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Objectives of today’s lecture

To introduce:
§ Fiber-based beam-column elements
§ Fiber discretization of cross sections
§ Constitutive models for fiber-based elements
§ Computation of input strains
§ Section analysis
§ Type of element formulations
• Displacement-based beam-column elements
• Force-based beam-column elements

§ Integration methods for member forces and member stiffness

This week’s material
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Fiber-based beam-column elements: basic workflow
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State determination of fiber section
§ The section deformations at the corresponding integration point of an element,

𝐝! 𝑥 = 𝜀 𝑥 𝜑" 𝑥 #

§ A section is meshed into smaller blocks called fibers.

§ The strain of each fiber is determined by section deformation vector 𝐝!(𝑥) and its
coordinates (𝑦$%&'( , 𝑧$%&'() along the section.

§ The strain of the k-th fiber in a cross section,
𝜀!.#$%&' = 𝜀 𝑥 + 𝜑( 𝑥 𝑦!.#$%&' = 1, 𝑦!.#$%&' ) 𝜀 𝑥

𝜑( 𝑥

𝜀!.#$%&' = 𝜀 𝑥 + 𝜑( 𝑥 𝑦!.#$%&' + 𝜑) 𝑥 𝑧!.#$%&' = 1, 𝑦!.#$%&', −𝑧!.#$%&' )
𝜀 𝑥
𝜑( 𝑥
𝜑) 𝑥

(2-d element)

(3-d element)
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§ Section geometrical vector (careful with the local coordinate system of
your cross-section discretization)

𝐥!.#$%&' = {1, 𝑦!.#$%&'} 𝐥!.#$%&' = {1, 𝑦!.#$%&', −𝑧!.#$%&'}

2-D beam-column element 3-D beam-column element

State determination of a fiber section (2)
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§ For a 2d element, the section resisting force vector 𝐐( is defined as

𝐐( = 𝑁 𝑥 ,𝑀) 𝑥 *

§ Similarly, the section stiffness matrix 𝐤( is defined as

𝐤( =
EA EQ+
EQ+ EI+

State determination of a fiber section (2)
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§ Using the sign convention presented in the previous slide, the following structural mechanics equations
are recalled:

𝐼( = -
*
𝑦+𝑑𝐴 , 𝐼) = -

*
𝑧+𝑑𝐴 , 𝑄( = -

*
𝑦𝑑𝐴 , 𝑄) = -

*
𝑧𝑑𝐴

𝑁 = -
*
𝜎𝑑𝐴 ,𝑀( = -

*
𝑦𝜎𝑑𝐴 ,𝑀) = -

*
−𝑧𝜎𝑑𝐴

§ These can be computed numerically using the values from each fiber

𝐼( = -
*
𝑦+𝑑𝐴 = 4

$#$%,-

.#$%

𝑦$#$%+ ⋅ 𝐴$#$% , 𝑄( = -
*
𝑦𝑑𝐴 = 4

$#$%,-

.#$%

𝑦$#$% ⋅ 𝐴$#$%

𝑁 = -
*
𝜎𝑑𝐴 = 4

$#$%,-

.#$%

𝜎$#$% ⋅ 𝐴$#$% , 𝑀( = -
*
𝑦𝜎𝑑𝐴 = 4

$#$%,-

.#$%

𝑦$#$% ⋅ 𝜎$#$% ⋅ 𝐴$#$%

State determination of a fiber section (3)
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§ The section resisting force vector and stiffness matrix can therefore be rewritten as

𝐐/ =
𝑁
𝑀(

=

4
$#$%,-

.#$%

𝜎$#$% ⋅ 𝐴$#$%

4
$#$%,-

.#$%

𝑦$#$% ⋅ 𝜎$#$% ⋅ 𝐴$#$%

= 4
!,-

.#$%

𝐥$#$%0 ) (𝜎$#$%𝐴$#$%)

𝐤/ =
EA EQ1
EQ1 EI1

=

E 4
$#$%,-

.#$%

𝐴$#$% E 4
$#$%,-

.#$%

𝑦$#$% ⋅ 𝐴$#$%

E 4
$#$%,-

.#$%

𝑦$#$% ⋅ 𝐴$#$% E 4
$#$%,-

.#$%

𝑦$#$%+ ⋅ 𝐴$#$%

= 4
!,-

.#$%

𝐥$#$%0 ) (𝐸$#$%𝐴$#$%) ) 𝐥$#$%

State determination of a fiber section (4)
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State determination of fiber section (5)
§ Based on the material constitutive formulation and the fiber strain, the tangent modulus
𝐸).$%&'( and stress, 𝜎).$%&'( of the k-th fiber can be determined.

§ 𝐸).$%&'( and 𝜎).$%&'( are used to compute the section stiffness and forces.

𝐤!(𝑥) = 𝐥+# / (𝐸+𝐴+) / 𝐥+

𝐐! 𝑥 = 𝐥+# / 𝜎+𝐴+𝐐! 𝑥 = 𝐥+# / 𝜎+𝐴+ + 𝐥,# / 𝜎,𝐴,𝐐! 𝑥 = 𝐥+# / 𝜎+𝐴+ + 𝐥,# / 𝜎,𝐴, + 𝐥-# / 𝜎-𝐴-𝐐! 𝑥 = 𝐥+# / 𝜎+𝐴+ + 𝐥,# / 𝜎,𝐴, + 𝐥-# / 𝜎-𝐴- + 𝐥.# / 𝜎.𝐴.Section resisting force vector:

Section stiffness matrix: 𝐤!(𝑥) = 𝐥+# / (𝐸+𝐴+) / 𝐥++ 𝐥,# / (𝐸,𝐴,) / 𝐥,𝐤!(𝑥) = 𝐥+# / (𝐸+𝐴+) / 𝐥++ 𝐥,# / (𝐸,𝐴,) / 𝐥,+ 𝐥-# / (𝐸-𝐴-) / 𝐥-𝐤!(𝑥) = 𝐥+# / (𝐸+𝐴+) / 𝐥++ 𝐥,# / (𝐸,𝐴,) / 𝐥,+ 𝐥-# / (𝐸-𝐴-) / 𝐥-+ 𝐥.# / (𝐸.𝐴.) / 𝐥.
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§ The flow chart gives the solution process for the section state
determination of a fiber section

State determination of a fiber section (6)

For fiber 𝑖𝑓𝑖𝑏

Compute the fiber strain: 𝜀"#"$ = 𝐥"#"$𝐝%

Material state determination: input the fiber strain 𝜀"#"$ into the 
constitutive law and return the fiber stress 𝜎"#"$ and tangent modulus 𝑘"#"$

For section 𝑖𝑠𝑒𝑐

Integrate the stress and tangent moduli of all the fibers to form 
the section resisting force vector and tangent stiffness matrix  

𝑖𝑓𝑖𝑏 + 1

Next fiber
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Beam-column element types for input strain field computation
§ If element deformations are the primary unknowns, then the element is
called displacement-based (stiffness-based)
• Uses cubic interpolation functions to approximate the displacement field
• Assumed interpolation functions for displacement field result in linear curvature
(i.e., constant axial strain along the element length)

• Requires many element segments to capture the strain gradient along a member
§ If the element forces are the primary unknowns, then the element is called
force-based (flexibility-based)
• Uses linear interpolation functions to approximate the force field
• Usually requires a single element with few sections (i.e., integration points) to
represent a member

• Keeps the number of degrees of freedom to a minimum
• Usually, the element is analyzed without rigid body modes (basic reference frame)
• State determination is challenging because (a) the flexibility matrix and (b) the
deformation vector that corresponds to the applied forces should be computed at
every solution step.
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Beam-column element types for input strain field computation (2)

§ Due to the element formulation, the element state determination for force-based
elements necessities an iterative solution scheme to determine the element
resisting forces and stiffness matrix. Typically, a Newton-Raphson algorithm is
used. This iterative scheme will be denoted by the index 𝑗

§ Conversely, the element state determination for displacement-based elements
does not use an iterative solution

§ Recall from the previous lectures that the element state determination procedure
is performed at each iteration 𝑖 of the load-displacement control algorithm at
every load or displacement increment 𝑛
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Displacement-based beam-column element
§ In the basic reference frame, the vectors of nodal displacements, 3𝐮, and

element resisting forces 3𝐪, are as follows:

3𝐮 = 6𝑢,, 6𝑢-, 6𝑢. *

3𝐪 = 6𝑞,, 6𝑞-, 6𝑞. *𝑖 𝑗𝐿

3𝑢,

3𝑢+

3𝑢-

𝑥

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛	
𝑝𝑜𝑖𝑛𝑡

§ At a given integration point (section):

𝑑# 𝑥 = 𝑁$(𝑥)*𝑢$ 𝑑% 𝑥 = 𝑁& 𝑥 *𝑢& + 𝑁' 𝑥 *𝑢'
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Displacement-based beam-column element (2) 
§ The vector of displacements anywhere inside the element can be

expressed as follows:

𝐝̅ 𝑥 =
𝑁,(𝑥) 0 0
0 𝑁-(𝑥) 𝑁.(𝑥)

> 3𝐮

!𝐚- 𝑥

3𝐚/ 𝑥 : Matrix containing the linear interpolation functions for the axial displacement and the
cubic interpolation functions for the rotations



15RESSLab
Resilient Steel Structures Laboratory

Fiber-based Beam-Column Elements– Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

§ The interpolation functions for the uniaxial bending case (from week #3):

𝑁, 𝑥 =
𝑥
𝐿

𝑁- 𝑥 =
𝑥.

𝐿- −
2𝑥-

𝐿 + 𝑥

𝑁. 𝑥 =
𝑥.

𝐿-
−
𝑥-

𝐿

axial rotational

Displacement-based beam-column element (3)
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𝑖 𝑗𝐿

3𝑢,

3𝑢+

3𝑢-

§ The element is divided into segments according to selected integration
points.

§ The behavior at each integration point is characterized by the section
deformation vector 𝐝((𝑥) and the section resisting force 𝐐()(𝑥) :

𝐝((𝑥) = 𝜀 𝑥 , 𝜑/(𝑥)
*

𝐐(0(𝑥) = 𝑁 𝑥 ,𝑀/(𝑥)
*

Where x is the coordinate of a section under consideration in 
the local coordinate system

Displacement-based beam-column element (4)

𝑥

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛	
𝑝𝑜𝑖𝑛𝑡



17RESSLab
Resilient Steel Structures Laboratory

Fiber-based Beam-Column Elements– Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

§ The section deformations 𝐝((𝑥) can be written as follows:

𝐝((𝑥) = 𝜀 𝑥 , 𝜑/(𝑥)
*= 124(4)

14
1526(4)
145

*

𝐝((𝑥) =
𝑁,6(𝑥) 0 0
0 𝑁-66(𝑥) 𝑁.66(𝑥)

> 3𝐮

3𝐁 𝑥

Displacement-based beam-column element (5)

§ And in a matrix form by using the shape functions:
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§ If plane sections remain plane,

𝐝(
7,$ 𝑥 = 3𝐁(𝑥) > 3𝐮7,$

§ Where 3𝐁(𝑥) is the matrix derived from the derivatives of displacement
interpolation functions.

3𝐁 𝑥 =
𝑁,6(𝑥) 0 0
0 𝑁-66(𝑥) 𝑁.66(𝑥)

Displacement-based beam-column element (6)
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State determination of displacement-based element
§ The tangent element stiffness matrix at iteration 𝑖 of step 𝑛, 3𝐊7,$, of a

displacement-based beam-column element of length 𝐿, and the element
resisting force vector 3𝐪7,$ can be expressed as follows:

3𝐊7,$ = H
9

:

3𝐁*(𝑥) > 𝐤(
7,$(𝑥) > 3𝐁(𝑥) > 𝑑𝑥

3𝐪7,$ = H
9

:

3𝐁*(𝑥) > 𝐐(0
7,$(𝑥) > 𝑑𝑥

We calculate those numerically with some
numerical integration schemes

• Gauss-Legendre,
• Gauss-Lobatto,
• Gauss Radau,
• midpoint rule
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State determination of displacement-based element (2)
Compute the element deformation increment vector Δ8𝐮&,"

Update the element deformation vector: 8𝐮&," = 8𝐮&,"() +Δ8𝐮&,"

For element 𝑒𝑙𝑒

For 𝑖𝑠𝑒𝑐 = 1

Compute the section displacement vector: 𝐝*&," = 8𝐁(𝑥)8𝐮&,"

Next section

Next element

Section state determination:
Section tangent stiffness matrix 𝐤*&,"

Section resisting force vector: 𝐐*+&,"

Form the element tangent stiffness and flexibility matrices 
Form the element resisting force vector
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§ The element vector generalized nodal forces 3𝐪 at the basic reference
frame (without rigid body modes) is as follows:

3𝐮 = 6𝑢,, 6𝑢-, 6𝑢. *

3𝐪 = 6𝑞,, 6𝑞-, 6𝑞. *

𝑖 𝑗𝐿 𝑥

𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐿

3𝑞,
3𝑢,

3𝑞+
3𝑢+

3𝑞-
3𝑢-

Force-based (or flexibility-based) elements
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§ We assume that the bending moment distribution inside the element is
linear and that the axial force distribution is constant. In vector notation,
the internal forces become,

𝐐(
7,$,;(𝑥) = 𝐛(𝑥) > 3𝐪7,$,;

§ 𝐛(𝑥) is a matrix containing the force interpolation functions (see next
slide) relating the generalized nodal forces 3𝐪 to the internal forces 𝐐((𝑥).

(internal forces) (nodal forces)

Force-based elements (2)
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§ The vector of force interpolation functions is as follows for the case of
no element loads (concentrated and/or distributed):

𝐛 𝑥 =
1 0 0
0

𝑥
𝐿
− 1

𝑥
𝐿

Force-based elements (3)
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§ The section flexibility matrix 𝐟(
7,$,; 𝑥 = 𝐤(

7,$,; <,
(𝑥) , such that, 

𝐝(
7,$,; 𝑥 = 𝐟(

7,$,; 𝑥 > 𝐐=
7,$,; 𝑥

(section deformations) (internal forces)

§ The incremental version of the previous equation is as follows,

∆𝐝(
7,$,; 𝑥 = 𝐟(

7,$,;<, 𝑥 > ∆𝐐=
7,$,; 𝑥

§ This formulation satisfies the element equilibrium in a strict sense even if
the element softens when deformed beyond its ultimate resistance.

= 𝐟(
7,$,;<, 𝑥 > 𝐛 𝑥 > ∆3𝐪7,$,; 𝑥

(incremental element forces)(incremental section deformations)

Force-based elements (4)
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§ Therefore, the deformation update at step 𝑖 in incremental form becomes

𝐝(
7,$,;(𝑥) = 𝐝(

7,$,;<,(𝑥) + 𝚫𝐝(
7,$,; 𝑥

§ The field of element deformation increment at step 𝑖 is:

𝚫𝐝(
7,$,;(𝑥) = 𝐟(

7,$,;<, 𝑥 𝚫𝐐(
7,$,; 𝑥

Force-based elements (5)
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§ The section flexibility at iteration 𝑗, 𝐟(
*,,,-(𝑥) is, 

𝐟(
*,,,-(𝑥) = 𝐤(

*,,,- 𝑥 .$

§ Element flexibility matrix, 3𝑭*,,,- at iteration 𝑗 is:

3𝑭*,,,- = 5
/

0

𝐛1(𝑥) 7 𝐟(
*,,,-(𝑥) 7 𝐛 𝑥 𝑑𝑥

§ The element stiffness matrix, 3𝑲*,,,- at iteration 𝑗 is:

3𝑲*,,,- = 𝐅*,,,-
.$

State determination of force-based element

§ The element end displacements at iteration 𝑗 is,

3𝐮*,,,- = 5
/

0

𝐛1(𝑥) 7 𝐝(
*,,,-(𝑥) 𝑑𝑥

(section deformations)(end displacements)
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§ The linearization of the equation in Slide 23 yields to,

*𝐅*,,,- 7 ∆3𝐪*,,,- = 3𝐮2
*,,,-

§ Where ∆3𝐪*,,,- and 3𝐮2
*,,,- are vectors of the force increments and residual

displacements, respectively.

§ A meaningful expression for the flexibility matrix *𝐅*,,,- can only be derived for the
beam-column element in the basic element system.

(Residual displacements)(Flexibility matrix)

State determination of force-based element (2)



28RESSLab
Resilient Steel Structures Laboratory

Fiber-based Beam-Column Elements– Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

§ With a known element displacement increment, 𝚫3𝐮*,,,- for the current iteration 𝑗, 
the element force-displacement relation becomes,

𝚫3𝐪*,,,- = *𝐅*,,,-.$
.$
7 𝚫3𝐮*,,,-

§ The internal force increment at iteration 𝑗 can then be computed 

𝚫𝐐(
*,,,- 𝑥 = 𝐛 𝑥 𝚫3𝐪*,,,-

State determination of force-based element (3)
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§ Therefore, based on the principle of virtual forces, the 
residual element displacements at iteration 𝑗 are:

3𝐮3
*,,,- = 5

𝟎

𝑳

𝐛1 𝑥 𝐝(2
*,,,-(𝑥) 𝑑𝑥

§ The residual section deformations are computed as follows:

𝐝(2
*,,,-(𝑥) = 𝐟( 𝑥 *,,,-[𝐐(

*,,,- 𝑥 − 𝐐()
*,,,- 𝑥 ]

Q(

𝑑

ΔQ/
!,#,$

𝑘2
.,$,4

d/5
.,$,4

Q/.,$,46- Δ𝑑27
.,$,4

𝑑.,$,4

Q/.,$,4

Section force

Section 
displacement

State determination of force-based element (4)
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§ These residuals are transformed to residual forces such that the element
resisting forces become,

3𝐪*,,,- = 3𝐪*,,,-.$ − *𝐅*,,,-
.$
3𝐮3
*,,,-

§ The unbalanced section forces are as follows:

𝐐(2
*,,,- 𝑥 = 𝐐(

*,,,- 𝑥 − 𝐐()
*,,,- 𝑥

§ Continue accordingly to reduce the unbalanced section forces with Newton-
Raphson by using a tolerance

State determination of force-based element (5)
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𝑖 𝑗

𝐿

3𝑞2

𝑥

𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑖 𝑗𝐿 𝑥

𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐿

3𝑢2

𝑄6
𝑢6

𝑄4
𝑢4

𝑄2
𝑢2

𝑄1
𝑢1

𝑄3
𝑢3

Beam element with rigid body modes Beam element without rigid body modes

3𝑞3
3𝑢3

𝑢5
𝑄5

State determination of force-based element (6)

3𝑞1
3𝑢1

Local reference frame Basic reference frame
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State determination of force-based element (8)
Compute the element deformation increment vector Δ8𝐮&,"

Update the element deformation vector: 8𝐮&," = 8𝐮&,"() +Δ8𝐮&,"

For element 𝑒𝑙𝑒

Set 𝑗 = 1

Compute the element force increment vector Δ8𝐪&,",, = 8𝑲&,",,Δ8𝐮&,",,
Update the element force vector: 8𝐪&,",, = 8𝐪&,",,() +Δ8𝐪&,",,

For 𝑖𝑠𝑒𝑐 = 1

Compute the section force increment vector Δ𝑸*
&,",, = 𝒃(𝑥)Δ8𝐪&,",,

Compute the section displacement increment vector Δ𝒅*
&,",, = 𝒅*-

&,",,() + 𝐟*
&,",,()Δ𝑸*

&,",,

Update the section force vector: 𝑸*
&,",, = 𝑸*

&,",,() +Δ𝑸*
&,",,

Update the section displacement vector: 𝒅*
&,",, = 𝒅*

&,",,() +Δ𝒅*
&,",,

Section state determination

Next section

Next 𝑗

Next element
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State determination of force-based element (9)
Section state determination:

Section tangent stiffness and flexibility matrices 𝐟*
&,",, and 𝐤*

&,",,

Section resisting force vector: 𝑸*+
&,",,

Compute section unbalanced force vector: 𝑸*-
&,",, = 𝐐%

&,",, −𝐐%.
&,",,

Compute the section unbalanced deformation vector: 𝐝%/
&,",, = 𝐟*

&,",,𝑸*-
&,",,

Form the element tangent stiffness and flexibility matrices 
Compute the element unbalanced displacement vector: 8𝐮/

&,",, = ∫𝟎
𝑳𝐛2 𝑥 𝐝%/

&,",, 𝑑𝑥

Has the element converged?

Yes No

Next section

Set Δ8𝐮&,",,3) = −8𝐮/
&,",,

Next 𝑗

Next element



34RESSLab
Resilient Steel Structures Laboratory

Fiber-based Beam-Column Elements– Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

Application of element loads : Force-based elements

§ For force-based beam-column elements, the following steps are taken to apply element
loads:

§ The section forces are computed using
𝑸0
1,%,3 = 𝐛 𝑥 ΔH𝐪1,%,3 + 𝐛4 𝑥 𝑾1

𝐛4 is a force transformation matrix that relates the applied element loads 𝑾1 to the
element forces in a beam without rigid body modes

§ Once the element state determination has converged, the element resisting force vector 
in the local reference frame 𝑸1,% is computed using

𝑸1,% = 𝐋H𝐪1,%,3 + 𝐭4 𝑥 𝑾1

𝐭6 is a transformation matrix that depends on the applied element loads 𝑾*
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Application of element loads : Force-based elements (2)

§ For uniformly distributed loads 𝑊1 = 𝑤51 , 𝑤61
# , the matrices 𝒃4 and 𝒕4 follow the

assumed sign convention and are given as follows:

𝐛4 𝑥 =
𝐿 − 𝑥 0

0
𝐿
2 𝑥 𝐿 − 𝑥

𝐭4 𝑥 = −𝐿 0 0 0 0 0
0 −𝐿/2 0 0 −𝐿/2 0

§ For different load cases, these matrices can be derived from equilibrium considerations
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Application of element loads : Displacement-based elements

§ For displacement-based beam-column elements, element loads should be transformed
into nodal loads and applied accordingly

§ This may require a finer discretization into elements
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Example: OpenSees

https://opensees.berkeley.edu/wiki/index.php/EleLoad_Command

https://opensees.berkeley.edu/wiki/index.php/EleLoad_Command

