

Transportation Economics

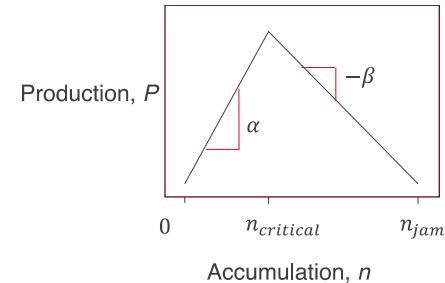
CIVIL-455

Exercise of Week 6

Zhenyu Yang

Consider a Macroscopic Fundamental Diagram (MFD) represented by the **production vs accumulation** relationship defined in the right graph. The values of α , β , $n_{critical}$, and n_{jam} are known.

1. Derive the maximum production (km/hr) from a network with this MFD.
2. Write the speed v as a function of the accumulation n .
3. Suppose a fraction γ of road space is allocated to buses exclusively, and the fraction $1 - \gamma$ is left for cars. What are the maximum productions of the car network? (*hint: rescale the original production MFD according to the value of γ .*)
4. Consider that demand for buses is η (pkm/hr). If the targeted occupancy of each bus is O_b and the designed operating speed is v_b^* , what is the fleet size to fulfill the demand? And what are the speed and the passenger production of the bus network, respectively?
5. If η is fixed, what is the optimal γ to maximize the total production?
6. Let $\alpha = 35$, $\beta = 19$, $n_{jam} = 58831$ veh, $O_b = 20$, $O_c = 1.2$, $v_b^* = 20$ km/h. Write the optimal γ as a function of η .



Exercise

Consider a Macroscopic Fundament Diagram (MFD) represented by the **production vs accumulation** relationship defined in the right graph. The values of α , β , $n_{critical}$, and n_{jam} are known.

- Derive the maximum production (km/hr) from a network with such an MFD.

$$\alpha n_{critical}$$

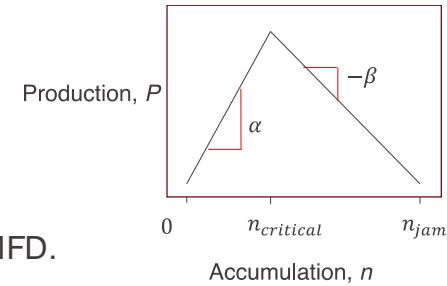
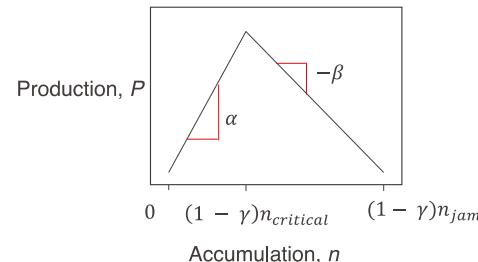
- Write the speed v as a function of accumulation n .

When $n \leq n_{critical}$, we have $v = \alpha$.

When $n > n_{critical}$, we have $v = \frac{\beta(n_{jam} - n)}{n}$.

- Suppose a fraction γ of road space is allocated to buses exclusively, and the fraction $1 - \gamma$ is left for cars. The average occupancy of cars is O_c . What are the maximum passenger productions of the car network? (hint: rescale the original production MFD according to the value of γ .)

$$(1 - \gamma) \alpha n_{critical} O_c$$



Consider a Macroscopic Fundament Diagram (MFD) represented by the **production vs accumulation** relationship defined in the right graph. The values of $\alpha, \beta, n_{critical}$, and n_{jam} are known.

4. Consider that demand for buses is η (pkm/hr). If the targeted occupancy of each bus is O_b and the designed operating speed is v_b^* , what is the fleet size to fulfill the demand? And what are the speed and the passenger production of the bus network, respectively?

The fleet size n_b is given by $n_b = \frac{\eta}{v_b^* O_b}$.

Bus speed: if $n_b \leq \gamma n_{critical}$, then the speed is $v_b = \alpha$; Otherwise, $v_b = \frac{\beta(\gamma n_{jam} - n_b)}{n_b}$.

Production: $v_b n_b O_b$

5. If the demand for buses η is fixed, what is the optimal γ to maximize the total production?

$$TP = v_b n_b O_b + (1 - \gamma) \alpha n_{critical} O_c.$$

When $n_b \leq \gamma n_{critical}$, i.e., $\gamma \geq \bar{\gamma} = \frac{\eta}{n_{critical} v_b^* O_b}$, the term $v_b n_b O_b$ does not depend on γ ; Thus, TP is decreasing in γ when $\gamma \geq \bar{\gamma}$.

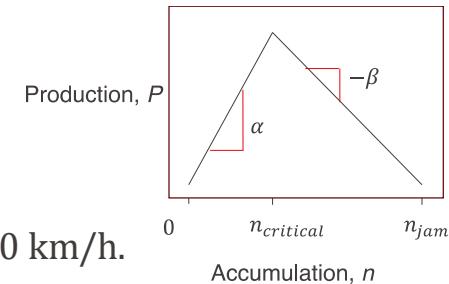
$$\text{When } \gamma < \bar{\gamma}, \text{ TP} = \frac{\beta(\gamma n_{jam} - n_b)}{n_b} n_b O_b + (1 - \gamma) \alpha n_{critical} O_c.$$

Then we have $\frac{\partial TP}{\partial \gamma} = \beta n_{jam} O_b - \alpha n_{critical} O_c$. If $\beta n_{jam} O_b - \alpha n_{critical} O_c > 0$, the optimal γ is $\bar{\gamma}$. Otherwise, the optimal γ is zero.

Exercise

Consider a Macroscopic Fundament Diagram (MFD) represented by the **production vs accumulation** relationship defined in the right graph. The values of α , β , $n_{critical}$, and n_{jam} are known.

6. Let $\alpha = 35$, $\beta = 19$, $n_{jam} = 58831$ veh, $O_b = 20$, $O_c = 1.2$, $v_b^* = 20$ km/h. Write the optimal γ as a function of η .



Given that $\alpha = 35$, $\beta = 19$, $n_{jam} = 58831$ veh, we have $n_{critical} = 20700$;

Then we have

$$\beta n_{jam} O_b - \alpha n_{critical} O_c = 21486380 > 0.$$

Then the optimal γ is $\bar{\gamma} = \frac{\eta}{n_{critical} v_b^* O_b} = \frac{\eta}{20700 * 20 * 20}$