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Lecture 7-3: Stochastic modelling of rainfalls and 
flows (stochastic models in continuous time)



Precipitation modelling at daily (single pulse) and hourly (rectangular 
pulse) time scales (disaggregation)



Type of rainfall models
Rainfall is the main input of fresh water resources systems. 
In many water resources engineering and management 
applications, rainfall models are used to forecast or estimate 
the amount of resources available or the magnitude of 
possible floods. 

Two main classes of rainfall models: 
deterministic and stochastic models 

Deterministic, physically based models: solution of the 
thermodynamic and fluid-mechanic laws of the 
atmosphere to predict the future evolution of the state of 
the atmosphere (Temperature and humidity) given a set of 
initial conditions (e.g. global circulation models, regional 
circulation models). Outlook from few days for weather 
forecast to some months for seasonal forecast of climatic 
trends (anomalies). In water resources engineering they 
are used to optimize the short term flood control practice 
(weather forecast) or to predict the resources available for 
the next season (seasonal climate forecast). 

NOAA climate prediction center. 
Seasonal precipitation anomalies 
Anomalies: variation with respect to the long term average. 



Stochastic models: the physical processes are 
conceptualized (phenomenological approach), 
the randomness of the underlying phenomena 
is explicitly included via the definition of 
random variables having a clear physical 
meaning. Forecasting is allowed in a statistical 
sense (statistically meaningful synthetic time 
series can be obtained). Suitable for long term 
analysis of water resources systems in a Monte 
Carlo framework (e.g. estimate the probability 
of a certain flood, probability of drought and 
corresponding irrigation water withdrawal, 
hydropower production, etc). 

This class of models will be the focus of this 
lecture. 

They can be subdivided into point models (no 
spatial description of rainfall fields) and 
spatially explicit models. 



Some statistical properties of the Poisson process
Poisson process: stochastic model 
of random occurrence of 
instantaneous events: e.g. rainfall 
events, arrivals of customers in a 
store, page requests in web 
server, genetic mutation, etc. etc. 

All these statistics are 
analytically exact



Single pulse rainfall process (Marked Poisson process)

Point model of rainfall. At daily timescale rainfall events are considered uncorrelated (no autocorrelation). The model 
neglets the temporal variability of rainfall within an event. Rainfall events are modelled as a Poisson process. 

The process is described by 2 random variables (exponentially distributed)

𝜏: event inter-arrival
I : precipitation 

This model is typically used to generate rainfall at a daily time scale. 



Marked Poisson process (additional remarks)
For a Poisson process, which consists of independent 
increments and follows a purely random (memoryless) 
process, the Hurst exponent is H=0.5

Explanation:
•The Poisson process N(t) has independent increments, 
meaning past values do not influence future values.
•The variance of its increments grows linearly with time, 
similar to a Brownian motion (which also has H=0.5).
•Since H=0.5 corresponds to a purely random process 
without long-range dependence, the Poisson process falls 
into this category.
Thus, the Hurst exponent of a Poisson process is 0.5, 
indicating a lack of long-term memory and purely 
stochastic behavior.
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2004]. At the seasonal timescale accumulation takes place
mostly during the cold season, whereas melting occurs
within the temperate one. The accumulation phase is asso-
ciated with cumulated precipitation events of new snow and
is typically stochastic in nature. Conversely, the ablation
phase reflects the temperature trends and can be approxi-
mately considered as deterministic [Hock, 1999; Ohmura,
2001; Perona et al., 2001; Pellicciotti et al., 2006]. More-
over, when the snow cover vanishes the whole system
experiences a temporal reset.
[7] When analyzed at smaller scales, this simple picture is

complicated by other processes, which all participate in
determining the spatial daily fluctuation of the snow mantle
depth. Figure 1 shows daily records of measured snow
depth at Arosa (1840 m a.s.l.), in southeastern Switzerland,
showing the complexity of the process (e.g., snow redistri-
bution by wind, local avalanches, atmospheric and topo-
graphic snow metamorphisms [Marsh, 1999; Colbeck,
1982], melting-induced percolation through the snow man-
tle and subsequent compaction, etc.). In order to predict the
snow cover evolution with enough reliability all the above-
mentioned processes require a detailed description. However,
several elements of empiricism still affect even the most
detailed models [e.g., Hock, 1999; Essery et al., 1999;
Shamir and Georgakakos, 2006], while the inherent high
dimensionality of the processes hinders long-term predic-
tions of physically based deterministic models. Hence a
simplified stochastic model with a parsimonious number of
parameters and containing the main ingredients of the snow
storage and melting interannual dynamics is a good starting
point to improve our understanding of the long-term snow
cover dynamics [Ashkenazy et al., 2005].
[8] We start by looking at the process in terms of

cumulated events of new snow water equivalent (SWE),
neglecting both the partial water loss and minor snowfall
events occurring during the ablation phase. A more under-
standable, albeit simplified, picture thus arises (Figure 1),
which underscores the more deterministic character of the
melting phase. On the basis of such observations, we
propose a queueing process in continuous time character-
ized by the periodic recurrence of stochastic growths
alternated by deterministic decays. The presence of a lower
boundary at zero (Figure 2) introduces a strong nonlinearity
in the dynamics, acting as a renewal event [Cox and Miller,
1965; Van Kampen, 1992]. Stochastic accumulation and
deterministic melting occur in sequence within time inter-
vals of duration Tw and Ts, i.e., the ‘‘winter’’ and the
‘‘summer’’ seasons, respectively. The recurrent time interval
of this hypothetical two-season year is T = Tw + Ts. The
evolutions of the snow height h(t) at a point is determined
by the sum of either positive stochastic events or linear
deterministic decays of rate k. The duration of the time
intervals Tw and Ts, and the rate k are assumed to be
constant. Moreover, the accumulation phase is not influ-
enced by either compaction or snow redistribution, as well
as ablation is not affected by sporadic precipitation.
[9] These strong assumptions allow us to work with a

minimalist model that shows some similarity with the
virtual waiting of Takács [Cox and Miller, 1965], which
has been used in queuing theory and in geophysical appli-
cations [Rodriguez-Iturbe et al., 1999; D’Odorico, 2000;
Porporato and D’Odorico, 2004]. The novelty introduced

here is the interplay between the lower boundary at 0 and
the periodic alternating mechanism of growths and decays.
As a result, interesting patterns arise where the stochastic
variable h at the end of the entire period T is either reset to
zero or shows a residual (Figure 2).
[10] The general equation of the process can be written as

dh t þ nTð Þ
dt

¼ Q Tw % tð Þ
X

i

yid t % tið Þþ

%Q t % Twð ÞQ hð Þk;
0 & t & T ; n 2 Nþ;

ð1Þ

together with the initial condition h(0 + nT) = h(T +
(n%1)T). In (1), Q( ' ) is the Heaviside function, d( ' ) is the
Dirac delta function, and the random times {ti} take place
according to some suitable stochastic process.

3. Probabilistic Formulation of the Model
3.1. Growing and Decaying Processes

[11] Precipitation events can be idealized as a marked
Poisson process [Rodriguez-Iturbe et al., 1999], in which
random jump events yi that lead to accumulation are
considered to occur instantaneously with mean rate l (i.e.,
with mean interval between events t = 1/l) and with an
independently distributed pdf b(y). The process of growths
is thus described by a pdf pgr(t, h) made up of a continuous
part and an atom of probability of no occurrence within the
time interval Tw,

pgr t; hð Þ ¼ pcgr t; hð Þ þ patgr t; 0ð Þ 0 & t & Tw; ð2Þ

being t the time and h the actual height stage. Let us assume
that at time t = 0 and for a generic height h0, the process has
the Dirac delta as initial condition pgr(0, h, h0) = d(h % h0)
and domain [h0, + 1). The pdf of growths can be derived
from the Chapman-Kolmogorov equation,

@pgr t; hð Þ
@t

¼ %lpgr t; hð Þ þ l
Z h

0

pgr t; zð Þb h% z; zð Þdz: ð3Þ

[12] Let mgr and sgr2 be the mean and the variance of the
state variable h for a given pdf pgr. For instance, if the jumps
have an exponentially distributed magnitude b(y) = g e%gy

(i.e., mean a = 1/g), then the solution of (3) is relatively
simple [Cox and Miller, 1965]

pgr t; hð Þ ¼ e%lt%g h%h0ð Þ
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being the process only dependent on the form h % h0. In (4)
I1( ' ) is the first-order modified Bessel function and d( ' ) is
the Dirac delta function identifying the atom of probability
at the initial condition. While this latter decays in time, the
continuous part of the pdf instead grows with mean and
variance respectively given by

mgr ¼
lt
g
; s2

gr ¼
lt 2þ ltð Þ

g2
: ð5Þ
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The 
cumulative 
process is also 
known



Calibration of the single pulse rainfall model
calibration: analysis of the observed rainfall to calibrate the model parameters 

direct estimate of the two parameters (mean inter-arrival and mean precipitation) 

To account for the intra-annual variability of rainfall (i.e. seasonality), the year is divided into periods and different 
parameters 𝛼 and 𝜆 are estimated for each period. Typically, one month periods are used. 



Rectangular pulse rainfall model

Point model of rainfall. Continuous time model. Occurence of rainfall cells is modelled as a Poisson 
process. Each cell is characterized by a duration and a precipitation intensity. The process is described by 3 random variables 
𝜏: event inter-arrival
J: precipitation intensity 
L: event duration 

This model is typically used to generate rainfall at hourly timescale (crucially important for small basins and urban hydrology)

Rationale. Precipitation 
amount at small time scales 
depends also on the duration 
of single events (e.g., IDF 
curves…). The single pulse 
model is therefore not 
sufficient anymore



Rectangular pulse rainfall model

All variables are now assumed to be exponentially distributed (3 parameters) and uncorrelated

The added degree of freedom given by the cell duration allows to reproduce also the auto-correlation of the observed 
rainfall (events can indeed cumulate). Issue: this model does not allow to explicitly group per storm events 



Bartlett-Lewis pulse rainfall model

Point model of rainfall. Continuous time model. Rainfall occurs in storms characterized by a certain 
duration. Whitin each storm, rainfall cells are generated as in the rectangular pulse model. The process is described 
by 5 random variables generically assumed exponentially distributed
𝜏s: storm inter-arrival
tg: generation of cell time 
𝜏c: cell inter-arrival
td: cell duration
J: cell precipitation intensity 

5 parameters are the 
mean values 



Bartlett-Lewis model (6 parameters)
The modified Bartlett-Lewis model (6 parameters) has an additional degree of freedom (one more parameter). It assumes 
that the parameter h characteristic of the cell duration is also a random variable which follows a gamma distribution (two 
parameters probability density function). This still allows to obtain all statistics of the process in an exact way (not shown) 
and so to calibrate on observations (6 conditions)

* observed quantities

The model reproduces 1) the 
mean daily rainfall, 2) the daily 
rainfall standard deviation and 
3) covariance, 4) the fraction of 
dry days; 5) the variance and 6) 
the fraction of dry periods for a 
2- day aggregation. 

To reproduce the seasonal variability within the year, data are usually divided into 12 periods corresponding to the months. 
The calibration is then done for each months, thus obtaining 12*6 parameters!

Rainfall disaggregation is still a very hot topic today and many other models have been proposed (e.g., multifractal, etc.)



Flow discharge modelling and mean hydrograph below and above threshold



Compound Poisson Process
Cumulate the events and decays 
exponentially between them with a rate 
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The resulting signal is now correlated, i.e. a “coloured noise”

This process is used to model river discharges or stages at the daily 
time scale without trend or seasonality 



Take home messages from these three lectures
• L7.1 I remember the structure of (linear) autoregressive model of generic order p and the meaning of the Yule-

Walker equation
• L7.1 I can write the structure and the statistics of the AR(1) model and the autocorrelation function (ACF)
• L7.1 I know how to use an AR(1) model to generate new data (generating equation)
• L7.1 I remember the structure of (linear) moving average models and its statistics and the ACF
• L7.1 I remember the structure of the ARMA(p,q) model, but do not need to remember its statistics

• L7.2 I understand how to use the ACF and the PACF for identifying the order of the model
• L7.2 I know how to perform model testing and diagnostic for the AR(1) and MA(1) models
• L7.2 I can explain the structure of periodic autoregressive models but do not need to remember them
• L7.2 I can explain the Thomas-Fiering model (but no need to remember the reqression equations for the coeffs)

• L7.3 I understood the Poisson process and the resulting distributions for the intertime statistics
• L7.3 I can explain the Marked Poisson process and how to generate daily rainfall data
• L7.3 I understand the concept behind the rectangular pulse model and the Bartlett-Lewis model
• L7.3 I can explain the Compound Poisson Process for generating flow discharge data at the daily time scale.


