con-
versely, time series of monthly or annual precipitation and time series of annual
maximum flows (flood peaks) are usually uncorrelated, although in cases that a time
series is nonhomogeneous, significant serial correlation may occur.'36

Refer to the two series of Fig. 19.1.2. If the y’s at time ¢ depend (linearly) on the x’s
at time t — k, for k=0, 1, . . . —then the two time series are cross-correlated.
Several combinations of autocorrelation and cross-correlation exist. For instance, it
is possible that both series y, and x, are uncorrelated in time, yet are cross-correlated
with one another. Likewise, it is possible that each series can be autocorrelated, yet

X
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FIGURE 19.1.2 A pair of single time series x, and y, each having
autocorrelation. Cross-correlation is between the two series.




there is no cross-correlation between them. Just as there are physical reasons why
some hydrologic time series are autocorrelated, there are also physical reasons why
two or more series are cross-correlated. Examples are precipitation series at two
nearby sites and stream flow at two nearby gauging stations. In both cases, one would
expect that the time series will be cross-correlated because the sites are relatively close
to each other and therefore subject to similar climatic and hydrologic events. As the
sites considered become father apart, their cross-correlation decreases. Likewise, one
would expect a significant cross-correlation between stream-flow time series and the
corresponding areal average precipitation time series over the same basin. One of the
problems in hydrology is searching for significant correlation among time series.

Intermittent Time Series. Hydrologic time series are intermittent when the variable
under consideration takes on nonzero and zero values throughout the length of
record. For instance, the precipitation observed in a recording rain gauge is an
intermittent continuous time series. Likewise, a discrete time series derived by inte-
grating an intermittent continuous precipitation time series can be intermittent
when the time interval of integration is relatively small. Thus, hourly, daily, and
weekly rainfall are typically intermittent time series, while monthly and annual
rainfall are usually nonintermittent. However, in semiarid and arid regions, even
monthly and annual precipitation may be intermittent as well. Figure 19.1.3 shows a
six-hourly rainfall series for a given gauging station and the corresponding stream
flow series at two gauging stations. The rainfall series is intermittent, displaying a
sequence of nonzero and zero rainfalls, while the stream-flow series is nonintermit-
tent, with nonzero flows throughout the record. Stream-flow time series are often
intermittent in semiarid and arid regions.
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FIGURE 19.1.3 (a) Six-hour rainfail R, mm, during the period Oct.
1-Nov. 15, 1983, at site Te Haroto, Mohaka, New Zealand. (b) Corre-
sponding stream flow Q, m%/s, on the Mohaka River at Raupunga (A)and
Glenfalls (B), New Zealand. (Provided by S. M. Thompson.)
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Counting Time Series. The variable of interest may be the result of counting the
occurrence of certain hydrologic events. An example is the count of rainy days for
each month throughout the period of record. The resulting sequence of integer
numbers d,, d,, . . . , d, is a counting time series.

Regularly and Irregularly Spaced Time Series. Most time series are defined on a
regularly spaced time interval; i.e., the value of the variable has been determined
every hour, every day, or every week, etc., throughout the record. This is the case for
most variables which are of interest in hydrology. However, in some cases, data may
be collected at irregular time intervals. This is commonly true of water-quality mea-
surements. Nearly all methods of time-series analysis require regularly spaced data,
but some methods, such as the use of regression for trend analysis, can also be applied
to irregularly spaced data. In this chapter it is assumed that the time series under
consideration has been defined on a regular time scale.

Stationary and Nonstationary Time Series. A hydrologic time series is stationary if
it is free of trends, shifts, or periodicity (cyclicity). This implies that the statistical
parameters of the series, such as the mean and variance, remain constant through
time. Otherwise, the time series is nonstationary. Generally, hydrologic time series
defined on an annual time scale are stationary, although this assumption may be
incorrect as a result of large-scale climatic variability, natural disruptions like a
volcanic eruption, and human-induced changes such as the effect of reservoir con-
struction on downstream flow. Hydrologic time series defined at time scales smaller
than a year, such as monthly series, are typically nonstationary, mainly because of the
annual cycle.

19.1.2 Partitioning of the Time-Series Structure

Hydrologic time series exhibit, in various degrees, trends, shifts or jumps, seasonal-
ity, autocorrelation, and nonnormality. These attributes of hydrologic time series are
referred to as components. A time series can be partitioned or decomposed into its
component series.

Trends and Shifts. In general, natural and human-induced factors may produce
gradual and instantaneous trends and shifts (jumps) in hydrologic series. For exam-
ple, a large forest fire in a river basin can immediately affect the runoff, producing a
shift in the runoff series, whereas a gradual killing of a forest (for instance by an insect
infestation that takes years for its population to build up) can result in gradual
changes or trends in the runoff series (see Chap. 13 for further details). A large
volcanic explosion such as the 1980 Mount St. Helens explosion, or a large landslide,
can produce sudden changes in the sediment transport series of a stream. Trends in
non-point-source water-quality series may be the result of long-term changes in
agricultural practices and agricultural land development. Likewise, shifts in certain
water-quality constituents may be caused by agricultural activities such as sudden
changes in the use of certain types of pesticides. An important source of trends and
shifts in stream-flow series arises from changes in land use and the development of
reservoirs and diversion structures. The current concern about global warming and
climatic changes is making hydrologists more aware of the occurrence of trends and
shifts in hydrologic time series. Figure 19.1.4 shows the monthly series of water levels
of Lake Victoria at Entebbe (Uganda), which has a significant upward shift.
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FIGURE 19.1.4 Time series of monthly levels of Lake Victoria at Entebbe, Uganda,
for the period 1949- 1975 showing an upward shift.!**
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Removing Trends. A hydrologic time series may exhibit shifts in one or more of its 1
statistical characteristics. The most common ones are trends in the mean and in the
variance. The partitioning of a time series with a simple trend is schematically shown
in Fig. 19.1.5. A linear trend in the mean is shown in Fig. 19.1.5a. The trend y, can be
removed by the difference y, — y, as shown in Fig. 19.1.5b. The variance of such
difference series, expressed by s, may be either a function of time (in which case
there is a trend in the variance) or may be a constant, as shown graphically in Fig.
19.1.5¢. The trend in the variance can be removed by (y, — y,)/s, (the process of

Removing trends Removing shifts
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FIGURE 19.1.5 Partitioning an annual time series with trends and partitioning an an»:..
series with shifts.
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constructing a new series by subtracting the mean and dividing by the standard
deviation is called standardization). The residual series in Fig. 19.1.5d may still have
other properties such as correlation structure which can be decomposed or removed.

Removing Shifts. A hydrologic series may also exhibit shifts in one or more of its
statistical characteristics. Positive (upward) or negative (downward) shifts in the
mean and variance are most commonly analyzed. Figure 19.1.5a’ to d’ gives exam-
ples of removing sudden downward shifts from an annual series. In Fig. 19.1.54,
shifts in the mean and variance occur at time 7 + 1. The shift in the mean is removed
by y, — y, as shown in Fig. 19.1.50, and the shift in the variance is removed by
(¥, — ».)/s,. The residual series plotted in Fig. 19.1.5d" now shows a series with mean
zero and variance one and may further exhibit other properties such as autocorrela-
tion.

Seasonality. Hydrologic series defined at time intervals smaller than a year (such as
monthly series) generally exhibit distinct seasonal (or periodic) patterns. These result
from the annual revolution of the earth around the sun which produces the annual
cycle in most hydrologic processes. Some series of interest to hydrology, such as daily
series of urban water use or daily series of hydropower generation, may also exhibit a
weekly pattern due to variations of demands within a week. Likewise, hourly time
series may have a distinct diurnal pattern due to the variations of demands within a
day. Summer hourly rainfall series or certain water-quality constituents related to
temperature may also exhibit distinct diurnal patterns due to the daily rotation of the
earth which causes variations within the day of net radiation.

Seasonal or periodic patterns of hydrologic series translate into statistical charac-
teristics which vary within the year (or within a week or a day as the case may be).
Generally seasonal or periodic variations in the mean, variance, covariance, and
skewness are important. Figure 19.1.6 shows how seasonal series are partitioned into
basic components (the annual series is also shown for comparison). A part of the
original time series y, is plotted in Fig. 19.1.6a4’, in which the seasonal (periodic)
pattern is evident. It is a periodic-stochastic series since, in addition to the periodic
pattern, a random pattern is also observed. This periodic-stochastic pattern repeats
through time in a similar fashion. In contrast, the annual series in Fig. 19.1.6a does
not show a periodic pattern; it simply varies about a constant mean y (see Fig.
19.1.6b). The fact that the series in Fig. 19.1.6a’ behaves in a cyclic fashion implies
that the mean of the series is also cyclic or periodic, as shown in Fig. 19.1.64’". For
instance, for monthly stream-flow series, each month will have its own mean y, (refer
to Sec. 19.2 for the definition of seasonal statistics).

Removing Seasonality in the Mean and Variance. Removing the seasonality in the
mean is accomplished by taking the difference y, — y,, where y, is the monthly mean
for January, February, . . . ,ifis a monthly index. When this difference is plotted
in Fig. 19.1.6¢, the series fluctuates about zero with a particular pattern. The varia-
bility of the series is initially small, then increases, and then decreases. This pattern
repeats in the second year and subsequent years throughout the record. If such
variability is measured by the variance s? in each time interval in the year (for
instance, one variance for each month in the year for a monthly series) and s, is
plotted as in Fig. 19.1.64", it will exhibit a seasonal (periodic) pattern similar to that
of the mean in Fig. 19.1.64'. In contrast, for the annual series y, — y,in Fig. 19.1.6¢,
the variance s? is a constant. The seasonality in the variance can be removed by
(¥, — »,)/s,. This operation is also called seasonal standardization and often is re-
ferred to in literature as deseasonalizing the original series. Actually, this latter term
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FIGURE 19.1.6 Partitioning an annual and a seasonal time series into their various components.
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is a misnomer since it may imply that z, = (y, — ,)/s, is free of seasonality. However,
other seasonalities may still be present in z,.

Removing Seasonality in the Correlation. Unlike the seasonality in the mean and
the variance, other remaining seasonalities are difficult to observe from the plot of the
time series. Further analysis must be done to detect them. The series z,in Fig. 19.1.6¢
and ¢’ may have a dependence structure or autocorrelation. This is described by the
correlogram r,, which is a plot of the autocorrelation coefficient as a function of lag k,
as shown in Fig. 19.1.6fand /. However, a better way of analyzing the dependence
structure of series z,in Fig. 19.1.6¢’ is by determining the correlation on a season-by-
season basis. For instance, for monthly series, one would correlate the February
observations for all years of record with the corresponding January observations to
obtain r, ,, similarly for other months to obtain r,,, . . . , r,;, and, in general,
Tets + - - » Tugz- The plot of r, for k > 0 may, depending on the hydrologic series
under consideration, exhibit a seasonal or periodic pattern as in Fig. 19.1.6¢’. In
contrast, for annual series, the correlation coefficient r, is assumed to remain con-
stant, as depicted in Fig. 19.1.6¢.

Regardless of whether the autocorrelation is constant or periodic, removing such
correlation structure from the series requires a mathematical model to represent the
correlation. A simple model that may be considered for series z, in Fig. 19.1.6e is
z,=r z,_, +¢, the lag-one autoregressive process. The residual series ¢ = z, —
r,z,_, is uncorrelated or free of autocorrelation. A similar operation, although it uses
a different model, can be used to remove the periodic correlation structure of z, in
Fig. 19.1.6¢’. Thus, the original seasonal series y, has been partitioned into compo-
nents, periodic mean, periodic variance, and periodic correlation, and these compo-
nents have been removed from y,, yielding a residual series ¢, free of periodicities. The
residual series ¢, of Fig. 19.1.6/4 or A’ is represented by a probability distribution
function f(¢) which may be normal or nonnormal.

19.2 TIME-SERIES ANALYSIS PRINCIPLES

This section addresses the estimation of a number of statistical properties of annual
and seasonal hydrologic time series. In addition, the detection and estimation of
trends, shifts, seasonality, and nonnormality are briefly discussed, as are some proce-
dures for transforming a skewed series into a normally distributed series.

19.2.1 Statistical Properties of Time Series

Overall Sample Statistics. The mean and the variance of a time series y, are esti-
mated by

_ (1) X
y=(—A-,)l_21y, (19.2.1)

1
N—-1

s2=

> —=p? (19.2.2)

1~1

respectively, where N = sample size. The square root of the variance is the standard
deviation s, and ¢, = s/y is the coefficient of variation. Likewise, the skewness coeffi-
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cient is estimated by

NE v—yy

—_——
g N= D N=2)5 (19.2.3)
in which y and s are as defined above. Since the sample statistics y, s2, and g are
estimators of the population statistics u, 62, and y, respectively, sometimes the nota-
tions 4, 2, and » are used to represent the sample statistics.

The sample autocorrelation function r, (or autocorrelation coefficients) of a time
series may be estimated by*

re= %; (19.2.4)
N—k
Ck=(1lv) 2 Yk =) (= Y) k=0 (19.2.5)
=1

The estimator r, of Eq. (19.2.4) is an estimator of the population autocorrelation
coefficient p, . The plot of r, versus k is the correlogram. Sometimes, the correlogram
is used for choosing the type of stochastic model to represent a given time series. The
lag-one serial correlation coefficient r, is a simple measure of the degree of time
dependence of a series. When the correlogram decays rapidly to zero after a few lags,
it may be an indication of small persistence or short memory in the series, while a slow
decay of the correlogram may be an indication of large persistence or long memory.
This short or long memory is shown schematically in Fig. 19.2.1.

Corrections for Bias. An estimator of a population statistic is biased when its mean
value is different from the population statistic. The estimator r, of Eq. (19.2.4) is a
biased (downward) estimator of p,; that is, the average value of r, estimated by the
formula is less than the true value p,. Several procedures have been suggested to
correct the values of 7, from limited samples.!*52% Wallis and O’Connell'%* suggested
the following correction to obtain an unbiased estimator of p,

. _nN+1
L

(19.2.6)

Long memory

Short
memory

L1 | l 1 I | | ]
0 1 2 3 4 5 6 7 « .

FIGURE 19.2.1 Schematic representation of a correlogram
with short and long memory.
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where N is the sample size. Likewise, 52 of Eq. (19.2.2) is an unbiased estimator of g2
if the series is uncorrelated. When the series is autocorrelated, the effective sample
size N is reduced. In this case, an unbiased estimator of the variance can be deter-
mined by!14130

., (N—1)s?
2=
g1 ="p (19.2.7)

where

_INA=pD— 25 (1= M)
[N — 1]

and s2 and j, are given by Egs. (19.2.2) and (19.2.6), respectively.

The estimator g of Eq. (19.2.3) is an unbiased estimator of y if the time series is
uncorrelated and normally distributed. For nonnormal series, Bobee and Robitaille®
proposed the unbiased estimator

K (19.2.8)

Lg[A + Bg¥(L*/N)]
= 19.2.9
ﬁO \/N ( a)
A=1+6.5N"1—202N"2 (19.2.9b)
B=148N-'+6.7IN"2 (19.2.9¢)
- N=2 (19.2.9d)
(N—1)

where £ L is the theoretical limit on skewness from a sample of size V.8 Further-
more, for gamma correlated series, Fernandez and Salas* gave the unbiased estima-
tor

7
=1 3}-7N-°-49 (19.2.10)

in which §, and j, are determined by Egs. (19.2.9a) and (19.2.6), respectively.

Observed Annual Statistics. The overall sample statistics y, s2, ¢,, g, and r, are
usually determined for annual hydrologic time series. Coefficients of variation c, of
annual flows are typically smaller than one, although they may be close to one or
greater than one in streams in arid and semiarid regions. From an analysis of the
annual flows of 126 rivers, McMahon and Mein'!’ report a median value of ¢, of
0.25. Coefficients of skewness g of annual flows are typically greater than zero. In
some streams, small values of g are found, suggesting that annual flows are approxi-
mately normally distributed. On the other hand, in some streams of arid and semi-
arnid regions, g can be greater than one. A range of g between —0.4 and about 2.0 and a
median value of 0.40 has been reported.!!” Similarly, r, of annual flows are generally
small but positive, although in some cases, because of sample variability, the r,’s are
negative. It is quite typical to find values of 7, in the range of +0.0 to 0.4 for annual
stream-flow series. Yevjevich22 found that, for a large number of rivers worldwide,
the average value of r, was about 0.15, while McMahon and Mein!!” found a range of
r, between —0.2 and 0.8 with a mean value of 0.23. Large values of r, for annual flows
can be found for a number of reasons, including the effect of natural or manmade
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surface storage such as lakes, reservoirs, or glaciers, the effect of slow groundwater :
storage response, and the effect of nonstationarities. Figure 19.2.2 shows a slow-
decaying correlogram r, for the annual flows of the White Nile River at Mongalla and
a fast decaying r, for the Blue Nile River at Khartoum, while the r, for the Nile River
at Aswan lies between the other two. ‘

Seasonal Sample Statistics. Seasonal hydrologic time series, such as monthly flows,
may be better described by considering statistics on a seasonal basis. Let the seasonal
time series y, , in which v = year; t = season;v=1, . . . ,N;andt=1, ... ,0,
with N and @ denoting the number of years of record and the number of seasons per
year, respectively. The seasonal mean y, is obtained by applying Eq. (19.2.1) for each
season T as

o1y
Fo=gIhe t=L....0 (19.2.11)

v=1

Likewise, Egs. (19.2.2) and (19.2.3) can be applied on a seasonal basis to determine
the seasonal variance $2 and the seasonal skewness coefficient g, respectively, for

t=1, . . ., . Furthermore, the season-to-season correlation coefficient r, _ is de-
termined by
¢
Mie= S — (19.2.12).

- (Co Coo—i)'"?
1 X — —
Ck‘r=1_v E (yv,r_yr) (yv,r—k_yr—k) (192'13)
v=1

For instance, for monthly stream-flow time series, r, , represents the correlation
between the flows of the fourth month with those of the third month.

Description of Seasonal Statistics. Each of the statistics y,, s,, g, and r, . may be
plotted versus time 7= 1, . . . , w to observe whether they exhibit a seasonal pat-|

Correlation coefficient ,

Lag K (years)

FIGURE 19.2.2 Correlogram of annual flows of (a) the White Nile River
at Mongalla (1914 - 1983), (b) the Nile River at Aswan (1871 -1989), and
(c) the Blue Nile River at Khartoum (1912-1989).
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tern (see Sec. 19.2.4 for testing for seasonality). These statistics may be fitted by
Fourier series. This technique is especially effective with weekly and daily data.!55.206
Generally, for seasonal stream-flow series, y, > s,, although for some streams y, may
be smaller than s, for the low-flow seasons. Furthermore, for intermittent stream-
flow series, generally y, < s, throughout the year. Likewise, values of the skewness
coefficient g, for the dry season are generally larger than those for the wet season,
indicating that data in the dry season depart more from normality than those in the
wet season. Values of the skewness for intermittent hydrologic series are usually
larger than skewness for similar nonintermittent series. Seasonal correlations , , for
stream flow during the dry season are generally larger than those for the wet season,
and seasonal correlations r, . for monthly precipitation are generally not significantly
different from zero.'*® The data interval must be less than a month (typically, less
than a week) to find significant autocorrelation in precipitation series.

Figure 19.2.3 shows y,, s, g.,and r,,, =1, . . . , 12 for the monthly flows of
the Nile River at Aswan. A well-defined seasonality is shown in each statistic, mean-
ing that the monthly statistics for the low-flow season are significantly different from
those of the high-flow season. Furthermore, the seasonal patterns of y, and s, are in
phase while g is out of phase relative to y, and s,. Also, a well-defined seasonality in
r, . is evident with the larger values in dry months and smaller values in wet months.
Most of the correlations ry, , are significant, with seasonality in phase with r, .. The
correlations of Fig. 19.2.3 indicate the complex, long-term dependence (long-
memory) structure of monthly flows of the Nile River. The significant correlations
712, shown for this river are not typical for monthly stream-flow series. In fact, these
correlations usually will be small or not significant. Conversely, rivers that exhibit
long-term autocorrelation in seasonal flows will exhibit long-term autocorrelation in
annual flows.

Sample Statistics for Multiple Series. For multiple time series, in addition to the
above-defined sample statistics such as the mean, variance, skewness, and autocorre-
lation, the cross-correlation between each pair of time series can be determined.
Consider the time series 4 and ¢ at sites i and J, respectively. The sample lag-k
cross-correlation coefficient is
" cy
r;“'=(—c{)‘fz%,.)—|72“ (19.2.14)

N—k
ci= (%{) S = POV —F) k=0 (19.2.15)
=1

and c¥ is the cross-covariance between the two series. The coefficient r{ is an estima-
tor of the population cross-correlation coefficient p¥. The plot of r§ versus k is the
cross-correlogram or sample cross-correlation function. For instance, r§ for annual
flows of the Nile River at Aswan and the Blue Nile River at Khartoum is shown in
Fig. 19.2.4. The lag-zero cross-correlation has a high value r§ = 0.85. For » time
series, the values rf, i=1,...,nand j=1, ..., n are the elements of the
cross-correlation matrix M, (n by n matrix). The lag-zero cross-correlation matrix
M, is a symmetric matrix with 1’s in the diagonal. The diagonal elements of the lag-k
cross-correlation matrix M, for k > 0 are the lag-k serial correlation coefficients for
each site.

Likewise, for seasonal time series, the season-to-season cross-correlation between
sites can be determined. Consider the seasonal time series )4/ and y4/)for sites i and j,
respectively. The lag-k seasonal cross-correlation coefficient r, between both series
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FIGURE 19.2.3 (a) Monthly mean y, and standard deviation s,, ()
monthly skewness coefficient g,, and (c) lag-1 and lag-12 month-to-
month correlations for monthly stream-flow series of the Nile River at
Aswan (1871 -1989).

can be determined by applying Eqs. (19.2.14) and (19.2.15) on a seasonal basis. For ‘
instance, for monthly stream flow, r¥, is determined by correlating the stream-flow
series of the fourth month of site i with those of the third month of site j.

Storage-Related Statistics. In modeling hydrologic time series for simulation stud-
ies of reservoir systems, storage-related statistics may be particularly important.
Consider the hydrologic time series y,, =1, . . . ,Nandasubsampley,, . . . ,J,
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FIGURE 19.24 Cross-correlogram r}? of annual flows of the Nile
River at Aswan (1) and the Blue Nile River at Khartoum (2), for the
concurrent period 1912-1989.

Form the sequence of partial sums S; as
S;i=8Si+(i—yn) i=1,...,n

1F.19

(19.2.16)

where S, = 0 and y, is the sample mean. For instance, in the case of stream-flow time
series, S; represents the cumulative departure from the mean flow y,. The plot of S;
1, . . ., nis the typical mass curve from which the minimum storage
capacity D¥ of a reservoir to deliver y, through the time period 7 can be obtained.!

versus /, i =

For instance, Fig. 19.2.5 shows a mass curve for which D¥ = max (D,, . .

Related to D¥* are the range R} and the rescaled range Rt* defined by

0 b, .Rn.\/ \/

R*=max (S,,S,, . . . ,S,)—min(Sy,S,, - . . ,S,)
.
n s,
Ds
D
Dz O3 '

FIGURE 19.2.5 Mass curve S; of Eq. (19.2.16), sequence of deficits

D,. .

.., D, and range R*.

., D).

(19.2.17)

(19.2.18)



@10 CHAFI1ER NINETEEN |

in which s, is the sample standard deviation. Thus, for a given sample of size N the
ranges R}, . . . , R} and rescaled ranges R$*, . . . , R¥* will result. Both R* and
R** have been w1dely used in literature as measures of long-term dependence and for
comparing alternative models of hydrologic series.58:196.204

In particular, Hurst?® showed that for a large number of geophysical time series
such as stream-flow, precipitation, temperature, and tree-ring series, the mean re-
scaled range R** is proportional to n* with 2 > '%4. The values of h obtained for
different series gave a mean of about 0.73 and a standard deviation of 0.09. Theoreti-
cal results for normal, independent processes?’ and for autoregressive processes!!?
indicated that asymptotically 4 = % for these processes. The discrepancy between
theoretical results stating that & = % and Hurst’s empirical finding that # > % has
become known as the Hurst phenomenon. Several estimators of /& have been pro-
posed and used in stochastic hydrology such as the original Hurst estimator K:75 I

_ log (R2%)
log (n/2)

It has been shown that the estimators of 4 are transient, meaning they depend on *
n, and, as n — =, they generally converge to a limiting value, equal to %2 for many :
time-series models.!** One interpretation of the Hurst phenomenon has been to':
associate # = 12 with short-memory models possessing short-term dependence struc-
ture and 4 > ' with long-memory models possessing long-term dependence. This is |
a valid interpretation in the asymptotic sense. However, such interpretation as a':
criterion for selecting stochastic models for hydrologic time-series simulation is not
practical because a number of models, including ARMA processes (see Sec. 19.3 for
definition of ARMA processes) can have long-term dependence structure, yet:
asymptotically their value of # = '4. Nevertheless, estimates of 4 can be useful for !
companng the performance of alternative modeling strategies and alternative estl- !
mation procedures.

(19.2.19)

Drought-Related Statistics. Drought-related statistics are also important in model-
ing hydrologic time series. Consider a hydrologic time series y,, =1, . . . ,Nanda
demand level d(also called a crossing level). Assume that y,is an annual series and dis
a constant (equal to the sample mean y or a fraction of y) as shown in Fig. 19.2.6. A
deficit occurs when y, < d consecutively during one or more years until y, > d again.
Such a deficit can be defined by its duration L, by its magnitude M, and by its
intensity 7 = M/L.2% Since a number of deficits can occur in a given hydrologic

1 = Mi/L

e

FIGURE 19.2.6 Definition of deficit length L;, deficit magnitude M;, and
deficit intensity /;.
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sample (Fig. 19.2.6), the maximum deficit duration (critical drought) in a given

sample L* = max(L,, . . . , L,,)isoften of most interest, where m is the number of
deficits. Similar critical drought properties in relation to the magnitude and intensity
are M*=max (M,, ... ,M,)and I*=max (/,, . . . , I,), respectively.

19.2.2 Determination and Testing of Trends

A number of parametric and nonparametric tests for trends have been suggested in
the literature. This section includes one parametric and one nonparametric test. See
also Sec. 17.2.3 of Chap. 17 for a discussion on the criteria for selecting parametric
and nonparametric tests and Sec. 17.4 for trend analysis.

Detection and Estimation of Linear Trends. Assume thaty,,t=1, ... ,Nisan
annual time series and N = sample size. A simple linear trend can be written as
v=a+bt (19.2.20)

where a and b are the parameters of the regression model (see Sec. 17.4.2). Rejection
of the hypothesis b =0 can be considered as a detection of a linear trend. The
hypothesis that b = 0 is rejected if

N-=2
T,=|——|> Ti-0p2 (19.2.21)

rvyi—r?
in which r is the cross-correlation coefficient between the sequences y;, . . . , yy
and 1, . .. ,N,and T|__,,isthe | — a/2 quantile of the Student ¢ distribution with

v = N — 2 degrees of freedom. See Sec. 17.4.5 for the use of polynomial regression for
nonlinear trends.

Mann-Kendall Test for Trends. This is a nonparametric test which tests for a trend
in a time series without specifying whether the trend is linear or nonlinear. Consider

the annual time series y,, =1, ..., N. Eachvalue y,, t=1,... ,N—1is
compared with all subsequent values y,, =1+ 1,¢#'+ 2, . . . , N, and a new series
2, is generated by

=1 ify, >y,

z,=0 ify, =y, (19.2.22)

z,=—1 ify, <y,

in which k = (¢’ — 12N — t’)/2 + (t — t’). The Mann-Kendall statistic is given by
the sum of the z, series”

N-1 N
§=3 ¥ z (19.2.23)
F=1 =41

This statistic represents the number of positive differences minus the number of
negative differences for all the differences considered.
The test statistic for N > 40 may be written as”'

_Stm (19.2.24)

“T IS
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i=1

wherem=1if S <0and m = —1if $> 0, n is the number of tied groups, and ¢,
the number of data in the ith (tied) group. The statistic u, is assumed to be zero
S = 0. Then the hypothesis of an upward or downward trend cannot be rejected
the « significance level if |u | > u,_,/,, where u,_,, is the | — a/2 quantile of t
standard normal distribution. Kendall® indicated that this test can be used even fi
Naslow as 10 if there are not too many tied values. Hirsch et al.”! extended this test
seasonal time series.

Final Remarks. The Mann-Kendall test can be extended to test whether differe
seasons exhibit trends in the same direction and of the same magnitude.53”! This t
has been applied to testing trends in water-quality time series.!* Other nonparam
ric tests for trends useful for hydrologic time series have been suggested, such as t
Hotelling-Pabst test?” and the Sen test,*3 and there are also tests for seasonally co
lated data.” An excellent reference for nonparametric tests is Hollander and Wolfe.

19.2.3 Determination and Testing of Shifts (Jumps)

A number of parametric and nonparametric tests are available for testing and dete:
mining shifts in statistical properties of time series such as the mean and v
iance.53164173 One parametric and one nonparametric test are included here. T
reader is referred to Sec. 17.3.2 for further discussion concerning the assumptio
and applicability of tests for shifts. 3

t Test for Shift in the Mean. Supposethaty,t=1, . . . , Nisanannual hydrologi
series which is uncorrelated and normally distributed with mean u and standa
deviation ¢ and N = sample size. The series is divided into two subseries of sizes N,
and N, such that N, + N, = N. The first subseries y,,t = 1,2, . . . , N;, hasmean y
and standard deviation g, and the second subsenes y,,t=N, + I, N, +2, . . .,
is assumed to have mean y, and standard deviation g. The simple { test can be used t
test the hypothesis ¢, = u, when the two subseries have the same standard deviatio
o. Rejection of the hypothesis can be considered as a detection of a shift. The t
statistic in this case is given by!%!73

T,= ﬂ;—y"—l (19.2.26‘
Sy/—+—
Nl N2
N, =D+ NV, — D53
s=\/( ' )s]i,_(z’ )s3 (19.2.270

where y, and y, and s and s3 are the estimated means and variances of the first an
the second subseries, respectively. The hypothesis u; = u, is rejected if 7, > T, _,,,
where T'_,,, is the | — a/2 quantile of the Student’s ¢ distribution with v= N —
degrees of freedom and a is the significance level of the test. Modifications of the t
are available when the variances in each group are different'”* and when the da
exhibit some significant serial correlation.!%



Mann-Whitney Test for Shift in the Mean. Suppose thaty,,t=1, ..., Nisan

annual hydrologic series that can be divided into two subseries y,, . . . , yy, and
YN,..» - - - »ynofsizes N and N,, respectively, such that N, + N, = N. A new series,
z,,t=1, . . ., N,isdefined by rearranging the original data y, in increasing order of

magnitude. One can test the hypothesis that the mean of the first subseries is equal to
the mean of the second subseries by using the statistic!”?

N
> R(y)— N(N, + N, + 1)/2
— I=1
4T TN, + Ny + 1127 (19.228)

where R(y,) is the rank of the observation y, in ordered series z,. The hypothesis
of equal means of the two subseries is rejected if |u|> u,_,,,, where u,_,,, is the
| — «/2 quantile of the standard normal distribution and « is the significance level of
the test. Equation (19.2.28) can be modified for the case of groups of values that are
tied.*?

Final Remarks. The foregoing tests are for a shift in the mean of a sample series
when the point of change is known. However, when the point of change is not known,
bayesian analysis can be used to detect the point of change and its amount.'% Like-
wise, the foregoing tests assumed that the underlying series is uncorrelated. Although
adjustments to the ¢ test can be made for serial correlation,'% intervention analysis is
a more effective approach.% The F test has been used for changes in the variance.
Furthermore, the tests included in this section assume a single series. For multiple
series, double mass analysis can be used and the significance of a change in the slope
can be tested. In the case of testing the mean of a series versus the mean of another
series (or the mean of a group of series), the Mann-Whitney test can also be ap-
plied.!” Furthermore, in the case of testing for equality in means for a group of series,
one-way and two-way analysis of variance can be used.*®

19.2.4 Testing for Seasonality

In most analysis and modeling of hydrologic time series, testing for seasonality in
statistics is done by using simple procedures, mostly by observing the plot of the
statistic under consideration versus the season 7. Figure 19.2.3 plots the mean y,
versus7 =1, . . . , 12. The plot suggests that the y,’s during the low-flow season are
quite different from those of the high-flow season. Thus, even though some of the y’s
in the low-flow season are similar to each other, one would conclude overall that y is
a seasonal statistic. A similar argument can be made in relation to seasonality in other
statistics such as s, g, and r ,.

More rigorous procedures for testing for seasonality can be made, although they
are rarely applied. For instance, since y, is an estimator of the population mean y,,
one could test the hypothesis that u, = u,. (for any 7 # 1°) versus g, # y... Under the
assumption that the underlying variables are independent and normally distributed,
one could apply the ¢ test of Sec. 19.2.3. The independence assumption may not be
quite true for seasonal stream-flow series, except if 7 and t’ are far apart, while it is
usually satisfied by seasonal precipitation series for any 7 # 7’. This test can be
extended to consider the hypothesis y, = - + - =pu,, versus yi; # - + - #u,, by applying
one-way analysis of variance.'?* Likewise, one can test the hypothesis 62 = o2 versus
o2 # g2 by using the two-tailed Ftest. Furthermore, extensions to test the hypothesis
g3=- - -=g2 versus d}# - - - ¥ 02 can be made by using an approximate general-
ized likelihood-ratio test.'*



19.2.5 Testing for Normality

Several of the models and approaches included in this chapter assume that the
variable under consideration is normally distributed. Therefore, it is usual practice to
test the data for normality before further analysis. A widely used method for judging
whether a certain data set is normally distributed is to plot the empirical frequency
distribution of the data on normal probability paper (see also Sec. 17.2.2 of Chap.
17). A straight-line probability plot indicates that the data are normally distributed.
Otherwise, the data are not normal and a transformation may be needed to make
them normal. Given the availability of plotting packages for personal and worksta-
tion computers, the graphical test for normality is quite attractive in practice. More
importantly, a powerful correlation plot test procedure is available 495193 However,
other tests are also used, such as the chi-square test, the Kolmogorov-Smirnov
test,™124 and procedures based on testing the hypothesis that the skewness coefficient
is equal to zero or the kurtosis coefficient is equal to three.!” See also Sec. 18.3.2 of
Chap. 18 for details of normality tests.

19.2.6 Transformations to Normal

A widely used method for transforming data to normal is based on the logarithmic
transformation. For instance, if x, is the original series, y, = log (x, — ¢) is normally
distributed provided that x, is lognormal with lower-bound parameter c¢. Often the
simple log transformation with ¢ = 0 works approximately, even if the original vari-
able x, is not lognormal. Likewise, power transformations such as y, = (x, — c) with
b <1 (usually % or %) is an alternative. An equivalent method is the Box-Cox '
transformation given by'°

(_xf;_‘) A0 (19.2.294)
Ve In() A=0 (19.2.29b)

in which A is a parameter which must be estimated so that the skewness of the y,
becomes zero.

19.3 TIME-SERIES MODELING

The concepts and principles discussed in the previous sections are used in this section
for representing hydrologic time series by mathematical models. A number of sto-
chastic models are presented here along with parameter estimation methods and
model testing procedures. The models can be applicable for many hydrologic proc-
esses, particularly stream-flow and precipitation processes. The models included in
this section belong to the class of autoregressive (AR), autoregressive with moving
average terms (ARMA), and disaggregation modeling schemes. These models should
be able to reproduce the most important statistical features of the hydrologic time
series under consideration. Alternative models such as fractional gaussian noises,'!!
broken line models,?"!!® and shifting level models'> are not included in this section
because AR and ARMA models can accommodate most typical cases. This is not to
say that alternative models may not be useful. For instance, shifting-level models
may be useful to capture the effect of climatic shifts in hydrologic series. Likewise.
modeling of short-term rainfall processes has been developing rapidly in recent years
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The theory and modeling schemes included here simply introduce some basic con-
cepts around which some of the recent rainfall models have been developing.

19.3.1 Modeling of Single Stationary Series
AR Models. A time series defined as!'*'5

=u+Sdu-w+e, (19.3.1)

Jj=1

is called an autoregressive model of order p in which ¢, is an uncorrelated normal
random variable (also referred to as noise, innovation, error term, or series of shocks)
with mean zero and variance o?2; it is uncorrelated with y,_,, . . . , y,_,. Since ¢, is
normally distributed, then also y, is normal. The parameters of the model are 4,

,¢,,and 02 The model, Eq. (19.3.1), is often denoted as the AR(p) model
or snmply the AR model The AR(1) model takes the simple form

=pu+d(y-,—mwte (19.3.2)

Low-order AR models such as Eq. (19.3.2) have been widely used for modeling
annual hydrologic time series (Refs. 42, 61, 114, 155, and 203, among others), and
seasonal and daily series after seasonal standardization,!38207

The mean, variance, and autocorrelation function of the AR(p) process are!515%

Ey)=u (19.3.3)
0-2
Var(y)=o?= ——p‘—— (19.3.4)
(’ - Z¢JP1)
j=1
= pt D, (19.3.5)

respectively. The last expression is known as the Yule-Walker equation. The three
foregoing equations are useful for determining the properties of a model, given the
model parameters, and for estimating the parameters of the model given a set of

observations y,, . . . , yn. For the AR(1) model, Egs. (19.3.4) and (19.3.5) give
"espectively
0-2
2 = £
o = ¢ (19.3.6)
P = $1pi—1 = &f (19.3.7)

ARMA Models. A more versatile model than the AR is the autoregressive moving
average model'?

4 q
v=p+ 2¢j(y,_j—u)+e,— Yo, ; (19.3.8)

j=1 Jj=1
vith p autoregressive parameters ¢, . . ., ¢,, and g moving average parameters
), ..., 0, The model is also denoted as an ARMA(p, ¢g) model or simply as

\RMA Note that an ARMA(p, 0) model is the same as an AR(p) model and the
ARMA(0, g) model is the same as the moving average model MA(q). The noise ¢, in



Eq. (19.3.8) is an uncorrelated normal process with mean zero and variance ¢2and

is also uncorrelated with y,_,, . . . , y,—, A simple version of the ARMA(p, ¢)
model is the ARMA(I, 1) as
yi=p+ &y —u)+e— b, (19.3.9)

Low-order ARMA models such as Eq. (19.3.9) are useful for operational hydrology
in general, especially for modeling annual series?3.67:68.107.115.129.155.136 3 d for seasonal
series after seasonal standardization.3!16

ARMA models must fulfill the stationarity and invertibility conditions, which i

imply certain constraints of the parameters. These are specified by the solution of the
characteristic equations'?

w—durt——¢,=0 (19.3.10)
w—0ut—---—6,=0 (19.3.11)

whose roots in each case must lie within the unit circle. For instance, for the
ARMA(1, 1) model, the constraints —1 < ¢, < 1 and —1 < 6, < | arise from the
foregoing equations.

The variance and the lag-1 autocorrelation coefficient of the ARMA(1, 1) model
are

2=1—:21—‘f%+—9%ag (19.3.12)
1
— (- ‘blel) (d)l - 01)

R Y (19.3.13)

respectively. Furthermore, the autocorrelation function is
=Dp =pdf" k> (19.3.14)

Comparing Eqgs. (19.3.7) and (19.3.14), one may observe that p, of the AR(1) process
is less flexible than that of the ARMA(1, 1) process, since the former depends on the
sole parameter ¢, while the latter depends on ¢, and 6, . Figure 19.3.1 gives some
examples of typical correlograms for both the AR(1) and the ARMAC(1, 1) processes.
In relation to modeling hydrologic processes, one may say that AR processes are
short-memory processes and ARMA processes are long-memory processes.'30:153

GAR Models. Skewed hydrologic processes must be transformed into normal proc-
esses before AR and ARMA models are applied. However, a direct modeling ap-
proach which does not require a transformation may be a viable alternative. The
gamma autoregressive process (GAR process) offers such an alternative. It is defined
as]03

=3¢y, te (19.3.15)

where ¢ is the autoregressive coefficient, ¢, is a random component, and y, has a
three-parameter gamma marginal distribution. The noise ¢, can be obtained as a
function of ¢ and the parameters of the gamma distribution 4, a, and f(the location,
scale, and shape parameters, respectively) as

e=A(l—¢)+1 (19.3.16)
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FIGURE 19.3.1 Correlograms p; for (a) the ARMA(L 1)
process for various sets of parameters ¢, and 6, and (b) the
AR(1) and ARMA(1, 1) processes for which p, = 0.4.

n=1 ifM=0
M
S EdY  ifM>0 (19.3.17)

j=1

r’=

in which M is an integer random variable, Poisson-distributed, with mean — 81n (¢),
theset U, . . . , Uy are independent identically distributed (iid) random variables
with uniform distribution (0, 1) and the set E,, . . ., E,, are iid random variables
exponentially distributed with mean 1/a. The GAR model has been applied to
modeling annual stream-flow series.?®

Product Models. While AR, ARMA, and GAR models are useful for modeling
many hydrologic processes such as stream-flow processes in perennial rivers, they are
impractical for intermittent processes such as stream flow in some ephemeral
streams. Intermittent processes can be modeled as the product™

v, = Bz, (19.3.18)
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where y, is a nonnegative intermittent hydrologic variable, B, is a discrete autocorre-
lated variable, z, is a positive-valued continuous autocorrelated variable, and B, and
z,are assumed to be mutually uncorrelated. B, may be represented by a dependent (1,
0) Bernoulli process and z, by an AR(1) process. Thus, the resulting product process y,
is intermittent and autoregressive. Product models have been applied for modeling
short-term rainfall processes'”?* and intermittent stream-flow processes.!*®

Parameter Estimation. Parameter estimation methods generally fall into three cate-
gories: method of moments, method of maximum likelihood, and method of least
squares. The method of moments is based on taking as many moment equations as
the number of parameters, substituting the population moments by the sample
moments, and solving the equations simultaneously for the parameters. In the
method of maximum likelihood, the likelihood function is first determined (this
function is a function of the parameters given the observations), then the function (or
its logarithm) is maximized and the parameters corresponding to such a maximum
are the maximum likelihood estimators. In the method of least squares, the parame-
ters which minimize the sum of square residuals X &7 are the least squares estimators;
this is particularly useful for ARMA models. Moment estimators are generally avail-
able for all models. The method of maximum likelihood is the most efficient estima-
tion method in a mean square error sense, although biases may be a problem, espe-
cially for small samples. The method of moments has been attractive in practice,
since it is easier to apply and corrections for bias are available for some models. The
method of least squares is an approximation to the method of maximum likelihood,
and generally both methods require a numerical solution.

Moment estimators of the parameters of the AR(p) model can be obtained
from Egs. (19.3.3), (19.3.4), and (19.3.5). For instance, for the AR(1) model, the :
estimators 2, 62, and ¢, are respectively

i=y (19.3.19)
ol=s2(1—rd (19.3.20)
é,=r (19.3.21)

in which y, 52, and r, are the sample mean, variance, and lag-1 autocorrelation |
coefficient determined by Egs. (19 2. l), (19.2. 2), and (19.2.4), respecuvely Correc-
tions for bias may be made by using p, of Eq. (19.2.6) instead of r, and 2 of Eq.
(19.2.7) instead of s2. -~

Moment estimators for the ARMA(p, g) process can also be derived. For the
ARMAC(1, 1) model, the moment estimator of u is also y and the estimators of 62, ¢, ,
and 6, are respectively ;

jim SO (19.3.22)
(1-2¢,6,+6})
r_n ‘
5, (manw
5ot im (19.3.24)
2(n—d)

inwhichb=1-—2 d;,r, + d;z O’Connell'® provides a bias correction for 52, and
procedures for estimating ¢, and 6, so that the Hurst slope is preserved.
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Maximum likelihood estimators of ARMA modeis are generally found approxi-
mately by minimizing the sum S(¢, §) =3 &?, in which ¢ and 6 represent the
parametersets¢,, . . . ,¢,and 8, . . . , 8, respectively. The parameters ¢ and §
corresponding to the minimum sum will be the maximum likelihood estimators.
Then, the estimator of ¢2is found by 62 = (1/N)S(¢, 6). A number of algorithms are
available for minimizing the sum S(¢, 6).12!5

Fernandez and Salas*® gave the moment estimators of the parameters of the GAR
model as

= % (19.3.25)

Vi

b= (19.3.26)
g

. B

i=i-% (19.3.27)

é=5 (19.3.28)

in which p,, 62, and 7 are the unbiased estimators of Egs. (19.2.6), (19.2.7), and
(19.2,10), respecpvely and /i is the unbiased sample mean of Eq. (19.2.1). Given
that 8, &, A, and ¢ are determined, then the noise term ¢ of Eq. (19.3.15) is completely
specified. Parameter estimation for product models such as Eq. (19.3.18) has been
suggested. !7:24.159

Model Testing and Selection. One of the basic tests for AR and ARMA models is in
regard to the assumptions of normality and independence of the noise ¢,. Once the
model parameters are determined, the residuals (noise) are found and tested for
normality as in Sec. 19.2.5. A common test to determine if the &’s derived from an
ARMA( p, q) model are independent is by the Portemanteau lack of fit test.!! It uses
the statistic

Q=Niﬁw (19.3.29)
k=1

where r,(¢) is the sample autocorrelation function of ¢ and L is the number of lags
considered (for instance, L = 0.25N), Qis approximately chi-square distributed with
v= L — p — q degrees of freedom, and N is the sample size. If Q <x3_,,, then ¢, is
uncorrelated and the model from which the &’s were derived is judged to be an
adequate model (« is the significance level of the test). Often, the bounds 1.96/YN
are determined and one would like to see the 7,(€)’s within the limits, especially for
small k.

The adequacy of a time-series model is often examined by comparing the histori-
cal statistics with those derived from the model. The statistics considered are the
mean, variance, skewness, and autocovariance, although more thorough compari-
sons include storage and drought-related statistics as well. If the method of moments
is used for parameter estimation, certain statistics such as the mean and variance
should be preserved or reproduced by the model. However, this may not necessarily
be the case if transformations to normal are used in the modeling process or are due

to biases of estimators. Matalas!!* showed that biases resulting from transformations
nay be important and suggested an estimation scheme to avoid such blases lee-
vise, basic historical moments may not be reproduced hv tha mad~1 26
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likelihood estimates are used. Sometimes, the comparison of the historical and
model correlograms is used as the basis of judging the adequacy of a model. For
instance, if the ARMA(1, 1) model is the model to be tested, the model correlogram
P of Eq. (19.3.14) is compared with the historical or sample correlogram r,. One
would like to see that the model correlogram resembles the historical correlogram for
the model to be adequate. Computer simulation is often used for comparing histori-
cal and model statistics. Stedinger and Taylor'” offer a procedure to follow in using
data generation studies for comparing historical and model-generated statistics.

Finally, comparison among models and model selection can be made by using the
Akaike information criteria (AIC) suggested by Akaike.! A modified AIC called
AICC has been suggested:!*

2(p+qg+ 1)N
N—p—q—2)

in which 62is the maximum likelihood estimator of the noise variance. The model
which minimizes the AICC is selected.

AICC(p, g)=NIn (6} + (19.3.30)

19.3.2 Modeling of Single Periodic Series

PAR Models. Assume that a periodic hydrologic process is represented by y, ., in
which v defines the year and t defines the season, suchthatt=1, . . . ,wandwis
the number of seasons in the year. Without loss of generality, T could represent a day,
week, month, or season. A time series defined as'*®

14
yV.‘l = Ilz + 2¢j,:(yv,1—j - ,ur—j) + Ev,r (19331)

=

is called a periodic autoregressive model of order p, in which ¢, is an uncorrelated
normal variable with mean zero and variance o3(¢), and it is also uncorrelated with
Yue—t> « « - » Yoe—p- The model parameters are p., ¢, - . -, ¢, and o(e) for
7=1, ..., w,and the model is often denoted as the PAR(p) or simply the PAR
model. Note thatin Eq. (19.3.31),ift — j < 0, then y, ,_;becomes y,_, ,.,_;andu,_;
becomes i+, The PAR(1) model arises by making p = | in Eq. (19.3.31) as

yv.r = ﬂr + ¢l,1(yv,t—1 - .ur—l) + sv,t (19-332)

Low-order PAR models such as Eq. (19.3.32) have been widely used in hydrology.
For instance, the PAR(1) model was used by Hannan®* for modeling monthly rainfall
series and by Thomas and Fiering!®! for monthly stream-flow simulation. Likewise,
PAR(1), PAR(2), and PAR(3) models have been used for simulation of seasonal
hydrologic processes.2829:32151

PARMA Models. One may extend the PAR model [Eq. (19.3.31)] to include peri-
odic moving average parameters. Such a model is the periodic autoregressive moving
average model or PARMA(p, g) model. Low-order PARMA models are useful for
modeling periodic hydrologic time series. For instance, the PARMA(1, 1) model is
simply written as

yV.‘( = ur + ¢l.f(yv,r—l - #r—l) + sv,r - 01,18v,r—l (19~3-33)

This model has been applied to monthly stream-flow series.5%!35180 ] jkewise,
PARMA(2, 1)and PARMA(2, 2) models® and more complex mudtiplicative PARMA
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models'?"' may be needed for stream-flow modeling and simulation when preser-
vation of both seasonal and annual statistics are desired.

Periodic GAR Model. Consider that y, . is an autocorrelated variable with three-
parameter gamma marginal distribution with location 4,, scale o, and shape g,

parameters varying with 7, 7=1, . . . , @. The new variable z,, =y, — A is a
two-parameter gamma and can be represented by3#
zv,t = ¢tzv,t—l + (Zv‘v—l)d'wv,r (]9334)

where z,, = z,_, ,,, ®. is a periodic autoregressive coefficient, 4, is a periodic autore-
gressive exponent, and w,, is the noise process. The periodic GAR model [Eq.
(19.3.34)] has a periodic autocorrelation structure equivalent to that of the PAR(1)
process. Refer to Fernandez and Salas® for properties and applications of the peri-
odic GAR model.

Periodic Product Models. Intermittent hydrologic time series which are periodic
ind correlated can be modeled by!'*?

Vor=B,.2,, (19.3.35)

where , . is an intermittent periodic autocorrelated process, B, , is a periodic auto-
correlated Bernoulli (1, 0) process, and z, . may be either an uncorrelated or corre-
lated periodic process with a specified marginal distribution. Furthermore, the proc-
2sses B and z are assumed to be mutually uncorrelated. Refer to Salas and
Chebaane'*® and Chebaane et al.’ for properties and applications of such periodic
product models for stream-flow modeling and simulation.

Parameter Estimation. Estimation by method of moments and approximate maxi-
mum likelihood is available for the various periodic models included in this section.
“or instance, for the PAR(1) model of Eq. (19.3.32), the parameters 4., ¢., and o3(¢)
nay be estimated by

Py _

a=y, (19.3.36)
-~ s‘(
b= ( ) Tie (19.3.37)
sr~l
oHe)=s2—s2_, 1}, (19.3.38)

there y,, s, and r, , are the sample seasonal mean, seasonal standard deviation, and
1g-1 season-to-season correlation coefficient, respectively.

Likewise, for the PARMA(1, 1) model of Eq. (19.3.33), the moment estimators
re157

i ch
=2 19.3.
b - (19.3.39)
- " 2 — & n 2
b=+ (7= bl BreerSi = Cuen) (19.3.40)

(¢|.zs§-—| —C1) (10521 — €11)01 241

Broe1sts = Cuens (19.3.41)

oife) = PPt _fhent

9],1’+l
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fort=1, . , w, where ¢; . is determined by Eq. (19.2.13). Equation (19.3.40) is a i
system of equatlons that must be solved simultaneously to obtain 6, ., 7 = 1,

w. Note that in Egs. (19.3.37) through (19.3.41), 7 — listobe mterpretedas w when
t=1 and as 7+ 1 when 7 = w. Moment estimation procedures for higher-order
PAR and PARMA models are also available.!5%!57 }

N
In the method of maximum likelihood, the sum of the square residuals S = Y i

€2, in which ¢, , is the noise term of the PAR or PARMA model under con51lcitc-1'1

ation, is minimized to obtain the approximate maximum likelihood estimators
[ ,,,and 0., . . . .0,,. Then, the noise variance g(¢) can be obtained

by 6%(e) = (1/N) 2 €2,,7=1, . . . , win which the noises are evaluated from the

PAR or PARMA" model equations, as the case may be.

Moment estimators of the parameters of the periodic GAR model of Eq. (19.3.34)
are available.®® Likewise, parameter estimation procedures for periodic product
models are also available.?5:!%?

Model Testing. Testing of PAR and PARMA models can be done by testing the %
basic assumptions of the models, i.e., that the noise ¢, , is uncorrelated and normal.
After the residuals ¢,, are determined, the season-to--season correlations r;_ ,(s)
=1, ., w can be obtained from Eq. (19.2.12) and it can be verified that the s
fall within the bounds * 1. 96/VN. Likewise, the residuals can be tested for normality
on a seasonal basis. The model may be tested for adequacy to preserve certain
historical statistics such as y,, 52, g, and r, [ (k=1, . . . ). If the method of mo-
ments is used to estimate the parameters and the original data are approximately
normally distributed, then the model must be able to reproduce such basic historical
statistics. However, if transformations are used to make the original data normally
distributed, then the model based on the method of moments generally will not
reproduce the original statistics y,, s2, g, and r; ., although it will reproduce similar
statistics in the transformed domain. However, for the log-transformation and the
PAR(1) model, it is possible to reproduce the basic statistics in the original domain by
a procedure suggested by Burges.!® Likewise, one may be interested to see the capa-
bility of a given model to reproduce statistics at aggregated time scales, typically at the
annual time scale. Such statistics may be the annual correlation structure and stor-
age- and drought-related statistics. In this case, data generation experiments are
generally made.!5>!78

19.3.3 Modeling of Multiple Stationary Series

Analysis and modeling of multiple time series are widely needed in hydrology. For
instance, one may like to model precipitation series at several sites in a river basin,
stream-flow data recorded at several gauging stations in the stream network, or a mix
of precipitation with stream-flow data recorded at various sites. Analysis and model-
ing procedures for multiple series are more involved than for a single series. In
analyzing multiple series, vector and matrix notations are needed. However, the
basic principles are similar, and we will still be referring to means, variances, and
covariances, but in vector and matrix forms. We will start in this section with model-
ing of stationary series and the following section will deal with periodic series.

Multivariate AR and Multivariate ARMA Models. Considen_' a multiple time ser@es
Y,, a column vector with elements 34, . . . , y{” in which n is the number of series
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(number of sites or number of variables) under consideration. The multivariate
AR(1) model suggested by Matalas!'* is defined as

Z,=AZ,_, +Be, (19.3.42)

in which Z,=Y, —u, A, and B are n- by n-parameter matrices and g is a column
parameter vector with elements u, . . . , u™. The noise term ¢, is also a column
vector of noises &, . . . , &M, each with zero mean such that E(g,e]) = I, where T
denotes the transpose of the matrix and I is the identity matrix, and E(g,.e’,) = O for
k # 0. In addition, it is assumed that g, is uncorrelated with Z,_, and g, is normally
distributed. Model (19.3.42) has been widely used in operational hydrology. Higher-
order multivariate AR models are also available.!3*'5% Likewise, the multivariate
ARMA(1, 1) model is written as!30.1%3

Z,=AZ_,+Beg—Ce._, (19.3.43)
in which C, is an additional #- by n-parameter matrix.

Contemporaneous AR and ARMA Models. Using the full multivariate AR and
multivariate ARMA models as described above often leads to complex parameter
estimation, especially for the last model. Thus, model simplifications have been
suggested. For instance, a simpler model will result from Eq. (19.3.42) if A, is as-
sumed to be a diagonal matrix.!'* In general, a contemporaneous ARMA (CARMA)
model results if the matrices A, and C, of Eq. (19.3.43) are considered to be diagonal
matrices.?>!55158 [n this case, model (19.3.43) implies a contemporaneous relation-
ship in that only the dependence of concurrent values of the )’s are considered
important. Furthermore, the diagonalization of the parameter matrices allows model
decoupling into component univariate models so that the model parameters do not
have to be estimated jointly, and univariate modeling procedures can be employed.
To illustrate the foregoing concept, let a multivariate ARMA(p, q) process be

14 q
Z,=3AZ_;+e— gc,.a,_, (19.3.44)
P

Jj=1

Assuming that matrices A; and C; are diagonals, model (19.3.44) can be decoupled
into the model components

2P =3 a2+ & — Y ) e?; (19.3.45)

j=1 J=1
fori=1, . .., n Thus, the model components at each site are simply univariate
ARMAC(p, g) models whereeachel?,i=1, . . . , n,isuncorrelated, but are contem-

poraneously correlated with a variance-covariance matrix G. Thus, the parameters a
and ¢ in each model, can be estimated by using univariate estimation procedures and
the &’s can be modeled by

e, =B (19.3.46)

in which § is normal, such that E(§£7) = I and E(£, ) = 0 and k # 0. Note that
one does not have to consider the same univariate ARMA( p, g) model for each site.

Parameter Estimation. Moment estimators for the multivariate AR(1) model
(19.3.42) are!!4

A, =MM;! (19.3.47)
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BB =M,— AMT (19.3.48)

in which M, and M, are the lag-zero and lag-one cross-covariance matrices of the
multivariate series Z, whose elements are determined by Eq. (19.2.15). Equation
(19.3.48) gives estimates of the product B B7 = D where D is the right-hand side of
(19.3.48). This matrix equation can be solved for B by principal component analy-
sis'** or by square root procedure.?® Matrices A, and B can be solved if M, and
M, satisfy certain conditions. First of all, M, must be a positive definite matrix. This
is generally satisfied when the sample sizes for all sites are the same. A technique that
ensures that M, will be positive definite when the sample sizes are different is avail-
able.* In addition, matrix B BT =M, — A\M{ must be positive definite. Esti-
mators of M, and M, which ensure that B B” will be positive definite are also
available.?® With large matrices and with transformed data, numerical errors may
still give an inconsistent B B7 matrix. In such cases B B” can be adjusted.!!!

One can solve the matrix equation BB” = D by using the square root method.*®
This method assumes that B is a lower triangular matrix (above diagonal elements
are zero) and requires that D is a positive definite matrix. In such case the elements b¥
of B are

a’ . .

b'f=ﬁ j=Li=1,...,n (19.3.49a)

i—1 1/2
bif = [d""— > (b"")'ﬂ] i=2,...,n (19.3.49b)

k=1
j—1

d’ij_ z bl’k bik
b=—t——  j=2...,n—Li>j (19349
and b¥ =0 for i <j, in which d%, i,j=1, . . . , n, are the elements of D. In cases

where D is a positive semidefinite matrix, a method based on principal components is
needed.!? An alternative method for solving BB™ = D which works for D positive
definite or positive semidefinite is also available.!%

The estimation difficulties normally encountered with the full multivariate
ARMA models can be overcome by using CARMA models. Since the CARMA
model (19.3.44) can be decoupled as in Eq. (19.3.45), univariate estimation proce-
dures by the method of moments or maximum likelihood can be used to estimate the
a’s and ¢’s. The elements of matrix G for the CARMA(1, 1) model can be estimated
asl78

) mg (1 — a® av)
= a® 200 — 30 20 + ) o)

(19.3.50)

for i, j=1, . .., n, in which m{) is the ijth element of M,, the lag-zero cross-
covariance matrix of Z,. Finally, B of Eq. (19.3.46) will be estimated by solving
BBT=G.

Model Testing. Model testing depends on the type of multivariate model consid-
ered. In the case of the full multivariate AR( p) and ARMA(p, g) models, one may test
the assumption of normality of residuals & and the assumptions E(ge,”) =1 and
E(eel ;) = 0 for k # 0. Thus, once the residuals e, i=1, . . . , n,are found, one
should test that My(¢) = I and that, at least, M,(g) = 0. The elements of these matrices
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fexcept the diagonal of M(e)] must be within the limits of + 1.96/YN. Likewise, in
the case of CARMA models, one can make similar tests as above for the residual
variable ¢ of Eq. (19.3.46). Testing whether a given model reproduces historical
statistics is often performed by data generation procedures.'s*

19.3.4 Modeling of Multiple Periodic Series

Multivariate PAR and Multivariate PARMA Models. The multivariate PAR(1)
model is given by!5?

Z,,=AZ, ,+Be, (19.3.51)

in which Z,, =Y, . —u,, A, and B, are n- by n-parameter matrices, and g, is a
column parameter vector with elements u{", . , 47, All parameters ., A, and
B, are periodic. The noise term g, . is a column vector normally distributed with mean
zero,and E(e, .e7,) = land E(g, rev,_k) = 0 for k # 0. In addition, it is assumed that
e,. is uncorrelated with Z,,.,. This model has been widely used for generatmg
seasonal hydrologic processes. Likewise, the multivariate PARMA(1, 1) model is
written asé158

Zv.f=At Zv,t—l + Br 8v,r_Cf cv,r—l (19352)
in which C, is an additional n by »n periodic matrix parameter.

Contemporaneous PAR and PARMA Models. Simplifications of the foregoing
models can be made. For instance, A, of Eq. (19.3.51) can be made diagonal. In the
case of the multivariate PARMA(1, 1) model of Eq. (19.3.52), it is more convenient
to write the model as*

2,.,=A1Z, +te,—Ce,_, (19.3.53)

and consider that A, and C, are diagonal matrices. Then, the model can be decoupled
into univariate models for each site. However, to maintain cross-correlation among
sites, the vector g, , will be assumed to have a variance-covariance matrix G, or E(e, ,
el )=G,and E(em el._;) =0 for k # 0. Then, ¢, can be modeled as

=B,¢, (19.3.54)

such that E({, ¢7.) =1 and E({,,{,,_k) 0 for k # 0. The foregoing modeling
scheme is a contemporaneous PARMA(I, 1) model. Similar simplifications can be
made for higher-order models.

Parameter Estimation. Moment estimators of the parameters of the multivariate
PAR(1) model (19.3.51) are'3*

A =M, ML, (19.3.55)
BBT=M,, — A M7, (19.3.56)

in which M,qr (k=0, 1) are sample season-to-season covariance matrices of Z, ..
Matrix A, is determined directly while B must be found by the square root method.
Estlmatlon for the multivariate PARMA(I 1) model is more complex.63.!58

An alternative is to use the contemporaneous PARMA(1, 1) model of Eq.
19.3.53). Since it allows decoupling, univariate procedures can be used to estimate
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the parameters @ and ¢, i= 1, . . . , n (elements of A, and C,). Then, the ele-
ments g¥ of matrix G, may be obtained as$?

g = e + [ g, (19.3.57a)

e = mif)— a mif)_, a9 (19.3.57h)

SO = a® P+ a® ¢ — o0 P (19.3.57¢)

where mf),i,j=1, . . . , nare the elements of Mo .- Once matrix G, is determined,

then B, oqu (19 3 54) can be determined from B,.B7 =G,.

Model Testing. Model testing for multivariate periodic models is similar to testing
of multivariate stationary models except that periodicity must be considered. For
instance, for full multivariate PAR or PARMA models, one can verify that the
res:duals e, . are normally distributed and check the assumptions E(e, , &7,) =1 and
E(e, .27~ ) = 0 for k # 0. Likewise, for contemporaneous PARMA models, one can
make similar tests for the residuals {V, of Eq. (19.3.54). Additionally, one can do
further testing by using data generation procedures.

19.3.5 Disaggregation of Annual to Seasonal Series

Generally, modeling of seasonal hydrologic time series is geared to preserving sea-
sonal statistics only, while statistics at other levels of aggregation, such as annual
statistics, may not be preserved. For instance, if the PAR(1) model is used to generate
monthly flows, the historical monthly statistics are usually preserved, yet if such
generated monthly flows are aggregated to obtain the corresponding annual flows,
there is no assurance that the historical annual statistics will be preserved. Disaggre-
gation models have been developed for reproducing statistics at more than one level
of aggregation. Disaggregation models can be used for both temporal and spatial
disaggregation; however, the models in this section are mostly described in terms of
temporal disaggregation.

Traditional Valencia-Schaake Model. Assume that X and Y are normalized vari-
ables with mean zero. The basic form of the disaggregation model suggested by
Valencia and Schaake is!%°

Y =AX + Be (19.3.58

where X is an n vector of annual values at 7 sites, Y is an nw vector of seasonal value:
in which w is the number of seasons in the year, A and B are nw- by nw-paramete
matrices, and & is an nw vector of independent standard normal variables. A desir
able property of disaggregation models is additivity, i.e., the sum of the seasona
values must add up to the annual values. The parameters A and B may be estimate:
byl89

A=S,,S3} (19.3.59
BBT=S,,— AS,, (19.3.60

in which S, represents the sample covariance of the vectors U and V. In the forego
ing formulation, it is assumed that X (say the annual series) has been previousl
generated by a specified model such as the AR(1) or ARMAC(1, 1) process.
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Valencia-Schaake’s model does not preserve the covariances of the first season of

a year and any preceding season. To circumvent this, Eq. (19.3.58) is modified as'?°
Y=AX+Be+CZ (19.3.61)

where C is a new parameter matrix and Z is a vector of seasonal values from the
previous year for each site. Usually, Z is a vector containing only the last season of the
previous year in which case Cis an nw by n matrix. A, B, and C may be estimated by

A = (Syx — S3,5245%) (Sxx — S3:Sz:S%x)! (19.3.624)
C=(St,— AS%,)S;L (19.3.62b)
BB7=S,,— AS,, - Csg, (19.3.62¢)

where S%, = Sy S34Sxz, S¥z = Syz + SyxSxk (S¥z — Sxz) and X' is the vector of
the prekus year. With A, B, and C thus estimated, model (19.3.61) preserves the
covariances Syy and Sy, as well as the additivity property. However, Egs. (19.3.62)
assume an annual model which reproduces Sy, and Syy..

On the other hand, a scheme which does not depend on the annual model’s
structure can be formulated as'”’

Y, =AX, + ¢ (19.3.63a)
e=Ce_, +¢ (19.3.63b)

in which the subscript ¢ is now introduced, ¢, is independent of X,, and £, is a random
component with covariance matrix parameter S;. The parameters may be estimated
by

A =S,,Sx} (19.3.64a)
C=8,S;! (19.3.64b)
Sg=S..— CSICT (19.3.64¢)

in which S,, = Sy, — AS,, and ¢’ = ¢,_,. The model scheme reproduces the mo-
ments Syy, Syx, and Syy.

Lane’s Condensed Model. The foregoing disaggregation models have too many
parameters, a problem which may be significant, especially when the number of sites
is large and the sample size is small. Lane sets to zero some parameters of model
(19.3.61). Thus

Y,=AX+Be+CY,, 1=1...,0 (19.3.65)

is a model in which the number of parameters is reduced considerably (w sets of
parameters A, B, and C,). However, a shortcoming is that the additivity property is
lost because the model is applied separately to each season. This shortcoming can be
avoided by adjusting the seasonal values so that they add exactly to the annual values
at each site. The estimation of model parameters and approximate adjustments can
be found in Lane.*®

Santos-Salas Step Disaggregation Model, In some of the disaggregation ap-
proaches, it is necessary to solve BBT =D for B. Since BB” should be positive
iemidefinite (because of the additivity property), the principal components tech-
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nique is usually followed. However, when the matrices involved are large (which is
typical for multisite seasonal disaggregation), the solution for B usually deteriorates,
and large computer storage capacity is required.!? The disaggregation problem can be
made computationally more amenable if it can be done in steps (stages or cascades);
thus the size of the matrices involved will decrease and, consequently, so will the
number of parameters. For instance, Fig. 19.3.2a schematically shows that annual
flows are disaggregated into monthly flows directly in one step (this is the usual
approach), while Fig. 19.3.2b shows such disaggregation is performed in two steps,
into quarterly flows in the first step, then each quarterly flow is further disaggregated
into monthly flows in the second step. However, even in the latter approach, large
matrices will result when the number of seasons and the number of sites are large.

Santos and Salas'¢1% proposed a step disaggregation in which, at each step, the
disaggregation is always into two parts or two seasons. For instance, Fig. 19.3.3 shows
that the yearly value X, is disaggregated into 12 monthly values by first disaggregating

12

the year into the first month Y, and the sum of the remaining 11 months z Y,
-2
Then, this latter sum is giisaggregated into the second month Y, ; and the sum of the
1
remaining 10 months 2 Y, . and so on until the months Y, ;, and Y, ,, are obtained

™3
in the eleventh disaggregation step. This stepwise disaggregation scheme leads to a
maximum parameter matrix size of 2 X 2 for single site disaggregation and 2n X 2n
for multisite disaggregation. Note that the seasonal covariance between flows is
preserved if model (19.3.61) is applied in each step. The step disaggregation model as

Monthly

Quarterly 1

1
2

3
Monthly

2 Yearly

Yearly . 7

1

12
12
(@) (b)

FIGURE 19.3.2 Disaggregation of annual flows X into monthly flows (a) in one
step, and (b) in two steps, first into quarterly flows, then into monthly flows.
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FIGURE 19.3.3 Step disaggregation of annual flows X into monthly flows in
11 steps. First step disaggregates into month ! and the sum of months 2~ 12,
the second step pertains to month 2 and sum of months 3 - 12, and so on.'%6
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suggested above has the advantage over the previous models in that it has the mini-
mum size of matrices involved, thus the smallest number of parameters, while keep-
ing the additivity property. However, it has the same drawback of all previous models
when the underlying variables are not normally distributed. However, the approach
proposed by Todini'®2 can be implemented in conjunction with the step disaggrega-
tion model for skewed variables.

Stedinger, Pei, and Cohn’s Stagewise Models. Stedinger et al.'™ suggested a single
site disaggregation model which reproduces seasonal statistics and the covariance of
seasonal flows with annual flows, assuming lognormally distributed seasonal flows
and lognormally distributed annual flows. Consider that y,, = log (Q, .—¢) is nor-
mally distributed seasonal flows, Q, . is the original seasonal flows, and g, is the lower
bound for season 7. In addition, consider that x, = log (Q, — g) is also normally
distributed, Q, is the original annual flows, and g is the lower bound. The model to
generate y, . may be written as'”

Ya=a +bx+e, (19.3.66q)
Va=at bx, +dyy,, t+¢, (19.3.66b)
—1
Yy = ay + brxv + CeVr—1 + dt 2 Wedy,j + &, T= 39 D w(19.366c)

Jj=1

where ¢, . are uncorrelated zero-mean normal random variables. The term X w, y, ;
allows for reproduction of the variance of the first-order approximation of Q,, the
actual lognormal annual flow, and w, = exp (i, + 0.5 62), in which g, and a2 are the
mean and variance of y, .. The seasonal variables y, , from Eq. (19.3.66) will produce

w
a generated annual flow equal to Q= 2 [4. + exp (y,.)] which will not be equal to

=1
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the original generated annual flow Q,. Then, the seasonal flows can be adjusted as

0,.= ( g,.,) (4. +exp (3,)] (19.3.67)

in which case the sum of Q,,, . . . , Q,, Will be exactly equal to Q,.

Model (19.3.66) essentially amounts to adding an extra term to Lane’s model
(19.3.65). Likewise, model (19.3.66), if applied to real space flows, is similar to
Santos-Salas’ step model. Model (19.3.66) relates each monthly flow with the yearly
flow explicitly, and the additivity property is preserved by including an extra term
which represents the sum of the previously generated monthly flows. On the other
hand, in Santos and Salas’ step model, the relationship between each monthly flow
and the annual flow is not explicit. However, if such a step model is written in
regression form, then a term representing the sum of the remaining flows in the year
will appear. Thus, the models are different, but accomplish essentially the same thing
in the real space flows. The advantage of model (19.3.66) is that it can generate
lognormally distributed seasonal flows which, with some adjustment, willadd up toa
lognormally distributed annual flow. A shortcoming of the model is that there is no
provision for preserving the covariance of flows of the first season of this year with
flows of the last season of the previous year. The multisite version of model (19.3.66)
is also available.3%¢!

19.3.6 Markov Chains

The models included in the previous sections are applicable for continuous variables.
However, various processes in hydrology can be formulated as discrete-valued proc-
esses or continuous processes can be discretized for computational convenience. In
these cases, the theory of Markov chains may be applicable. Markov chains have been
used in hydrology for modeling processes such as precipitation, stream flow, soil
moisture, and water storage in reservoirs. Gabriel and Neumann*° developed a Mar-
kov chain model for the occurrence of dry and wet days in daily rainfall. Many others
have used Markov chains for modeling precipitation processes>26:40.62.122,149.172,184
and water storage processes,3!36.109.126210

Definition and Properties. Consider X(r) to be a discrete-valued process which
started at time O and developed through tim~ ;. The values that the X{#) process takes
on are denoted by x,, =0, 1, . . . . Then

PX(t)=xX(O0)=xo, X(DN)=Xx;, . . . , X(@—1D=x_] (19.3.68)

is the probability of the process being equal to x, at time ¢, given its entire history. If
the foregoing probability simplifies to

PX(t) = xJX(t — 1) =x,_,] (19.3.69)

it means that the outcome of the process at time ¢ can be defined by using only the
outcome at time ¢ — 1. A process which has this property is a first-order Markov chain
or a simple Markov chain. Higher-order Markov chains can be formulated; however,
only simple Markov chains will be considered here. Furthermore, the notation
X(t)y=j,j=1, . .., rwillbe used instead of x,, which means that X(¢) is at state j,
and r is the number of states. For instance, in modeling daily rainfall, one may
consider two states, j = 1 for a dry day (no rain) and j = 2 for a wet day. Figure 19.3.4
shows schematically the definition of states. :
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FIGURE 19.3.4 Definition of states for a Markov chain X(¢) and the corresponding transition
probabilities p;(1), j=1, . . . ,r.

Transition Probability Matrix. A simple Markov chain is defined by its transition
probability matrix P(t), which is a square matrix with elements p;(¢) given by

pi(t) = PLX(t) = jlX(t — 1) =] (19.3.70)

for all i, j pairs. Figure 19.3.4 shows that the chain may go from state jat time — 1 to
states 1, . . . , r at time ¢, with corresponding transition probabilities p,,(¢), . . . ,
pir(t)- Thena

Sp0=1 i=1,...,r

j=1

Furthermore, if the transition probability matrix P(z) does not depend on time, the
Markov chain is a homogeneous chain or a stationary chain. In this case, the nota-
tions P and p;; are used. For the rest of this section, a homogeneous Markov chain is
assumed.

n-Step Probability. Assume that the chain is now in state / and after n time stepsit is
in state j. The transition probability from i to j in n steps, denoted by p{?, is given
by133

=3 n>1 (19.3.71)
k=1

and p{) = p;. Thus, p{P, i,j= 1, . . . , rare elements of the n-step transition proba-
bility matrix P™. It may be shown that P can be found by multiplying the one-step
transition probability matrix P by itself # times.

Marginal Distribution. The probability distribution of the chain being at any state
attime ¢, denoted by g;(t) = P[X(¢) =j},j=1, . . . ,r, iscalled the marginal distri-
bution of the process. i’hus, ¢,(0) is the distribution of the initial states. The marginal



state probability g;(¢), given that g;(0) is known, may be determined as'33

4= 6,©0)pY (19.3.72)

i=1

Also, q(¢) = q(0) P?, in which q(¢) denotes the (row) vector of marginal state probabii-
ities.

Steady-State Probabilities. The steady-state probability vector q* with ele-
ments ¢qF, . . . , g*represents the average fraction of time the chain is in states
1, . .., r, respectively. It can be found by estimating P for large ¢ until it con-
verges. Also, the elements g%, i =1, . . . , r can be found by solving the system of
equations

ql_a= zquki i=1,...,r (19.3.730)
k=1
Sgr=1 (19.3.73b)

i=1

Example. Assume that daily rainfall for a given site is represented by a simple
Markov chain with two states, j= 1 for dry and j =2 for wet, and a transition
probability matrix P with elements p,, = 0.6, p,; = 0.4, p,; = 0.3, and p,, =0.7.
Assume also that initially the day is dry or j =1 at t = 0. This also means that the
initial marginal state probability vector is g(0) = [1, 0]. Find: (1) the probability that
the next day will be a dry day, (2) the probability that after 2 days, the day will be wet,
(3) the probability of states dry and wet after 3 days, and (4) the probability of states
dry and wet at any given day (regardless of the initial state). Since initially the day is
dry, then p{) = p,, = 0.60 and Eq. (19.3.71) gives p{j = p,,p, + P12, = 0.6 X
0.4 + 0.4 X 0.7 = 0.52. The probabilities of states dry and wet after 3 days are deter-
mined by

06 04 3=[1 0] 0.444 0.556
03 0.7 0.417 0.583

q(3) = q(0) [ ] = [0.444 0.556]

Finally, the probabilities of states dry and wet regardless of the initial state (long-run
probabilities) are obtained by solving the system of Eqs. (19.3.73). Alternatively, it
may be obtained from P® where ¢ is large. For example, for # = 8, it may be shown

pw | 0429 0571
0.429 0.571

Therefore, g* = [0.429 0.571] with approximation to the third decimal figure.

Estimation and Testing. Estimation for a simple Markov chain amounts to estimat-
ing the elements p;; of the transition probability matrix. For instance, consider mod-
eling weekly rainfall for a period of @ weeks during the summer and denote by state 1
when it does not rain (dry week) and by state 2 when it rains (wet week). Thus, a
sequence of rainfall states for a given summer may appear as 2112211222212 in
which @ = 13 (weeks). Thus, for a homogeneous simple Markov chain, the probabil-
ities py1, P12» P22, and py, will be estimated. Assume that the total sample, considering

N years of data, is @N. Then n,; = number of times a dry week is followed by another
dry week, n,, = number of times a dry week is followed by a wet week, n,, = number




of times a wet week is followed by a dry week, and n,, = number of times a wet week
is followed by a wet week. Furthermore, denote n, = n,, + n,, and n, = n,, + n,,.
Then, p; = n;/n;, i =1,2and j = 1, 2. This algorithm can be extended for r states.
To test whether a simple Markov chain is an adequate model to describe the
process under consideration, one can check some of the assumptions of the model
and check whether it is able to reproduce some relevant properties of the process. For
instance, one should check whether Eq. (19.3.68) simplifies to Eq. (19.3.69). Statisti-
cal methods for such tests are available.*’ In addition, one can compare the n-step
transition probability of Eq. (19.3.71) with that obtained from the observed data. For
t =2 and r = 2, one can compare p% = p,,py, + PnD»; With p§} obtained from the
data. Likewise, for a two-state Markov chain, the probability that the chain remains
in state | during k steps is P(L, = k) = p%;'p,, and the probability that the chain
stays in state 2 during k steps is P(L, = k) = p% 'p,,. These probabilities can be
compared with the corresponding probabilities obtained from the historical data.

Remarks. The emphasis of this section has been on homogeneous, first-order (sim-
ple) Markov chains. Although in some cases this model may be adequate to model
the hydrologic process under consideration, often more complex models may be
necessary. For instance, in modeling daily rainfall processes, the parameters of the
Markov chain are often assumed to vary with time across the year.4%.14%.201 Higher-
order Markov chains may be necessary in other cases.?¢ In addition, maximum
likelihood estimation of parameters has been suggested.!#%2%! Furthermore, selection
of the order of Markov chain models can be based on the Akaike information
mteﬁa.26.52,149,185

19.3.7 Point Process Modeling

Simple Point Process. The theory of point processes has also been suggested for
modeling time series of short-term rainfall since Le Cam!* and Todorovic and
Yevjevich!33 suggested that the occurrence of rainfall showers can be modeled by a
Poisson process. Assume that storm arrivals are governed by a Poisson process. This
means that the number of storms N(¢) in a time interval (0, ¢) is Poisson-distributed
with parameter ¢, or

()"

T

P[N(t) = n] exp (—At) n=0,1, ... (19.3.74)

in which A represents the storm arrival rate (per unit time). Referring to Fig. 19.3.5a,
n storms arrived in the interval (0, 7) at times ¢,, . . . , ¢,. The number of storms in
any time interval T is also Poisson-distributed with parameter A7. The second as-
sumption is that a white noise (random) rainfall amount R is associated with a storm
arrival. For instance, R can be gamma-distributed with scale parameter x and shape
parameter J. In addition, N(¢) and R are assumed to be independent. Thus, in Fig.
19.3.5a, rainfall amounts r,, . . . , r, are associated with storms occurring at times
4, . . . ,t,.Sucha rainfall-generating process, called Poisson white noise (PWN), is
a simple example of a point process.>

Likewise, the cumulative rainfall (mass curve process) in the interval (0, ¢) is given
by N()

Zt)= 3 R, (19.3.75)
j=1
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FIGURE 19.3.5 Schematic representation of (a) Poisson white noise, (b) Poisson rectangular
pulse, and (c) Neyman-Scott white noise processes.

Such cumulative rainfall Z(¢) is called a compound Poisson process.'* While the
PWN model and Z(t) describe the rainfall process in continuous time, a related
process is the cuamulative rainfall Y; over nonoverlapping time intervals 7 as depicted
in Fig. 19.3.5 (for instance, T = 1 h). Thus, the rainfall process Y; in discrete time is 1
defined by ’

Y, =Z(iT)—-2(iT—-T) i=1,... (19.3.76) I

The basic statistical properties of this process have been studied.2!-3%133 However, the
rainfall process Y; does not reproduce some of the important features of observed
rainfall patterns. For instance, the lag-one serial correlation coefficients for hourly




and daily precipitation at Denver Airport station for the months of June and De-
cember based on the 1948 ~ 1983 record are 0.446 and 0.172, respectively, while the
process Y; derived from the PWN model has zero autocorrelation.!3* Despite this
shortcoming, even such a simple model can produce useful results for predicting the
distribution of annual precipitation® and the distribution of extreme precipitation
events.20

In the PWN model, the rainfall is assumed to occur instantaneously, so the storms
have zero duration, which is unrealistic. Instead, one may consider that rainfalls
occur with finite durations (rectangular pulses) as schematically shown in Fig.
19.3.5b. Each rainfall occurrence has a random intensity / and a random duration D.
This is called the Poisson rectangular pulse (PRP) model. 7 and D can be assumed
independent, and each exponentially distributed. Figure 19.3.5b shows a PRP pro-
cess with z storms in the interval (0, #) occurring at times ¢, . . . , ¢, and associated
with them are storms of intensities and durations (i;, d,), . . . , (i,, d,). In this case,
storms can overlap, and, as a result, the aggregated process Y, will be correlated.
Properties and estimation procedures for such PRP process are available, 2128.144.147
The PRP model is better conceptualized than the PWN model, but it is still limited
when applied to rainfall data. Thus, more complex models have been suggested such
as those based on the concept of clusters.

Cluster Processes. The concept of clusters was originally suggested by Neyman and
Scott!'?” in modeling the spatial distribution of galaxies. Le Cam!* and Kavvas and
Delleur®485 applied this concept of space clustering to model daily rainfall. Further
developments have been made.4377.141.142.144-147 Here the concept of clusters as ap-
plied to modeling rainfall processes at a point is briefly described. The Neyman-Scott
cluster process can be described as a two-level mechanism for modeling rainfall. First,
storm-generating mechanisms (systems), or simply storms, arrive governed by a
Poisson process with parameter Az. With reference to Fig. 19.3.5¢, assume that in the
period (0, t), n storms arrive at points ¢,, . . . ¢,. Then, associated with each storm,
there are M precipitation bursts which are Poisson or geometrically distributed with
parameter v. In Fig. 19.3.5¢ there are three precipitation bursts associated with the
storm that arrived at time ¢, four precipitation bursts associated with the storm that
arrived at time 1,, and, in general, m; precipitation bursts associated with a storm that
arrived at time ¢;. In addition, the time of occurrence, 7, of bursts relative to the storm
origin ¢; may be assumed to be exponentially distributed. For instance, the three
bursts arising from the first storm are located at times 1, ,, 7,,, and 7, ; relative to
time ¢,. Finally, if the precipitation burst is described by an instantaneous random
precipitation of depth R, then the resulting precipitation process is known as Ney-
man-Scott white noise (NSWN), while if the precipitation burst is described by a
rectangular pulse of random intensity / and random duration D, then the precipita-
tion process is known as the Neyman-Scott rectangular pulse (NSRP).

Properties and estimation of parameters for Neyman-Scott models are avail-
able.36.43:45.77,84,85,128,141,142,147 The ysual estimation approach has been the method of
moments, although maximum likelihood has been suggested.**> An apparent major
problem is that parameters estimated based on one level of aggregation, say hourly
data, are inconsistent with those estimated from another level of aggregation, say
daily 4312814 The problem seems to be that, as data are aggregated, information is lost
and corresponding second-order statistics do not have enough information to give
reliable estimates of the parameters of the generating process (model). As a conse-
quence, the parameters of the generating process become significantly biased and
have large variance. Estimation based on weighted moments of various time scales in
a least squares fashion is an alternative.!%-377 Physical considerations may be useful
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in setting up constraints in some of the parameters and for initializing the estimates
to be based on statistical considerations.””-”® K oepsell and Valdes®? applied this con-
cept, based on the space-time cluster model suggested by Waymire et al.2® for mod-
eling rainfall in Texas, and pointed out the difficulty in estimating the parameters
even when using physical reasoning as well as statistical analysis.

Remarks. The models included in this section essentially involved concepts of point !
processes in one dimension as applied to modeling precipitation processes at a point '
or a site within the class of Poisson processes and Neyman-Scott cluster processes.
However, other alternative (somewhat related) temporal precipitation models have
been suggested such as those based on Cox processes,'6%!6? renewal processes,-57143
and Barlett-Lewis processes.!* Likewise, alternative space-time multidimensional
precipitation models have been suggested.””%.170.17! For both temporal and space-
time categories, which class of models is best is still open to question. Even small
differences in modeling a certain component of a Neyman-Scott process can lead to
significant differences in inferring the rest of the model parameters from actual
data.*® Furthermore, all precipitation models proposed to date are limited in some
respects; for example, they do not include the daily periodicity observed in actual
convective rainfall processes.!?

19.4 FILLING IN MISSING OBSERVATIONS
AND EXTENSION OF RECORDS {

Records of hydrologic processes such as precipitation and stream flow are usually
short and often have missing observations. Therefore, one of the first steps in any
hydrologic data analysis is to fill in missing values and to extend short records.
Observations may be missing for a number of reasons such as interruption of mea-
surements because of equipment (mechanical, electrical, or electronic) failure, effects
of extreme natural phenomena such as hurricanes or landslides or of human-induced
factors such as wars and civil disturbances, mishandling of observed records by field
personnel, or accidental loss of data files in the computer system. Likewise, hydrolo-
gic records are generally short; however, no matter the length of the record at a given
site, if there are nearby sites with longer records, it may be possible to extend shorter
records.

This section includes a number of information transfer techniques which can be
applicable to both filling in missing observations and extending records. Some classi-
cal methods for filling in missing hydrologic data, such as the normal ratio method
and the weighted distance interpolation method, are not included here. The methods
included here are based on linear regression and time-series analysis.

19.4.1 Methods Based on Simple Linear Regression

Simple linear regression is most commonly applied for transferring hydrologic infor-
mation between two gauging stations. Consider a short and a long sequence of a pair
of hydrologic random variables represented by y, and x,, respectively. For instance,
one variable can represent flows, and the other can also represent flows or rainfall.
Assume that N, is the length of the short sequence and (N, + N,) is the length of the
long sequence. The length N, also denotes the concurrent period of record. Without



loss of generality, the sequences y and x may be represented as

YisVas - - - 5 VN,
X1y X2y o o« ,xNI,xNI+,, P ’xN|+Nz

Then, a simple linear regression model may be established to extend the short se-
quence y,.

Mathematical Model. A simple linear regression model between variables y, and x,
may be generally represented as!!?

y=a+bx,+ ab(l — p*)'7oe, (19.4.1)

where y, = dependent variable (short record)
X, = independent variable (long record)
a, b = population parameters of the regression

a = coefficient

6 = 1 when the noise ¢, is added; 8 = 0 when ¢, is not added

p = population cross-correlation coefficient between y, and x,

g, = population standard deviation of y,

& = normal uncorrelated variable with mean zero and variance one which

is uncorrelated with x,

Estimation of Parameters. The estimators of a and b are given by!!3

a=y, — bx, (19.4.2)
o Sl(}’)
b=rpLt= 500 (19.4.3)

where y, and X, are estimated means of the variables y, and x,, respectively, based on
the concurrent record of size N,, s,( y) and s5,(x) are the corresponding estimated
standard deviations of y, and x,, and 7is the sample cross-correlation coefficient (refer
to Sec. 19.2.1 for estimation of these statistics). In addition, o, of Eq. (19.4.1) is
estimated by s,(») and « is given by

a=[ Ny (N, — 4KV, — 1) ],,,
(Nz_l)(Nl_3)(N1—2)

(19.4.9)

Model (19.4.1) can be used to extend the short sequence y,; i.c., the values
Phpkrs « v vy yN +n, are estimated from the concurrent values xy 44, . . . , XN, +N;-
Therefore, the new mean y and the new variance s%(y) of the extended sequence

13
Yis o o v s Unps .VN.+h <« - Pnan, are

§=i.+—N’——5(fz—f.) (19.4.5)

s}(y) = (W,—+—:V,:l_) [(Nl — 13 () + W, — 1) Bsi(x)

NN,
N+ Ny)

Model (19.4.1) without noise &, (6 = 0) may be used for filling in missing data only

+ BG—x)2+N,—1)02 a2 (1 — ?z)sﬂy)] (19.4.6)



when just a few records are missing. For a significant number of missing records or
for extension of short records in general, model (19.4.1) with 8 = 0 causes the var-
iance of the extended record to be underestimated.''* While this problem is elimi-
nated by considering model (19.4.1) with noise (§ = 1), this requires generating
random numbers, which does not lead to a unique extended sequence. Hirsch™
proposed a method known as maintenance of variance extension in which model
(19.4.1) with 6 = 0 is considered in such a way that the mean y and the variance s%(y)
of Egs. (19.4.5) and (19.4.6), respectively, are maintained. Section 17.4.10 in Chap.
17 discusses some of the principles behind this method. Following Hirsch, model
(19.4.1) with 8 = 0 may be used for record extension in which the parameters @ and b
are determined by!%?

A _(N1+N2))7_N1J71
a, = Nz

- bx, (19.4.7)

5 — | Yt Ny = DSO) = N, = DSIO) = N — 9P = Ny @ = )7 ]“2
‘ (N; — Ds3x) (19.4.8)

where y and s%(y) are estimated by Eqs. (19.4.5) and (19.4.6), respectively; y, and
5(p) are the sample mean and the variance of the original short record; and X, and
$3(x) are the sample mean and variance of the longer record xn 41, - . . , Xy 45,
Thus, Egs. (19.4.7) and (19.4.8), when used for estimating yy, +y, - . - » Yx,+n,, Will
produce a record y,, . . . , Y., Yn 415 - - - Yn.+n, Which will have mean y and
variance s¥(y).

Criteria for Improving Estimators of Parameters. In using correlation analysis to
extend the short record y, on the basis of a longer record x,, a question arises whether
the combined record of y, consisting of N, recorded values and N, estimated values
improves the estimates of the parameters such as the mean and variance. The criteria
to be briefly described here assumes model (19.4.1) with noise 8 = 1. The variance of
the mean y based on the longer record is!''3

a2 N, 1—r2
=_2X — 2 2
Var =7y [l N, +N, (’ N, —~ 3)] (19.4.9)

For ¥ (extended record) to be a better estimator of the population mean 4, than
(short record), Var () must be smaller than Var (y,). This occurs if

1 12
"'>(N _2) (19.4.10)
1

The right side of Eq. (19.4.10) is called the critical minimum correlation coefficient
for improving the estimate of the mean. Such critical correlation is shown in Table
19.4.1 under m = 1, column (1) for various values of N,.

Following the same concept described above, critical minimum correlation coef-
ficients for improving the estimator of the variance can be found. Table 19.4.1, under
m = 1, column (2), gives such critical correlations for § = 1, N, varying from 8 to 60
and N, = 60. For all practical purposes, critical values in the table can be applied for
any value of N,.
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TABLE 19.4.1 Critical Correlations for Improving the Estimates of the Mean (1) and the
Variance (2) for m = 1, 2, 3, 4, 5, Values of N, From 8 Through 60, and N, = 60

The assumed models are Eqs. (19.4.1) and (19.4.11) with 8 = 1 (m = number of concurrent
records used)

m=1 m=2 m=3 m=4 m=35
NI D 2) ¢y (2) (1) (2) (1 ) (1) 2)
8 { 0.408 | 0.720 | 0.577 | 0.835 | 0.707 | 0.914 | 0.816 0913

10 | 0.354 | 0.650 | 0.500 | 0.763 | 0.612 | 0.841 | 0.707 | 0.799 | 0.791 | 0.945

12 | 0.316 | 0.597 | 0.447 | 0.707 | 0.548 | 0.785 | 0.632 | 0.845 | 0.707 | 0.892

14 1 0.289 | 0.556 | 0.408 | 0.661 | 0.500 | 0.739 | 0.577 | 0.199 | 0.645 | 0.847

16 | 0.267 | 0.522 | 0.380 | 0.624 | 0.463 | 0.700 | 0.535 | 0.759 | 0.598 | 0.808

18 | 0.250 | 0.494 | 0.354 | 0.592 | 0.433 [ 0.666 | 0.500 | 0.725 | 0.559 | 0.774

20 | 0.236 | 0.469 | 0.333 | 0.565 | 0.408 | 0.637 | 0.471 | 0.695 | 0.527 | 0.744

251 0.209 | 0.422 | 0.295 | 0.510 | 0.361 | 0.578 | 0.417 | 0.634 | 0.466 | 0.681

30 { 0.189 | 0.386 | 0.267 | 0.469 | 0.327 | 0.533 | 0.378 | 0.587 | 0.423 | 0.632

35 10.174 | 0.359 | 0.246 | 0.436 | 0.302 | 0.498 | 0.348 | 0.548 | 0.389 | 0.592

40 | 0.162 | 0.336 | 0.229 | 0.410 | 0.281 | 0.468 | 0.324 | 0.517 | 0.363 | 0.559

45 ] 0.152 | 0.317 | 0.216 | 0.387 | 0.264 | 0.443 | 0.305 | 0.490 | 0.341 | 0.531

50 | 0.144 | 0.301 | 0.204 | 0.368 | 0.250 | 0.422 | 0.289 | 0.467 | 0.323 | 0.506

55 | 0.137 | 0.288 | 0.194 | 0.352 | 0.238 | 0.404 | 0.275 | 0.447 | 0.307 | 0.485

60 | 0.131 | 0.276 | 0.186 | 0.338 | 0.227 | 0.387 | 0.263 | 0.429 | 0.294 | 0.466

Note: Values of the critical correlation for improving the estimate of the variance are for N, = 60, but
‘hey can be used for any N,, since the critical correlation does not vary significantly as N, varies.

19.4.2 Methods Based on Multiple Linear Regression

Multiple linear regression for transferring information to a site with a short record
may be applied when two or more nearby sites with longer records are available.
Assume that the short record of size N, is represented by y, and the m longer records
of size N, + N, are represented by the vector x, as>*

Yis y29 ] yN,

1 1 1 (1)
X0, X0, xR e X

m L (m) (m)
XM XM, L XN XNkt - e e s XN AN
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It is also assumed that the concurrent observations are drawn from a multivariate

normal population with parameters 49, u,, 039, o3, and R, where u‘“ and o2

denote the population mean and variance of xS') respectlvely, for sites i = 1,

m; i, and o2 are the population mean and variance of Y., respectively; and Ri 1s the
population multtple correlation coefficient. In addition, it is assumed that at each site

the observations are serially uncorrelated. The problem is to transfer information

from the m sites with records of length N, + N, to the site with a short record.

Mathematical Model. The short record y, of length N, may be related to the m
records x, by the multiple linear regression model*

ye=a+ Y bx"+ a1 — R)2g,e, (19.4.11)

i=1

where § = 1 if noise is added, otherwise 6 = 0; a and b are estimated by

m -~
Ebff (19.4.12)
m Py o
b=apep i=1,...,m (19.4.13)
J=1
with y, and x{?,i=1, . . . , m, the sample means of y,and x4, respectively, based
on the sample of size N,, d{ are the elements of the inverse of the matrix whose
elements are the lag-zero cross-covariances between x{” and xy) Lj=1, , m;
and &{ are the lag-zero cross-covariances between x{ and Voi=1,...,m [these

cross-covanances may be determined from Eq. (19.2.15)]. The multlple-correlatlon
coefficient R is estimated from the N, concurrent observations as

N.i&-ﬂ"
R=|4=t—n0o (19.4.14)

2‘ (6

1=1

172

and the coefficient « is given by

= Ny(N; —2m —2)N, — 1) 12
* [(Nz" IXN, —m—=2¥N,—m—1) (19.4.15)
Then, the new estimators of the mean x4, and of the variance o2 are
Y= i) — )
V=htNIAN, +N 35,150 — 7] (19.4.16)

2 jmi !
0) = 53T |
SN +N,—1

1 j=1
NN [ S5 Go—50) [+ — 1) a6, (1 — R si)} (19.4.1
+N,+N2 hGP—XD)| + WV, — 1) a?6, ( siy 4.

where ¥, and s?(y) are the sample mean and variance of the short series ,; X" and

{(N. - +N, i izib‘jggj)

i=1




ANALYSIS AND MODELING OF HYDROLOGIC TIME SERIES 19.47

x{" are the sample means of the short sample x{’, . . . , x{’and the additional
samplexiy) ., . . . ,x¥,, respectively;and §§0,i,j=1, . . . , m, are the lag-zero

cross-covariances between x!” and x¥ for the additional samples of size N,. The
maintenance-of-variance extension method described in Sec. 19.4.1 under simple
linear regression has been extended to the multivariate case.5®

Criteria for Improving Estimators of Parameters. The criterion for improving
estimates of parameters of the short record for the multiple linear regression model is
based on comparing the variances of the original and new estimators. The mean of
the short sample y, is improved if>*

m 172
|R|><Nl ~_2) (19.4.18)

Table 19.4.1, under columns (1), gives the critical minimum multiple correlation
coeflicient for various values of N, and m. Likewise, the variance of the short sample
is improved if the estimated multiple correlation coefficient R is larger than a critical
value. 54125 Such critical values are given in Table 19.4.1 under columns (2) for m = |
through 5 and N, = 8 through 60.

19.4.3 Methods Based on Time-Series Models

Muissing observations can be filled in and records can be extended by using many of
the time-series models described in Sec. 19.3.

Use of AR(1) and PAR(1) Models. These models can be used to fill in missing
observations for a given site when no other nearby sites with concurrent information
are available. Assume the AR(1) model (19.3.2):

V=ut+tdy-, —wte (19.4.19)

where the model parameters can be estimated from available data. If an observation
at time ¢ is missing, but y,_, is known, then y, can be determined from Eq. (19.4.19)
using & = 0 (the mean of ¢,). Since model (19.4.19) assumes stationarity, nonstation-
ary data must be made stationary before the model is applied. A more convenient
model for seasonal data is the PAR(1) model (19.3.32):

Yo = Ue + d)l,r (yv,t—l - ﬂt) + Eyy (19420)

which can be used to fill in missing seasonal data such as monthly observations. The
foregoing models should not be used to fill in successive missing observations.

Use of Multivariate Models. Multivariate models can be used for filling in missing
data and extension of records. Suppose that y, is the site with missing records and that
data at sites x{"’ and x{® are available. Then, a multivariate model can be formulated
as

P Py P2
ye=a+ Y by, ;+ D bIx + Y bPx?; + ¢ (19.4.21)
j=1 Jj=0 Jj=0
inwhicha, b, j=1,...,p;b",j=0,...,pand b?,j=0, . . . , p,arethe

parameters to be estimated from the data. Estimation of parameters and testing can
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be made by least squares.>* Usually, p, p,, and p, are small —of the order of 1 or 2.
Note that model (19.4.21) falls in the category of ARMAX (ARMA with exogenous :
vanables) and transfer function models. Applications of multivariate models can be
found in Beauchamp et al.® and Kottegoda and Elgy.**

19.5 MONTE CARLO SIMULATION*

19.5.1 Introduction

Basic Concepts of Monte Carlo Simulation. Consider a hydrologic system, in which
I represents the input and O represents the output. The system can be simple or
complex, and the input and output of each can be either a single variable or a vector
of several variables or any combination of these. For instance, the system may be a
watershed system in which the input is simply the average precipitation series over
the basin and the output is the stream-flow series at the outlet of the basin. In general,
Monte Carlo simulation is a method for obtaining the probability distribution of
output O given the probability distribution of the input /. Thus, in Monte Carlo
simulation studies, three steps are usually required, namely, determining the input,
transforming the input into the output, and then analyzing the output.

The input to be used in Monte Carlo simulation studies may be the historical
hydrologic records, or artificially or synthetically generated records. In fact, this is
one of the purposes of the stochastic models that are included in Sec. 19.3. Further
discussion on how to generate synthetic records based on such models is given in
Secs. 19.5.2 and 19.5.3 below. The transformation of the input into the output is
made by means of a mathematical model which represents the behavior of the
physical system under study. In the case of a reservoir system in which the input is
the set of inflows to the reservoir and the output is the set of reservoir outflows, the
inflows are transformed into the outflows by operating the reservoir according to the
reservoir operating rule, a set of constraints, and the mass balance equation of
the reservoir. Thus, the transformation process involves routing the input through
the system to obtain the output. Put another way, the system input drives the system,
which transforms it into the system output. Finally, the system output is analyzed
statistically so that it can be used for decision making. The analysis of the output may
consist of determining basic output statistics, such as the mean and variance, box
plots to observe the variance of the output graphically, and the overall frequency
distribution of the output variables under consideration. Details of such analysis can
be found in Secs. 17.2 and 17.3 of Chap. 17.

i

Applications of Monte Carlo Simulation Studies. Some examples of typical appli- |
cations of Monte Carlo simulation studies in hydrology are included here for illustra- :
tion. The applications selected are purposely presented in a simplified schematic
manner in order to illustrate the underlying concepts only. These concepts can thenj
be extended and applied to more complex cases.

Design the Capacity of a Reservoir. Assume that the capacity of a reservoir for water
supply will be determined so that a given water demand 4 will be delivered from the
reservoir throughout a specified planning horizon. N years of historical stream-flow
record (inflows to the reservoir) are available; in this case, for simplicity, it is assumed,
that N coincides with the planning horizon. One possible solution may be to deter-:

*Part of the material in this section was contributed by Fidel Saenz de Ormijana.
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mine the needed reservoir capacity assuming that the historical record will be identi-
cally repeated in the future; this capacity is the output of the system shown as O(h) in
Fig. 19.5.1. However, such identical realization of inflows is unlikely to occur in the
future. An alternative approach for determining the reservoir capacity is Monte
Carlo simulation. Thus, a mathematical model of the inflows x, is determined and
then used to generate a large number of possible sequences that may occur in the
future. Then, for each sequence x,(7), also denoted as /(i) in Fig. 19.5.1, the reservoir
capacity O(i) is determined, yielding the set O(1), . . . , O(m) where m is the
number of realizations considered (usually large). This also means that the uncertain
occurrence of future inflows is translated into an uncertain reservoir capacity. The set
O(1), . . . , O(m)can be analyzed statistically to provide the hydrologist with addi-
tional information to make a decision on what reservoir capacity to use. This use of

Monte Carlo analysis for reservoir design has been widely suggested in the litera-
ture‘4l,I07.IOS

Xy 4,  Historical record . Assume future =
| Historical record 1)
Reservoir
w S 0. R A\ —
Hd S — system S Oh)

Assumed demand ,d

Planning horizon

Mathematical
model of X,
Xy(1) I(1)
AAAAAA S —* S — o)
1 st: possible

future sequence
Xi(2)

1(2)

At AA A g — s f—a 0(2)

2 nd: possible

future sequence

Xy(m)

I(m)
,1 A A A p-d — S — O(m)

mth: possible

future s&zuence
FIGURE 19.5.1 Schematic representation of a hydrologic system in which historical records /(h) and
synthetic records (i), i =1, . . . , m are used as inputs for determining historical output O(k) and
simulated outputs O(i), i= 1, . . . , m, respectively.



Evaluating the Performance of a Reservoir of Given Capacity. The performanceofa .
reservoir of specified capacity, operating rule, and projected water demands can be
evaluated to determine, for instance, the reliability of the system to meet target
demands, the total shortages or how often the reservoir may run dry, how often it
may spill, and the duration and magnitude of those episodes. This problem can be
approached by Monte Carlo simulation studies in which the set of inflows to the
reservoir is the system input / and the system output O can be any desired set of
performance measures of the reservoir system under consideration. As shown in Fig.
19.5.1, the simulation study can be made by using the historical record alone or by
using synthetically generated inflow records. For reservoirs with seasonal regulation,
and short operation planning horizon as compared to the historical record, the use of
historical records alone may be sufficient. However, since these requirements are
rarely met, synthetic records are typically used. :

Evaluating the Performance of a Reservoir of Specified Operating Rules. In this
case, the capacity of a reservoir and projected water demands are known, but the
effect of an operating rule in the performance of the reservoir is being evaluated. A
reservoir may have been operated historically under a certain operating rule and an :
alternative operating rule may need to be considered. In this case, Monte Carlo .
simulation studies are conducted in which the same inputs (synthetic records) are
used for each operating rule. Then the two sets of outputs (performance measures) -
are compared statistically to determine whether the alternative operating rule gave
significantly different results than the original rule.

Evaluating the Performance of Irrigation Water Delivery Systems. The assessment
of alternatives to improve irrigation water delivery systems can be made by consider-
ing the system’s performance under uncertainty. The objective of water delivery
systems may be defined in terms of the desire to best meet the water requirements at
the farm level. Performance measures related to such objectives can be based on a
number of system state variables, for instance, the amounts of water required at a
number of diversion points in the system and the amounts of water actually delivered
to the diversion points, all variables defined throughout the irrigation season.%’
Monte Carlo simulation studies of system inputs, such as reservoir inflows, effective
precipitation, and crop evapotranspiration, can be generated by multivariate models
(such as those referred to in Sec. 19.3) for a length equal to the irrigation season.
These inputs can then be routed through the irrigation system simulation model to
obtain the system’s state variables. This process is repeated a large number of times to
provide an array of performance measures which can be analyzed statistically.

Determining the Dependable Capacity of Hydropower Systems. A common ap-
proach in the analysis of hydropower systems is to use the critical period of record for
determining project dependable capacity. However, this approach usually underesti-
mates the power capacity actually available for marketing purposes. An alternative
approach is to use Monte Carlo simulation by which inflows to a reservoir system can
be synthetically generated for a length equal to the operational horizon (usually
several years long), then routed through the system to obtain the hydropower output
(power capacity and energy). The process can be repeated several times to obtain an
array of hydropower outputs O(i), i=1, . . . , mas indicated in Fig. 19.5.1. The
output is then subject to statistical analysis to assist in defining a marketable hydro-
power output.®’

Determining the Drought Properties of Water-Supply Systems. Drought propertie:
of various return periods are needed to assess the degree to which a water-supph
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system will be able to cope with future droughts and, accordingly, to plan alternative
water-supply strategies. The estimation of long-term droughts, for instance, the
drought length, magnitude, and intensity as defined in Sec. 19.2, based on the histor-
ical record alone, are not reliable when the return periods are of the order of the
historical record or they cannot be determined when the historical record is smaller
than the return period. In these cases, drought properties can be determined by
synthetically generating inflows at key points in the water-supply system under con-
sideration, of length equal to the return period of interest, routing such inflows
through the system to obtain the flows at the diversion point of the water-supply
system. These inflows in turn can be analyzed to obtain the drought property of
interest, denoted by O(i) in Fig. 19.5.1. The process is repeated several times to find
the array of drought properties O(1), . . . , O(m)whose average is an estimate of the
T-year drought.*8:4°

Other Applications of Monte Carlo Simulation. A number of other applications of
Monte Carlo simulation can be found in literature. For instance, for water systemsin
which a short record of stream flow and a longer record of precipitation are available,
one may use the concurrent precipitation - stream flow records to calibrate a water-
shed model and generate a number of sequences of synthetic precipitation records
which then are routed through the watershed model to generate synthetic stream-
flow records. In turn, these records can be used for design, evaluation of operational
rules, or for any other purpose at hand. In some cases, Monte Carlo simulation has
been used for estimating floods of long return periods.* Hourly rainfall and daily pan
evaporation can be synthetically generated and routed through a previously cali-
brated watershed model to produce a long record of hourly stream flow. Annual
flood peaks and volumes can be obtained from such synthetic flow traces, and
frequency analysis will provide the flood estimates for the desired return periods.

Monte Carlo simulation has been used for studying the impacts of global climate
change on the operation of water resources projects'®? and for determining the varia-
bility of the system’s output as a result of the uncertainty in the parameters of the
system’s model. For instance, consider a watershed model used for transforming
precipitation into runoff which involves a set of parameters, one of which (for the
sake of simplicity) is assumed to be uncertain. Based on previous applications of the
model in similar watersheds, one may estimate or assume the distribution of such a
parameter. One can randomly sample values of the parameter and for each value run
the watershed model to find the runoff sequence corresponding to a given precipita-
tion input sequence. Thus, m values of the parameter will produce m sets of runoff
sequences which can be analyzed statistically to determine the effect of parameter
uncertainty on the simulated runoff.

Monte Carlo simulation studies are also used for many problems in groundwater
hydrology, typically for deriving the distribution of the underlying output variable of
a groundwater flow equation, given the distribution of the parameters and boundary
conditions. For instance, one can use a steady-state groundwater flow equation for a
two-dimensional isotropic nonuniform medium and study the effect of spatial varia-
bility of hydraulic conductivity K on the hydraulic head (system output). The varia-
bility of K can be modeled by a given probability distribution function and covar-
iance function. Thus, a large number m of realizations of random spatially correlated
parameters K can be generated and the groundwater flow equation solved for each
realization to find the set of m hydraulic heads at various points in space, from which
one can find the distribution of hydraulic heads.*”-5583 One can extend the foregoing
concept to study the effect of variability of other parameters such as porosity, the
effect of variability on boundary conditions, and the effect of variability of model
inputs such as groundwater recharge. Finally, an important application of Monte
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Carlo simulation is to establish the uncertainty in travel time and spread of pollutants
in porous media as a function of the uncertainty in the parameters of the ground-
water contamination transport model. For this purpose, one can follow the random
sampling and simulation approach described previously.

19.5.2 Generation of Random Inputs

In the early days of Monte Carlo simulation, random inputs were generated by
randomly drawing cards from a stack, by sequentially reading values from tables of
random numbers, or by using devices such as coins or dice. However, with the advent
of digital computers and the development of mathematical and statistical tech-
niques, the use of these procedures has become obsolete. Instead, mathematically
based approaches for generating random inputs for Monte Carlo simulation studies
have become the state of the art. This section includes some basic models for generat-
ing uniform and normal random numbers.

Generation of Uniform Random Numbers. Random numbers from a uniform dis-
tribution between the bounds 0 and | are considered here. These random numbers,
referred to as u(0, 1) are widely used for generating random numbers from other
distributions. The most popular generators are called linear congruential generators,
which are integer algorithms of the type x; = (ax;_, + b) mod c where q, b, and c are
integers and the mod c¢ notation indicates that x; is the remainder after dividing
(ax;_, + b) by c. This procedure may also be expressed as

x,=ax,_, +b—clnt (ﬁx—‘—éf—b> (19.5.1)

Forexample,ifa= 13,b=3,c = 11, and x; = 3, then the first five random numbers
generated are 9, 10, 1, 5, and 2. This algorithm produces integer numbers between 0
and ¢ — 1. The values of the generated numbers depend on the constants a, b, and ¢
and on the initial value x, called the seed number. Linear congruential generators
always have a finite cycle length; i.e., the sequence repeats itself exactly after generat-
ing a certain number of values. There are conditions for a, b, and ¢, under which the
generator yields all the values between 0 and ¢ — 1 before repeating.®!

To obtain numbers uniformly distributed between zero and one, simply let u; =
x;/c. Since ¥ must not be zero or one exactly, cis always a very large value. For certain
choices of the parameters a, b, and ¢, the variable u is approximately uniformly
distributed between zero and one. For instance, a common choice of parameters,
supported by the IMSL¢ subroutine library, is a = 16807, b= 0, and ¢ = 23! — |,
which may be used with 32-bit-word computers. For computers with smaller word
size, a and ¢ should be chosen so that their product does not exceed the machine word
size, otherwise an integer overflow will occur. Likewise, the seed number x, must be
provided in order to start the generation. It may be obtained through some random
mechanism, for instance, by reading the computer clock. However, debugging a
computer code and checking the output is easier if repeated simulations give the1
same results. In these cases, it is convenient to use the same starting seed. Table 19.5.1 :
gives 30 starting seeds for generating uniform random numbers by the linear con-
gruential generator supported by IMSL, as noted above. Each seed value x, can be
used to generate a set of 131,072 uniform random numbers and all sets will be
independent of each other. Additional choices of g, b, and ¢ and alternative genera-

tors are available.!4!37
i

i
H
1
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TABLE 19.5.1 Starting Seeds x, for
Generating Uniform Random Numbers
Based on Eq. (19.5.1) with 2 = 16807,
b=0,andc=23—1

748932582 250756106 431442774
1985072130 1025663860 1659181395
1631331038 186056398 400219676

67377721 522237216 1904711401
366304404 213453332 263704907
1094585182 1651217741 350425820
1767585417 909094944 873344587
1980520317 2095891343 1416387147
392682216 203905359 1881263549

64298628 2001697019 1456845529

Source: From Bratley et al.'*

Generally, random number generators such as the linear congruential generator
described above produce pseudo-random numbers because they follow a determinis-
tic sequence even though the successive values of that sequence are uncorrelated.
There are ways to improve the randomness of generated random numbers. One can
do shuffling, i.e., temporarily store an array of random numbers, using each new
generated random number to obtain one from the stored array, then replacing the
numbers in the array by newly generated numbers as they are used. Shuffling can do
no harm (it has no effect on a string of perfectly generated random numbers) and it
improves significantly the sequences produced by a good generator. Press et al.!?’
give FORTRAN, Pascal, and C codes for shuffling. Combining two or more genera-
tors to generate a set of random numbers is another approach.!¥ Finally, one can use
shuffling and combining simuitaneously.!!?

Generation of Normal Random Numbers. A fast and simple method for generating
standard normal random numbers ¢ (i.e., with zero mean and unit standard devia-
tion) is the approximation based on the lambda distribution®?!32.139.140,167.186 a¢ ¢ —
4.91 [u%'* — (1 — u)*'%], in which « is a uniform (0, 1) random number. The accu-
racy (the difference between the true standard normal variable and that obtained by
the approximation) of this approximation is 0.0032 for |€| < 2, and 0.0038 for 2 <
le| < 3, and increases rapidly for]e| > 3. The variable range is limited to|e] < 4.91 (the
probability of € being outside this interval is less than 10~%). The variance and
kurtosis of the lambda approximation are 0.997 and 2.972, close to the theoretical
values 1 and 3, respectively, for a normal distribution. If greater accuracy is desired or
the simulation focuses on tail behavior (such as for extreme value analysis), a better
approximation may be used.

Several approximations for the normal distribution based on polynomial equa-
tions can be found.2® A rational approximation with relative accuracy 1076 is!3!

Do+ pit + p,t* + pst® + pat?
do+ @it + @12 + g2 + gt

e(u)=—€(l —u) 0<u<0.5 (19.5.2b)

eu)y=t+ 05=su<l (19.5.2a)

where ¢ = [—2 In (1 — #)]"/2, u is a uniform (0, 1) random number, and the coeffi-
cients p,and ¢;,, i=0, |, . . . , 4 are given by p, = —0.322232431088, p, = —1,



P> =—0.342242088547, p;=—0.0204231210245, p, = —0.0000453642210148,
qo = 0.099348462606, g, =0.588581570495, ¢, =0.531103462366, g¢,=
0.103537752285, and ¢, = 0.0038560700634.

Two other methods are often used to generate standard normal random numbers.

The sum of uniform random numbers € = 2 u; — n/2, where n is commonly 12,

yields an approximate normal number with fhé: same mean, variance, and skewness
as the standard normal, but kurtosis is 2.9, against a kurtosis of 3.0 for the normal
distribution. The range of € is limited to €| < 6, and the difference between the actual
standard normal value and the value obtained by the above approximation is
less than 0.009 for |e]< 2, but it can be as high as 0.9 for 2 <|¢| < 3. Like-
wise, the Box-Muller method gives two standard normal numbers based on €, =
(—21nu,)"?cos(2 n u,) and €; = (—2 In 1)/ sin (2 7 1,) in which u, and u, are two
uniform (0, 1) random numbers. This method is slightly faster than the above ra-
tional approximation, but the random numbers produced are not independent when |
the required uniform random numbers are generated by a linear congruential gener- !
ator.

Remarks. In general, one can generate random numbers from any continuous
distribution with cumulative distribution function F(x) by the inversion method. The
cumulative distribution function F(x) varies between 0 and 1, so if a uniform (0, 1)
random number u is generated, this value is made equal to F(x) and the distribution
function inverted to find the value of x, then x = F~! (u) is a random number from
the distribution F(x). This method can be extended to generate discrete random
numbers as well.

19.5.3 Generation of Correlated inputs

Autocorrelated and cross-correlated inputs are often needed for Monte Carlo simu-
lation studies. For this purpose one can use a number of alternatives including
procedures based on the available historical time series and on mathematical models
such as those presented in Sec. 19.3. Some of these methods are discussed here in
some detail for illustration.

Use of Historical Data. Using historical data is a widespread method of assessing
alternative inputs when the available historic series of the input variables are long
enough to defifi€ a'sufficient approximation to the input distribution. For example,
in. sirpHating reservoir performance, if the historic stream-flow series is long com-

. *.pafed to the simulation horizon, it may be possible to break down the historic

*  stream-flow series into a number of subseries of length equal to the length of the
simulation horizon, simulate the system operation with each subseries, and obtain
the corresponding output statistics (such as supply reliability) over the simulation
horizon. Yet another alternative in using the historic series is to work with the N
wrapped-around series {X;, X3, . . . , Xy—1, Xy, X)), €tC., obtained by circular per-
mutation of the historic values. This procedure is also known as index-sequential. A
major drawback with this procedure is that the resulting set of N input series yields ¥
outputs which are not independent and, as a consequence, the outputs have le
precision. However, this approach has been used in some cases.”8"97

Use of Univariate Time-Series Models. Suppose that we need to generate N consec~
utive observations of an ARMA(p, g¢) model with known or estimated parameters,
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The ARMA(p, ¢q) model defined by Eq. (19.3.8) is rewritten here as
Z=¢z + -tz _,te— 0, — - —0k, (19.5.3)

where z, = y, — u represents the deviations of the process from its mean, ¢, . . . ,
¢,and 8, . . . , 6, areautoregressive and moving average coeflicients, respectively,
and ¢, is normally distributed with mean zero and standard deviation o,. To generate
the z,’s, one can simply generate €, as needed by the procedures described in Sec.
19.5.2. The problem is that to generate the first value z,, one needs to known in
advance the values z_,4,, . . . , z,. A number of procedures can be used to get
around this problem. A convenient procedure is to use a warm-up period in which
r+ Nvaluesz_,,,, ... .zZ,2,, . . . ,Zyare generated setting z, = 0 (its mean) for
t = 0, the first r values are deleted. and only the remaining N are used. If r is large
enough, this will remove the bias introduced by taking z, = 0 for ¢ < 0 and the effect
onz, ...,zywill be negligible. A value of r around 50 has been recommended*?
for generations based on low-order ARMA models. In addition, for some low-order
ARMA models, the initialization of the generation can be made directly without
using the warm-up period.'?7-16!

Finally, the ARMA(p, q) normal series are generated by y, = u + z,. If the original
data x, has been previously transformed by using y, = g(x,), in which g( - )is a
transformation function [for instance, y, = log (x,)], then the generated series in the
real or original domain will be x, = g~ ! (,), the inverse transformation function [for
instance, x, = exp (y,) if the logarithmic transformation was used]. Likewise, the
generation of periodic AR and periodic ARMA time series can be made by following
similar procedures except that the periodic parameters must be considered in the
generation algorithm.

Use of Multivariate Time-Series Models. Generally the principles involved in uni-
variate generation can be extended to multivariate generation. For instance, one can
generate a set of n cross-correlated normal variables €, with variance-covariance
matrix G = BB7 by using the simple stationary multivariate model (19.3.46) ¢, =
B¢, in which B is an # by #n lower triangular matrix and § is an n by | vector of
uncorrelated standard normal variables. First generate the set &Y, . . . | & of
uncorrelated standard normal random numbers. Then, generate successively the set
of cross-correlated numbers by expanding the multivariate model as

€sl)= b“é‘,” i
6ﬁ:) = bz'f(ll) + bzzé(ll) A,,.

I LIBR A,

Finally, other sets of cross-correlated numberse, fors =2, . . . can be generated by
repeating the same procedure.

Likewise, one can generate series which are simultaneously autocorrelated and
cross-correlated by using, for instance, multivariate AR(1) model (19.3.42), multi-
variate ARMA(1, 1) model (19.3.43), or the CARMA model (19.3.44). In any case,
initial values are required to start the generation. The initialization can be made by
using the warm-up period approach as in the univariate generation; however, a direct
method is available for generation based on the multivariate ARMA(1, 1) model.!”®
Finally, the foregoing generation procedures can be extended to the case of multivar-
iate autocorrelated and cross-correlated periodic series by using the PAR(1) model
(19.3.51), and PARMA(I, 1) model (19.3.52), or the contemporaneous PAR or

€ =pnED .- .4 brmE®
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PARMA model (19.3.53). The generation procedure is similar to the cases of station-
ary models except that periodic parameters are used.!!6!

Use of Disaggregation Models. Consider here as an illustration a generation based
on the traditional Valencia-Schaake model. For ease of reference, rewrite model
(19.3.58)as Y’ = AX’ + Be, where Y’ is the vector of the series being generated (for
instance, seasonal series), X’ is the series to be disaggregated (for instance, annual
series), € represents a vector of uncorrelated standard normal variables, and A and B
are the parameters of the model. It is assumed that all random variables are normally
distributed with mean zero, i.e., Y’ =Y — Yand X’ = X — X. The parameter matri-
ces obtained for a case of disaggregating annual data at one site into three seasons are

0.4821 17.6242 0 0
A= 04837 B=| —149866 4.2467 0
0.0342 —2.6376 —4.2467 0

Note that the column in matrix A adds to unity and all the columns in matrix B add
to zero in order to preserve additivity of the seasonal flows to form the correct annual
flow. In addition, the analysis of annual and seasonal data gives x = 461.04, y, =
168.68, y, = 269.00, and y; = 23.36. Likewise, the model for annual dataisan AR(1)
as X;=0.3X,_, + £ in which £, is normal with mean zero and standard deviation
209.5,and X, = X + 461.04, where X, is the annual flow value. Thus, seasonal series
are generated by

Yir 0.4821 17.6242 0 olle.
Vo, |=104837 | x;+]| —149866 4.2467 0 || €., | (19.5.5)
Vis 0.0342 ~2.6376 —4.2467 0 || ¢,;

where v denotes the year.
The step-by-step generating procedure is

1. Generate a sequence of annual values. For instance, three generated values are
X4 =262.9, X;=~-287.5, and X3 = 90.9.

2. Disaggregate the generated annual values into seasonal values. For the first year,
generate three normal (0, 1) valuessuchase, , = —0.319,€,, = 0.994, and ¢, ; =
0.662. Then Eq. (19.5.5) gives:

yi, =0.4821 X 262.9 + 17.6242 X (—0.319) = 121.12
Vi2=0.4837 X 262.9 — 14.9866 X (—0.319) + 4.2467 X 0.994 = 136.16

¥ =10.0342 X 262.9 — 2.6376 X (—0.319) — 4.2467 X 0.994 = 5.61

In a similar manner, the rest of the seasonal values can be computed from th
other annual values.

3. Add the seasonal means to the generated seasonal series as y;; = 168.68 4
121.12 = 289.80, y,,=269.00 + 136.16 = 405.16, and y, 3 =23.36 + 5.61 =

28.97.

19.5.4 Length and Number of Simulations

In any analysis involving Monte Carlo simulation, the questions arise of how long the
sample size of the generated sequences should be and how many samples should b



ANALYSIS AND MODELING Ur 111 tavtac e -

generated. Answers to such questions vary from one analysis to another depending
on the problem under consideration. This section attempts to give some practical
guides for some typical problems in hydrology.

Length of Generated Samples. The length of the generated sample can be the same,
shorter, or longer than the length of the historical sample, depending on the particu-
lar situation. For instance, consider the case of evaluating a stochastic model in
regard to its ability to reproduce historical statistics. The model can be verified
theoretically to some extent, especially in relation to statistics such as the mean,
standard deviation, and correlations. But the interest may be in regard to more
complex statistics such as storage- and drought-related statistics which must be veri-
fied by simulation. In any case, the generated sample length should be equal to the
length of the historical sample. Now, consider that data generation is required for
design of a reservoir. Clearly, in this case, the length of the generated sample must be
equal to the planning horizon or economic life of the reservoir being designed.
Likewise, reservoir operational studies require similar considerations. If the pur-
pose of the generation is to test alternative operating rules, the length of the simula-
tion should be equal to the length of the operational planning horizon. In the case
that a reservoir is operated under a well-established rule and the purpose is to deter-
mine, for instance, the hydropower output, the length of the generation should also
coincide with the operational planning horizon (the Western Area Power Adminis-
tration of the U.S. Department of Energy typically uses 5 to 10 years for this pur-
pose'?). Finally, if the purpose of the simulation is to determine extreme droughts of a
specified return period 7, the length of the generation must coincide with 7.

Number of Samples to Generate. Enough samples should be generated so that the
required output statistics are estimated accurately. To a large extent, the number of
samples depends on what statistic of the Monte Carlo simulation output is of interest
for the problem at hand. For example, to determine the mean of the output O with a
given accuracy, one can use the normal approximation to establish the 1 — «
confidence limits on the population mean u(0), from which one can write
Pl—tty_a, 0(O)Nm <O —p(0) < ty_o, 6(0)Nm] =1~ where O=sample
mean of the output, 6(O) = population variance, u,_,,, = | — a/2 quantile of the
normal distribution with mean zero and variance one, | — a = confidence level, and
m = sample size. Thus, if O must be within 0.1 o(0) of u(O) with a probability
1 —a=0.95, then uyg,s = 1.96 and the sample size required is given by 1.96
6(0)/Vm = 0.16(0), which gives m = 384. Likewise, for an accuracy of 0.20(0),
m =96. A better approximation may be generally obtained by using instead the
confidence limits based on the ¢ distribution. In this case, the number of samples is
obtained, for instance, by solving ,_,/5 m—; = 0.1 Vm for m [for 0.16(O) accuracy],
where #,_,,, m— is the 1 — a/2 quantile of the 7 distribution with m — 1 degrees of
freedom.

Likewise, to determine the standard deviation of the output O with a given accu-
racy, one can establish the confidence limits on the population variance 6%(O). Thus,
one can write

<
“X%—aﬂ,m—l S(O) Vlg/z_m—l

in which S(O) =sample standard deviation and x3,-, = f-quantile of the chi-
square distribution with m — | degrees of freedom. lgor example, for m = 384 and
1 — a=0.95, P[0.934 < 6(0)/S(0) < 1.077] = 0.95, which means that with a sam-

P( ym—1 0(0)<\/m—1)=1_a
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ple size of 384 one can determine the sample standard deviation of the output such
that its ratio with the population standard deviation is within about 15 percent.

Furthermore, one may be interested in determining the distribution of the output
O with a prescribed accuracy. In this case, one can use the confidence limits on
the true distribution F based on the Kolomogorov theorem.®® Thus,
P(max |F — i< 1.36/Ym) = 0.95 states that the maximum absolute difference be- '
tween the sample distribution F and the population distribution F is less than
1.36/Vm with probability 0.95. For instance, for m = 5000, the error in estimating
the distribution is less than 0.019 with probability 0.95. ’

In a@dition, some practical guides have been offered. For example, when data
generation is required for designing a reservoir, if annual data are used, as many as
1000 samples may be needed to accurately define the probability distribution of the
maximum storage required.!% On the other hand, if monthly flows are used, fewer
samples may be adequate. In general, the number of samples varies from about 300
for streams that exhibit low variability to the order of 1000 for streams with high
variability.'®® Obviously, these practical guides are less precise than the statistical
criteria given above.

19.5.5 Model and Parameter Uncertainty

Much of the material of the previous sections was presented without making explicit
reference to model uncertainty and parameter uncertainty. However, the impor-
tance of such uncertainties for many applications of Monte Carlo simulation must be
recognized.81:899.1% Model uncertainty arises because hydrologic processes are in-
herently complex, so alternative mathematical formulations have been proposed to
reproduce the historical record in a statistical sense. Thus, for a particular problem at
hand, the hydrologist is faced with the problem of selecting a model among the
several alternatives. For instance, in the case of stream-flow modeling, a number of |
alternative short-memory and long-memory models have been proposed. On the
other hand, parameter uncertainty arises because the model parameters are esti-
mated from historical samples which usually are small. Naturally, both model uncer-
tainty and parameter uncertainty are closely related. ™
Model uncertainty can be alleviated in a number of ways. One can use physical
arguments in deriving the model structure. For instance, in the case of stream-flo
modeling, conceptual arguments have been proposed to justify the use of ARMA ani
PARMA processes.>#!'!55 Likewise, in the case of modeling precipitation proce:
conceptual arguments have been proposed to justify the family of clus
processes.!’- 1% Given that a family of models has been selected, the problem is sti
to define the type of model within the family. Statistical considerations may be used
assist in identifying the type of model. For instance, in the case of ARMA models, t
type of model is selected by using diagnostic checks and other criteria such as t
Akaike information criteria.! Likewise, model selection can be made by Monte Carl
simulation experiments to compare the performance of competing models in repr
ducing historical statistics, especially those statistics which have not been used i
parameter estimation and those which are pertinent to the study at hand. Furth
more, in complex systems involving several sites, the issue of model selection is re
more in terms of selecting among model strategies involving an array of univaria
multivariate, and disaggregation models. In these cases experience will likely provi

the best solution.
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TABLE 19.6.1 Summary of General-Purpose Programs for Time-Series Analysis,
Modeling, and Forecasting
Name Brief description Reference
1. BMDP Time-series analysis, modeling, and fore- BMDP?
casting, estimation of missing data, BMDP Statistical Software
analysis of variance, and nonparamet- 1440 Sepulveda Blvd.,
ric tests. Time-series modules include Suite 316
univariate and bivariate spectral analy- Los Angeles, CA 90025
sis, intervention analysis, and ARMA U.S.A.
and transfer-function models. Estima-
tion of missing data includes modules
based on regression analysis. Nonpara-
metric analysis modules include sev-
eral tests for detection of shifts.
2. IMSL Time-series analysis including modeling IMSL7
simulation and forecasting, analysis of IMSL
variance, and nonparametric tests. 14141 Southwest Freeway,
Modeling, simulation, and forecasting Suite 3000
are based on ARMA models. Forecast- Sugarland, TX 77478-3498
ing includes Kalman filtering. Pro- US.A.
grams for nonparametric tests include
tests for detection of trends and shifts,
tests of randomness, and tests of good-
ness of fit.
3. ITSM Time-series analysis and modeling and Brockwell and Davis'¢
forecasting based on ARMA models. ITSM Statistical Dept.
Colorado State University
Fort Collins, CO 80523
US.A.
4. MINITAB Time-series analysis and modeling based Minitab!®
on ARMA models. It includes pro- Minitab Inc.
grams for analysis of variance and for 3081 Enterprise Dr.
nonparametric tests to detect trends State College, PA 16801-
and shifts and test for randomness. 3008
US.A.
5. SAS/ETS Time-series analysis and modeling and SAS/ETS!'0
forecasting based on ARMA models. SAS Institute Inc.
SAS Campus Dr.
Cary, NC 27513
US.A.
6. SPSS Time-series analysis, modeling and fore- SPSS!74
casting, analysis of variance and non- SPSS Inc.

parametric tests. Modeling and fore-
casting are based on ARMA models.
Programs for nonparametric tests in-
clude tests for detection of shifts, tests
of randomness and tests of goodness
of fit.

444 N. Michigan Ave.
Chicago, IL 60611-3962
US.A.
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TABLE 19.6.1 Summary of General-Purpose Programs for Time-Series Analysis,
Modeling, and Forecasting (Continued)

Name Brief description Reference

7. Statgraphics Time-series analysis and modeling, anal- Statgraphics!”®
ysis of variance, and nonparametric STSC Inc.
tests. Time-series modeling is based on 2115 E. Jefferson St.
ARMA models. Modules on nonpara- Rockville, MD 20852
metric methods include tests for detec- US.A.
tion of shifts, randomness, and good-
ness of fit.

Parameter uncertainty is a major issue in stochastic modeling and simulation
studies.®®' Procedures have been developed to deal with parameter uncer-
tainty,!'6:!5%,179:.188.191 glthough in practice they are rarely applied. For instance, con-
sider the AR(1) model of Eq. (19.3.2). To include parameter uncertainty in data
generation studies based on this model, one needs to know the distribution of the
parameters 4, ¢, , and o2 given a historical sample of size N. In this case the sample
distributions are! 6155 s ~ N(f, 62/[(1 — ¢,)2N1)}, §, ~ N}y ,(1 — /(N — 1)] and
o2 ~ N[62,26%/N], where i, @,, and 62 denote the estimates of x, @,, and a2 ob-
tained from the historical sample and ~ denotes distributed as. The procedure to
simulate m sequences of length # which includes parameter uncertainty is:!!6.15%
(1)followsteps2and3fori=1, . . . ,m;(2)for sequence i, generate the parameter
set u(i), (i), and o2(i) from the above normal distribution, respectively; and (3)
using model (19.3.2) and the parameters u(i), ¢,(i), and 62(i), generate the sequence
(@), (i), . . ., ya(i) following the approach suggested in Sec. 19.5.3. Similar
procedures for univariate ARMA and PAR models are also available.!'¢'%5!7 For
multivariate models the problem is more complex; however, bayesian procedures are
available.!®® In complex modeling and simulation studies involving seasonal data
and multiple sites, the consideration of parameter uncertainty is generally complex.
However, since such complex systems usually involve an array of models, it is always
possible to include parameter uncertainty at least in some parts of the modeling
process‘ 155,179

19.6 COMPUTER PROGRAMS FOR
TIME-SERIES ANALYSIS

Analysis, modeling, and simulation of hydrologic time series can be done effectively
with the aid of computers. Several alternative software packages are available. Some
of them are general-purpose programs for analysis of any kind of time series and
others are specifically oriented for hydrologic time series. General-purpose program
packages, such as those included in Table 19.6.1, are attractive because usually they
are well-documented, have more statistical features, and are accompanied by good
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TABLE 19.6.2 Summary of Special Programs for Hydrologic Time-Series Analysis,
Modeling, and Simulation

Name Brief description Reference
1. HEC-4 Analysis, modeling, and simulation of U.S. Army Corps of Engi-
multiple time series of monthly flows neers!'®’
based on multiple linear regression Dept. of the Army
models. It can also generate synthetic Hydrologic Engineering
monthly flows at ungauged sites. Center
609 2d St.
Davis, CA 95616-4687
US.A.
2. LAST Analysis, modeling, and simulation of Lane,” Lane and Fre-
multiple annual and seasonal stream- vert!00. 10t
flow data. The main features of the ap- LAST
proach are (1) preservation of annual Bureau of Reclamation,
serial correlation and annual cross- D-5077
correlations, (2) generation of “key” sta- Earth Sciences Div.
tions annual flows and disaggregation P.O. Box 25007
of these values into component substa- Denver, CO 80225-007
tions on an annual basis, and (3) disag- US.A.
gregation of annual flows into seasonal
flows preserving both season-to-season
correlations and cross-correlation be-
tween sites. Modeling and simulation
are based on univariate and multivar-
iate AR(1) and AR(2) models and disag-
gregation models.
3. SPIGOT Three modeling and generation schemes Grygier and Stedinger®'

are used: (1) aggregated annual flow for
the entire basin is generated by a uni-
variate model, then is disaggregated into
basin (aggregated) monthly flows, which
in turn are disaggregated into key site
monthly values; (2) aggregated annual
flow for the entire basin is generated by
a univariate model, then is disaggre-
gated into monthly flows at key sites in
a single step; and (3) annual flows at key
sites are generated by a multivariate
model and are disaggregated into
monthly flows by a multivariate disag-
gregation model. In all schemes, model-
ing and simulation of annual flows are
based on either univariate or multivar-
iate AR(0) or AR(1) models, as the case
may be.

Dr. J. R. Stedinger

School of Civil Engineering
Hollister Hall

Cornell University

Ithaca, NY 14853-3501
US.A.



TABLE 19.6.2 Summary of Special Programs for Hydrologic Time-Series Analysis,
Modeling, and Simulation (Continued)

Name Brief description Reference
4. CSUPACI1 Consists of programs CSU001 and Dr. J. D. Salas
CSU002 for modeling and generation of  Engineering Research
single-site hydrologic series and pro- Center
grams CSU003 and CSU004 for model- Colorado State University
ing and generation of multisite series. Fort Collins, CO 80523
Univariate modeling is based on US.A.

PAR(0), PAR(1), PAR(2), and
PARMAC(1, 1) models, and multivariate
modeling is based on low-order contem-
poraneous PAR or contemporaneous
PARMA models. Options for alterna-
tive transformations and Fourier series
analysis are included.

5. WASIM Consists of programs WASIM1 and McLeod and Hipel!!¢

WASIM? for modeling and generation Dr. Angus I. McLeod
of hydrologic time series based on sta- Statistics and Actuarial
tionary ARMA models, and program Science Group
WASIM3, which includes parameter University of Western On-
uncertainty in the generation. tario

London, Ontario

Canada N6ASB9

graphical display capabilities. However, generally, they are expensive. Furthermore,
most general-purpose packages, for the most part, do not consider the model struc-
tures that one normally finds in hydrologic time series (an exception is the family of
stationary ARMA models); estimation based on short samples, which is a typical case
in hydrology; or periodicity in the covariance structure, which is also typical in
seasonal hydrologic time series. Nor do they consider aggregation and disaggregation
schemes on direct approaches to deal with nonnormal series.

On the other hand, programs developed specifically for hydrologic time series,
such as those included in Table 19.6.2, have the advantage that the underlying
models and estimation procedures involve features that are unique to hydrologic
time series. However, no single package can handle all cases that may arise in prac-
tice, yet most packages can be applicable to the typical cases. Likewise, most packages
have been developed for modeling seasonal and annual hydrologic series, such as
stream-flow series, while packages for modeling and generation of short-term proc-
esses such as hourly rainfall are not readily available.

Generally, any computer package must be used with care. This is especially true in
programs that do estimation and generation all at once. In this section, general-
purpose programs and special programs for hydrologic time-series analysis, model-
ing and generation are presented in summarized form in Tables 19.6.1 and 19.6.2.
The intent here is to make hydrologists aware of what computer packages are avail-
able without attempting detailed comparisons among them.
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