

CIVIL 449: Nonlinear Analysis of Structures

School of Architecture, Civil & Environmental Engineering
Civil Engineering Institute

Distributed plasticity – Fiber-based elements
Element formulations and sectional analysis

Prof. Dr. Dimitrios Lignos & Dr. Diego Heredia Rosa
EPFL, ENAC, IIC, RESSLab

EPFL Objectives of today's lecture

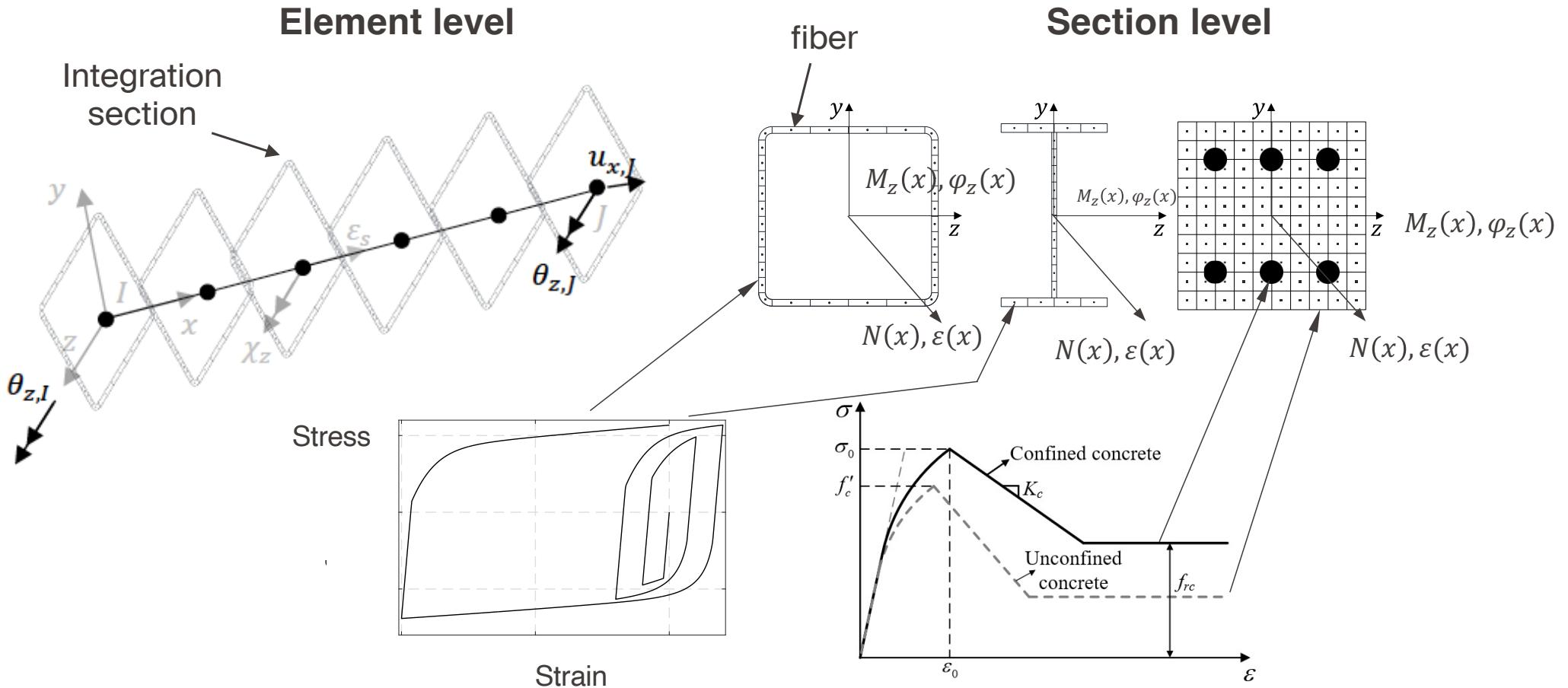
To introduce:

- Fiber-based beam-column elements
- Fiber discretization of cross sections
- Constitutive models for fiber-based elements
- Computation of input strains
- Section analysis
- Type of element formulations
 - Displacement-based beam-column elements
 - Force-based beam-column elements
- Integration methods for member forces and member stiffness

}

This week's material

EPFL Fiber-based beam-column elements: basic workflow

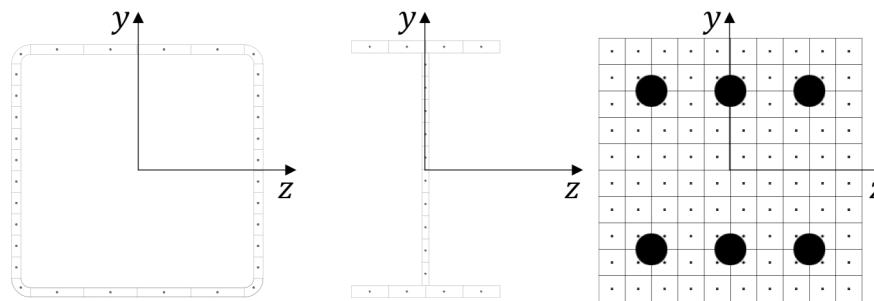


EPFL State determination of fiber section

- The section deformations at the corresponding integration point of an element,

$$\mathbf{d}_s(x) = \{\varepsilon(x) \quad \varphi_z(x)\}^T$$

- A section is meshed into smaller blocks called fibers.



- The strain of each fiber is determined by section deformation vector $\mathbf{d}_s(x)$ and its coordinates (y_{fiber}, z_{fiber}) along the section.
- The strain of the k -th fiber in a cross section,

$$\varepsilon_{k.fiber} = \varepsilon(x) + \varphi_z(x)y_{k.fiber} = \{1, y_{k.fiber}\} \cdot \begin{Bmatrix} \varepsilon(x) \\ \varphi_z(x) \end{Bmatrix} \quad (2\text{-d element})$$

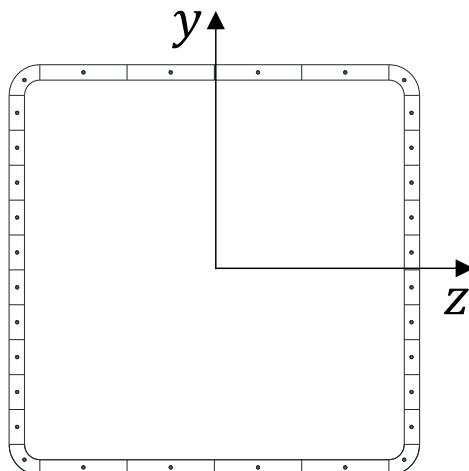
$$\varepsilon_{k.fiber} = \varepsilon(x) + \varphi_z(x)y_{k.fiber} + \varphi_y(x)z_{k.fiber} = \{1, y_{k.fiber}, -z_{k.fiber}\} \cdot \begin{Bmatrix} \varepsilon(x) \\ \varphi_z(x) \\ \varphi_y(x) \end{Bmatrix} \quad (3\text{-d element})$$

State determination of a fiber section (2)

- Section geometrical vector (careful with the local coordinate system of your cross-section discretization)

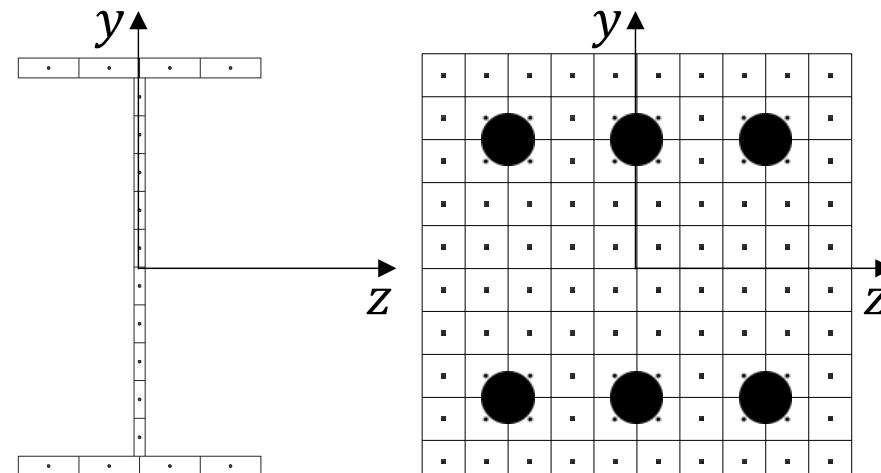
2-D beam-column element

$$\mathbf{l}_{k.fiber} = \{1, y_{k.fiber}\}$$



3-D beam-column element

$$\mathbf{l}_{k.fiber} = \{1, y_{k.fiber}, -z_{k.fiber}\}$$



State determination of a fiber section (2)

- For a 2d element, the section resisting force vector \mathbf{Q}_s is defined as

$$\mathbf{Q}_s = [N(x), M_z(x)]^T$$

- Similarly, the section stiffness matrix \mathbf{k}_s is defined as

$$\mathbf{k}_s = \begin{bmatrix} EA & EQ_z \\ EQ_z & EI_z \end{bmatrix}$$

State determination of a fiber section (3)

- Using the sign convention presented in the previous slide, the following structural mechanics equations are recalled:

$$I_z = \int_A y^2 dA, I_y = \int_A z^2 dA, Q_z = \int_A y dA, Q_y = \int_A z dA$$

$$N = \int_A \sigma dA, M_z = \int_A y \sigma dA, M_y = \int_A -z \sigma dA$$

- These can be computed numerically using the values from each fiber

$$I_z = \int_A y^2 dA = \sum_{ifib=1}^{n_{fib}} y_{ifib}^2 \cdot A_{ifib}, \quad Q_z = \int_A y dA = \sum_{ifib=1}^{n_{fib}} y_{ifib} \cdot A_{ifib}$$

$$N = \int_A \sigma dA = \sum_{ifib=1}^{n_{fib}} \sigma_{ifib} \cdot A_{ifib}, \quad M_z = \int_A y \sigma dA = \sum_{ifib=1}^{n_{fib}} y_{ifib} \cdot \sigma_{ifib} \cdot A_{ifib}$$

State determination of a fiber section (4)

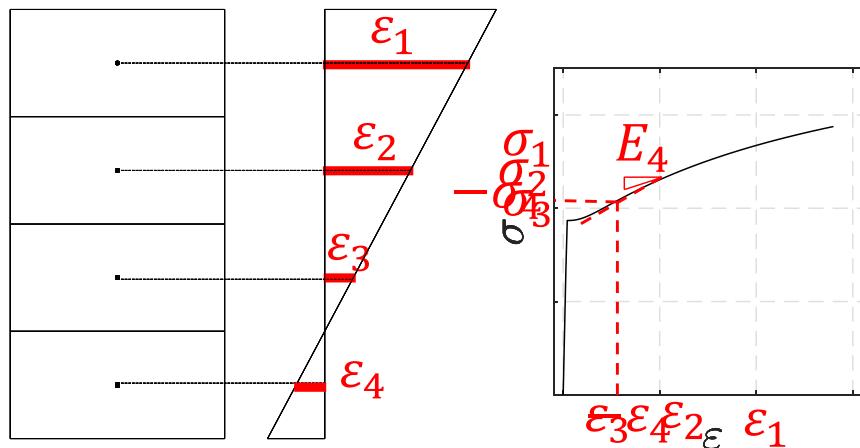
- The section resisting force vector and stiffness matrix can therefore be rewritten as

$$\mathbf{Q}_s = \begin{bmatrix} N \\ M_z \end{bmatrix} = \begin{bmatrix} \sum_{ifib=1}^{n_{fib}} \sigma_{ifib} \cdot A_{ifib} \\ \sum_{ifib=1}^{n_{fib}} y_{ifib} \cdot \sigma_{ifib} \cdot A_{ifib} \end{bmatrix} = \sum_{k=1}^{n_{fib}} \mathbf{l}_{ifib}^T \cdot (\sigma_{ifib} A_{ifib})$$

$$\mathbf{k}_s = \begin{bmatrix} EA & EQ_z \\ EQ_z & EI_z \end{bmatrix} = \begin{bmatrix} E \sum_{ifib=1}^{n_{fib}} A_{ifib} & E \sum_{ifib=1}^{n_{fib}} y_{ifib} \cdot A_{ifib} \\ E \sum_{ifib=1}^{n_{fib}} y_{ifib} \cdot A_{ifib} & E \sum_{ifib=1}^{n_{fib}} y_{ifib}^2 \cdot A_{ifib} \end{bmatrix} = \sum_{k=1}^{n_{fib}} \mathbf{l}_{ifib}^T \cdot (E_{ifib} A_{ifib}) \cdot \mathbf{l}_{ifib}$$

EPFL State determination of fiber section (5)

- Based on the material constitutive formulation and the fiber strain, the tangent modulus $E_{k,fiber}$ and stress, $\sigma_{k,fiber}$ of the k -th fiber can be determined.
- $E_{k,fiber}$ and $\sigma_{k,fiber}$ are used to compute the section stiffness and forces.

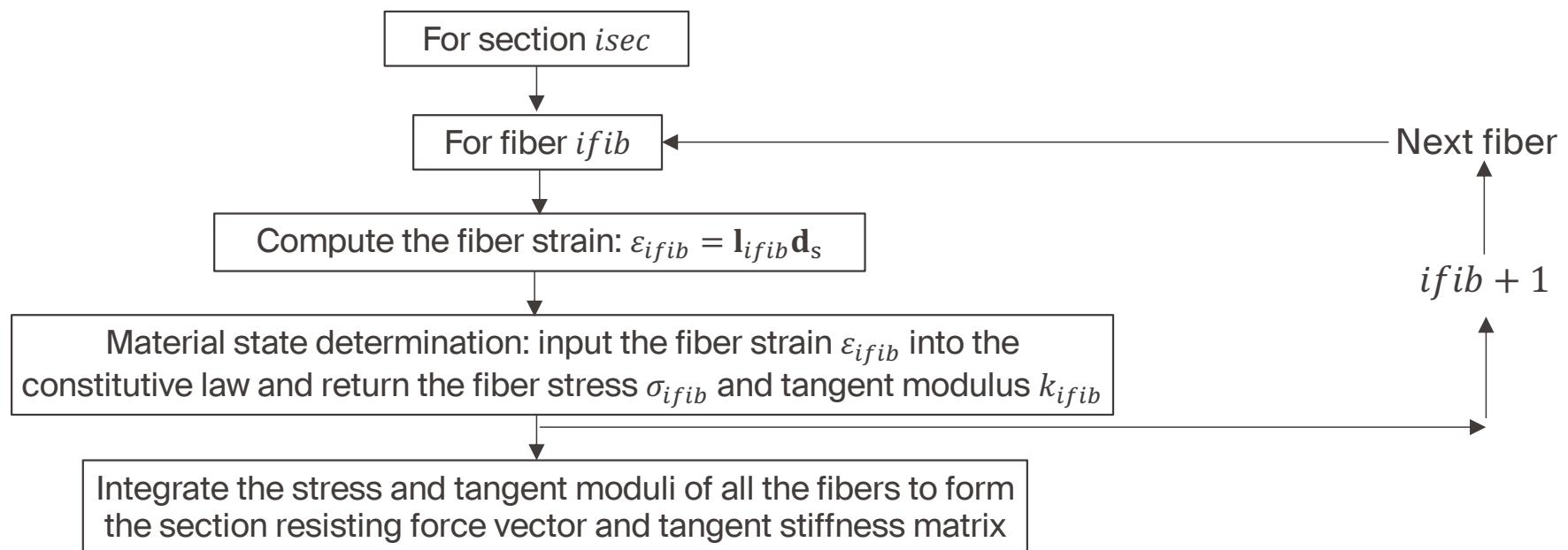


Section resisting force vector: $\mathbf{Q}_s(x) = \mathbf{l}_1^T \cdot (\sigma_1 A_1) + \mathbf{l}_2^T \cdot (\sigma_2 A_2) + \mathbf{l}_3^T \cdot (\sigma_3 A_3) + \mathbf{l}_4^T \cdot (\sigma_4 A_4)$

Section stiffness matrix: $\mathbf{k}_s(x) = \mathbf{l}_1^T \cdot (E_1 A_1) \cdot \mathbf{l}_1 + \mathbf{l}_2^T \cdot (E_2 A_2) \cdot \mathbf{l}_2 + \mathbf{l}_3^T \cdot (E_3 A_3) \cdot \mathbf{l}_3 + \mathbf{l}_4^T \cdot (E_4 A_4) \cdot \mathbf{l}_4$

EPFL State determination of a fiber section (6)

- The flow chart gives the solution process for the section state determination of a fiber section



EPFL Beam-column element types for input strain field computation

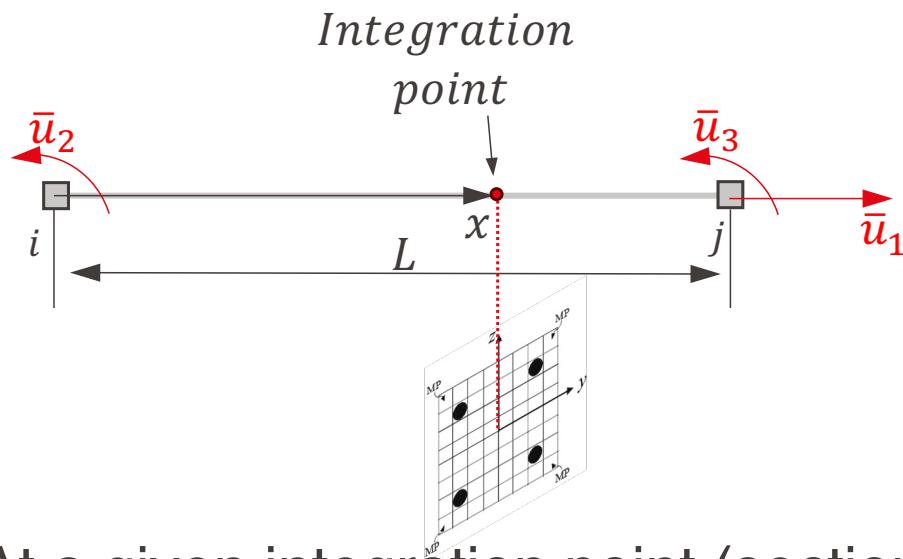
- **If element deformations are the primary unknowns, then the element is called displacement-based (stiffness-based)**
 - Uses cubic interpolation functions to approximate the displacement field
 - Assumed interpolation functions for displacement field result in linear curvature (i.e., constant axial strain along the element length)
 - Requires many element segments to capture the strain gradient along a member
- **If the element forces are the primary unknowns, then the element is called force-based (flexibility-based)**
 - Uses linear interpolation functions to approximate the force field
 - Usually requires a single element with few sections (i.e., integration points) to represent a member
 - Keeps the number of degrees of freedom to a minimum
 - Usually, the element is analyzed without rigid body modes (basic reference frame)
 - State determination is challenging because (a) the flexibility matrix and (b) the deformation vector that corresponds to the applied forces should be computed at every solution step.

EPFL Beam-column element types for input strain field computation (2)

- Due to the element formulation, the element state determination for **force-based elements** necessitates an iterative solution scheme to determine the element resisting forces and stiffness matrix. Typically, a Newton-Raphson algorithm is used. This iterative scheme will be denoted by the index j
- Conversely, the element state determination for **displacement-based elements** does not use an iterative solution
- Recall from the previous lectures that the element state determination procedure is performed at each iteration i of the load-displacement control algorithm at every load or displacement increment n

EPFL Displacement-based beam-column element

- In the basic reference frame, the vectors of nodal displacements, $\bar{\mathbf{u}}$, and element resisting forces $\bar{\mathbf{q}}$, are as follows:



$$\bar{\mathbf{u}} = \{\bar{u}_1, \bar{u}_2, \bar{u}_3\}^T$$

$$\bar{\mathbf{q}} = \{\bar{q}_1, \bar{q}_2, \bar{q}_3\}^T$$

- At a given integration point (section):

$$d_a(x) = N_1(x)\bar{u}_1$$

$$d_f(x) = N_2(x)\bar{u}_2 + N_3(x)\bar{u}_3$$

Displacement-based beam-column element (2)

- The vector of displacements anywhere inside the element can be expressed as follows:

$$\bar{\mathbf{d}}(x) = \begin{bmatrix} N_1(x) & 0 & 0 \\ 0 & N_2(x) & N_3(x) \end{bmatrix} \cdot \bar{\mathbf{u}}$$

$$\bar{\mathbf{a}}_d(x)$$

$\bar{\mathbf{a}}_d(x)$: Matrix containing the linear interpolation functions for the axial displacement and the cubic interpolation functions for the rotations

EPFL Displacement-based beam-column element (3)

- The interpolation functions for the uniaxial bending case ([from week #3](#)):

axial

$$N_1(x) = \frac{x}{L}$$

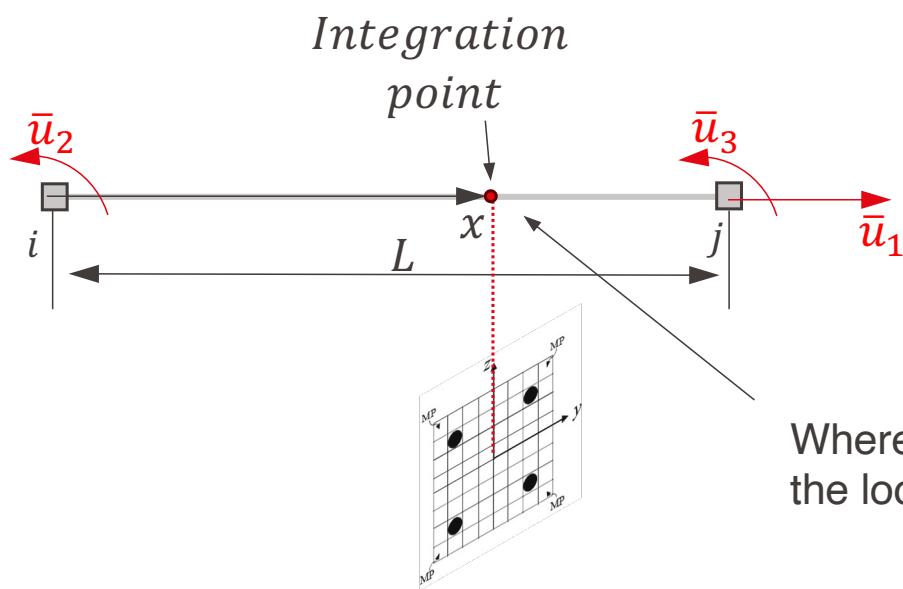
rotational

$$N_2(x) = \frac{x^3}{L^2} - \frac{2x^2}{L} + x$$

$$N_3(x) = \frac{x^3}{L^2} - \frac{x^2}{L}$$

Displacement-based beam-column element (4)

- The element is divided into segments according to selected integration points.
- The behavior at each integration point is characterized by the section deformation vector $\mathbf{d}_s(x)$ and the section resisting force $\mathbf{Q}_{sr}(x)$:



$$\mathbf{d}_s(x) = \{\varepsilon(x), \varphi_y(x)\}^T$$

$$\mathbf{Q}_{sr}(x) = \{N(x), M_y(x)\}^T$$

Where x is the coordinate of a section under consideration in the local coordinate system

EPFL Displacement-based beam-column element (5)

- The section deformations $\mathbf{d}_s(x)$ can be written as follows:

$$\mathbf{d}_s(x) = \{\varepsilon(x), \varphi_y(x)\}^T = \left\{ \frac{\vartheta d_a(x)}{\vartheta x} \quad \frac{\vartheta^2 d_f(x)}{\vartheta x^2} \right\}^T$$

- And in a matrix form by using the shape functions:

$$\mathbf{d}_s(x) = \underbrace{\begin{bmatrix} N'_1(x) & 0 & 0 \\ 0 & N''_2(x) & N''_3(x) \end{bmatrix}}_{\bar{\mathbf{B}}(x)} \cdot \bar{\mathbf{u}}$$

Displacement-based beam-column element (6)

- If plane sections remain plane,

$$\mathbf{d}_s^{n,i}(x) = \bar{\mathbf{B}}(x) \cdot \bar{\mathbf{u}}^{n,i}$$

- Where $\bar{\mathbf{B}}(x)$ is the matrix derived from the derivatives of displacement interpolation functions.

$$\bar{\mathbf{B}}(x) = \begin{bmatrix} N'_1(x) & 0 & 0 \\ 0 & N''_2(x) & N''_3(x) \end{bmatrix}$$

State determination of displacement-based element

- The tangent element stiffness matrix at iteration i of step n , $\bar{\mathbf{K}}^{n,i}$, of a displacement-based beam-column element of length L , and the element resisting force vector $\bar{\mathbf{q}}^{n,i}$ can be expressed as follows:

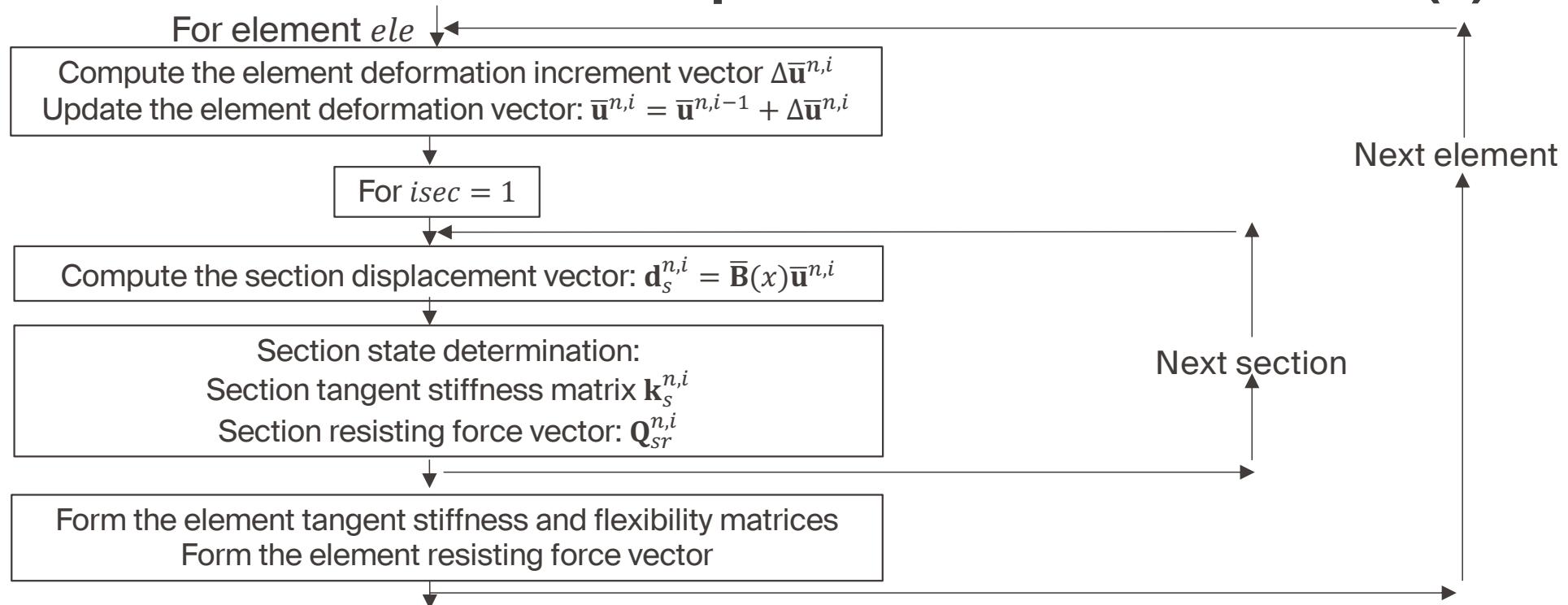
$$\bar{\mathbf{K}}^{n,i} = \int_0^L \bar{\mathbf{B}}^T(x) \cdot \mathbf{k}_s^{n,i}(x) \cdot \bar{\mathbf{B}}(x) \cdot dx$$

$$\bar{\mathbf{q}}^{n,i} = \int_0^L \bar{\mathbf{B}}^T(x) \cdot \mathbf{Q}_{sr}^{n,i}(x) \cdot dx$$

We calculate those numerically with some numerical integration schemes

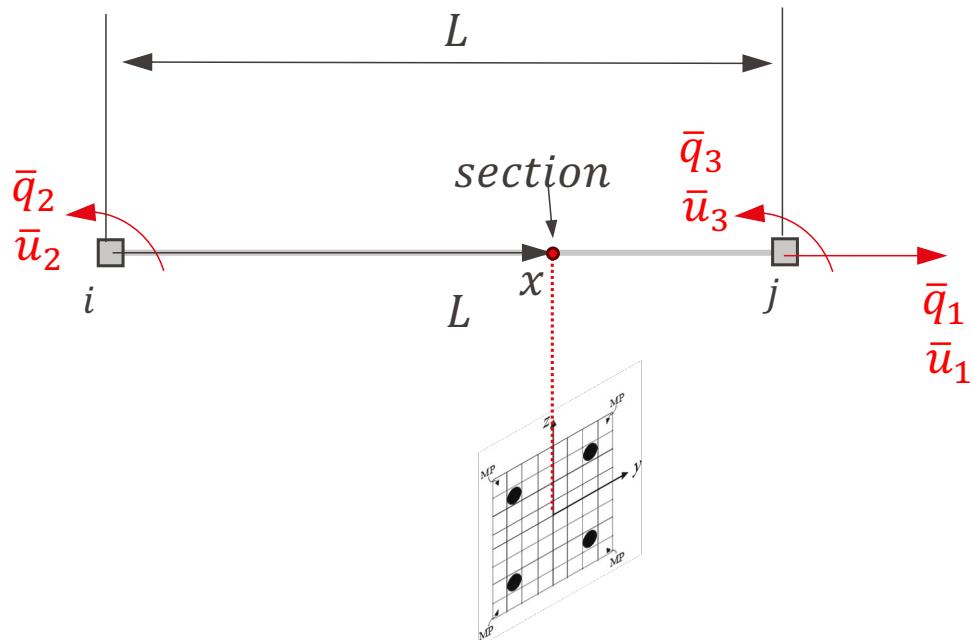
- Gauss-Legendre,
- Gauss-Lobatto,
- Gauss Radau,
- midpoint rule

State determination of displacement-based element (2)



EPFL Force-based (or flexibility-based) elements

- The element vector generalized nodal forces $\bar{\mathbf{q}}$ at the basic reference frame (without rigid body modes) is as follows:



$$\bar{\mathbf{q}} = \{\bar{q}_1, \bar{q}_2, \bar{q}_3\}^T$$

$$\bar{\mathbf{u}} = \{\bar{u}_1, \bar{u}_2, \bar{u}_3\}^T$$

- We assume that the bending moment distribution inside the element is linear and that the axial force distribution is constant. In vector notation, the internal forces become,

$$\mathbf{Q}_s^{n,i,j}(x) = \mathbf{b}(x) \cdot \bar{\mathbf{q}}^{n,i,j}$$

(internal forces)
(nodal forces)

- $\mathbf{b}(x)$ is a matrix containing the force interpolation functions (see next slide) relating the generalized nodal forces $\bar{\mathbf{q}}$ to the internal forces $\mathbf{Q}_s(x)$.

EPFL Force-based elements (3)

- The vector of force interpolation functions is as follows for the case of no element loads (concentrated and/or distributed):

$$\mathbf{b}(x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \left(\frac{x}{L} - 1\right) & \left(\frac{x}{L}\right) \end{bmatrix}$$

- The section flexibility matrix $f_s^{n,i,j}(x) = (k_s^{n,i,j})^{-1}(x)$, such that,

$$\mathbf{d}_s^{n,i,j}(x) = \mathbf{f}_s^{n,i,j}(x) \cdot \mathbf{Q}_s^{n,i,j}(x)$$

(section deformations)
(internal forces)

- The incremental version of the previous equation is as follows,

$$\Delta \mathbf{d}_s^{n,i,j}(x) = \mathbf{f}_s^{n,i,j-1}(x) \cdot \Delta \mathbf{Q}_s^{n,i,j}(x) = \mathbf{f}_s^{n,i,j-1}(x) \cdot \mathbf{b}(x) \cdot \Delta \bar{\mathbf{q}}^{n,i,j}(x)$$

(incremental section deformations)(incremental element forces)

- This formulation satisfies the element equilibrium in a strict sense even if the element softens when deformed beyond its ultimate resistance.

EPFL Force-based elements (5)

- The field of element deformation increment at step i is:

$$\Delta \mathbf{d}_s^{n,i,j}(x) = \mathbf{f}_s^{n,i,j-1}(x) \Delta \mathbf{Q}_s^{n,i,j}(x)$$

- Therefore, the deformation update at step i in incremental form becomes

$$\mathbf{d}_s^{n,i,j}(x) = \mathbf{d}_s^{n,i,j-1}(x) + \Delta \mathbf{d}_s^{n,i,j}(x)$$

EPFL State determination of force-based element

- The section flexibility at iteration j , $\mathbf{f}_s^{n,i,j}(x)$ is,

$$\mathbf{f}_s^{n,i,j}(x) = (\mathbf{k}_s^{n,i,j}(x))^{-1}$$

- Element flexibility matrix, $\bar{\mathbf{F}}^{n,i,j}$ at iteration j is:

$$\bar{\mathbf{F}}^{n,i,j} = \int_0^L \mathbf{b}^T(x) \cdot \mathbf{f}_s^{n,i,j}(x) \cdot \mathbf{b}(x) dx$$

- The element stiffness matrix, $\bar{\mathbf{K}}^{n,i,j}$ at iteration j is:

$$\bar{\mathbf{K}}^{n,i,j} = (\mathbf{F}^{n,i,j})^{-1}$$

- The element end displacements at iteration j is,

$$\bar{\mathbf{u}}^{n,i,j} = \int_0^L \mathbf{b}^T(x) \cdot \mathbf{d}_s^{n,i,j}(x) dx$$

(end displacements) 0 (section deformations)

- The linearization of the equation in [Slide 23](#) yields to,

- Where $\Delta\bar{\mathbf{q}}^{n,i,j}$ and $\bar{\mathbf{u}}_u^{n,i,j}$ are vectors of the force increments and residual displacements, respectively.
- A meaningful expression for the flexibility matrix $\bar{\mathbf{F}}^{n,i,j}$ can only be derived for the beam-column element in the basic element system.

State determination of force-based element (3)

- With a known element displacement increment, $\Delta\bar{\mathbf{u}}^{n,i,j}$ for the current iteration j , the element force-displacement relation becomes,

$$\Delta\bar{\mathbf{q}}^{n,i,j} = (\bar{\mathbf{F}}^{n,i,j-1})^{-1} \cdot \Delta\bar{\mathbf{u}}^{n,i,j}$$

- The internal force increment at iteration j can then be computed

$$\Delta\mathbf{Q}_s^{n,i,j}(x) = \mathbf{b}(x)\Delta\bar{\mathbf{q}}^{n,i,j}$$

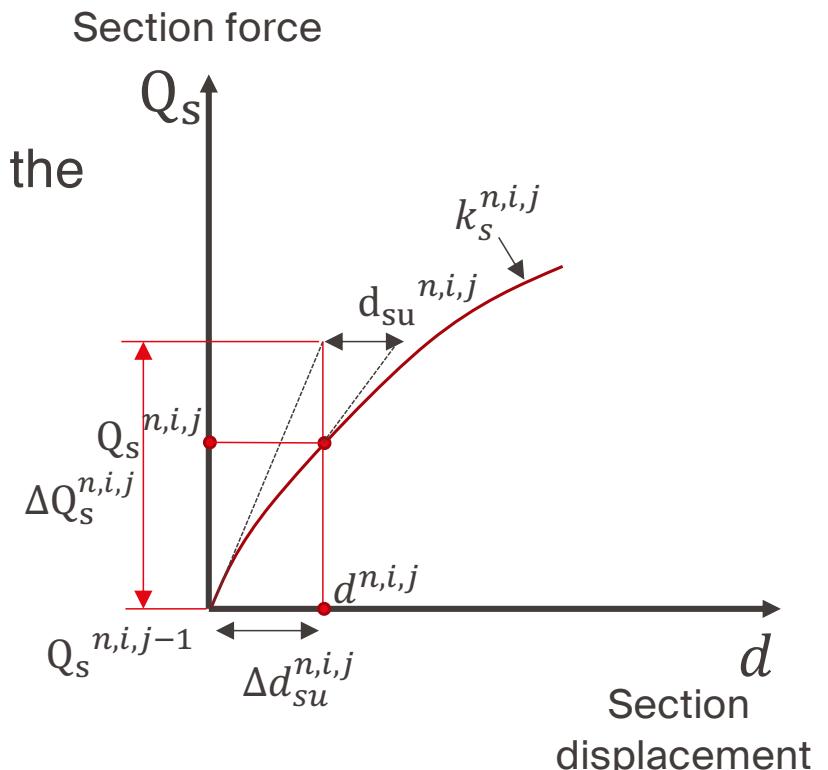
State determination of force-based element (4)

- The residual section deformations are computed as follows:

$$\mathbf{d}_{su}^{n,i,j}(x) = \mathbf{f}_s(x)^{n,i,j} [\mathbf{Q}_s^{n,i,j}(x) - \mathbf{Q}_{sr}^{n,i,j}(x)]$$

- Therefore, based on the principle of virtual forces, the residual element displacements at iteration j are:

$$\bar{\mathbf{u}}_u^{n,i,j} = \int_0^L \mathbf{b}^T(x) \mathbf{d}_{su}^{n,i,j}(x) dx$$



State determination of force-based element (5)

- These residuals are transformed to residual forces such that the element resisting forces become,

$$\bar{\mathbf{q}}^{n,i,j} = \bar{\mathbf{q}}^{n,i,j-1} - (\bar{\mathbf{F}}^{n,i,j})^{-1} \bar{\mathbf{u}}_u^{n,i,j}$$

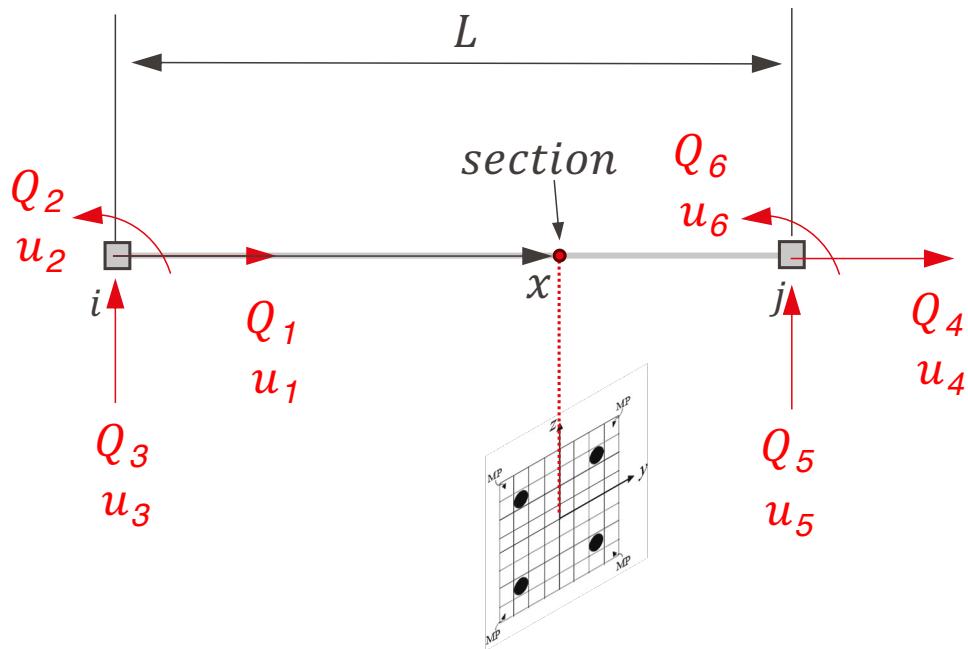
- The unbalanced section forces are as follows:

$$\mathbf{Q}_{su}^{n,i,j}(x) = \mathbf{Q}_s^{n,i,j}(x) - \mathbf{Q}_{sr}^{n,i,j}(x)$$

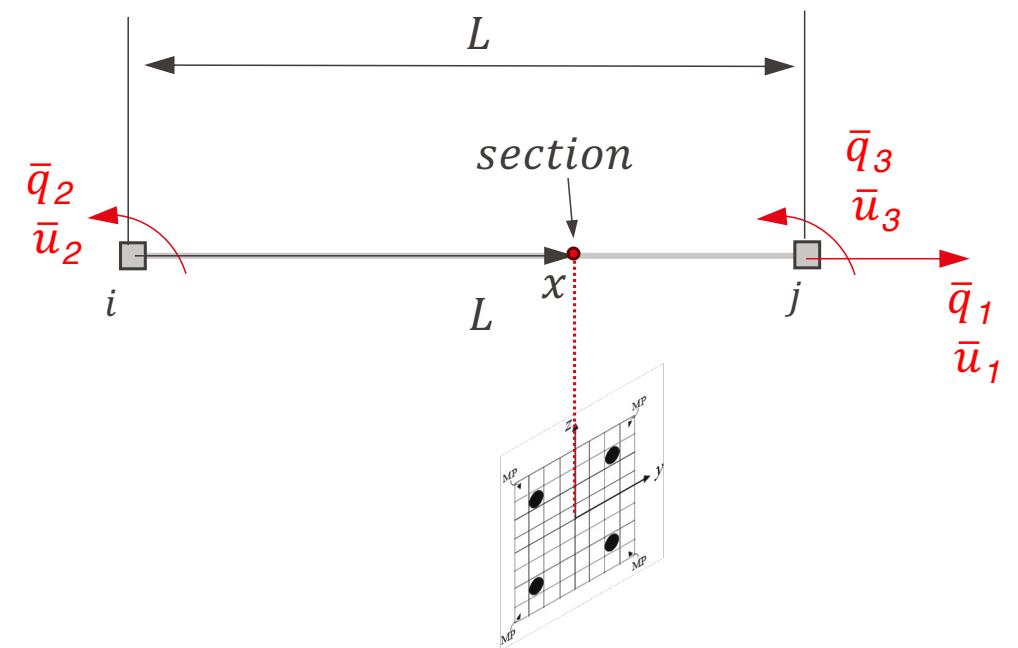
- Continue accordingly to reduce the unbalanced section forces with Newton-Raphson by using a tolerance

State determination of force-based element (6)

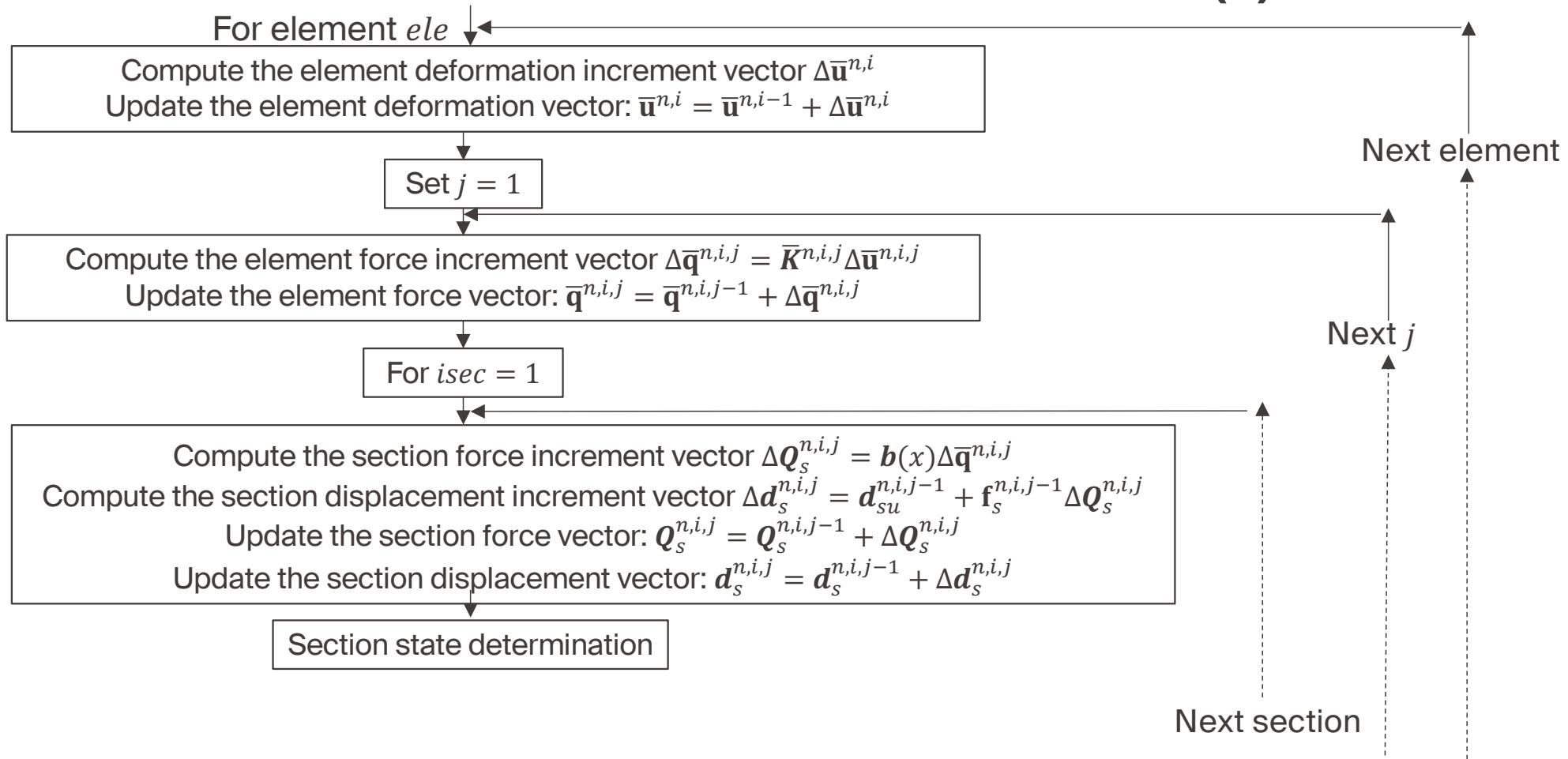
Local reference frame
Beam element with rigid body modes



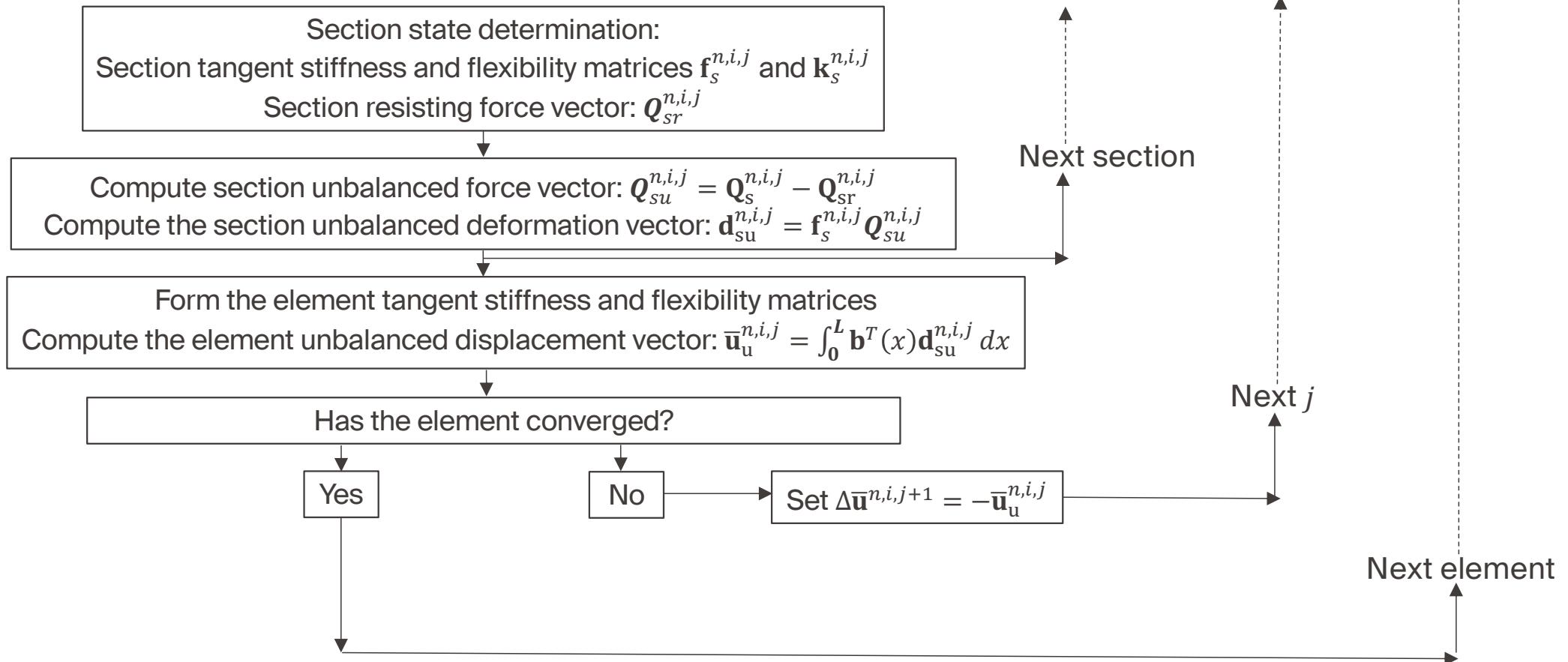
Basic reference frame
Beam element without rigid body modes



State determination of force-based element (8)



State determination of force-based element (9)



EPFL Application of element loads : Force-based elements

- For **force-based** beam-column elements, the following steps are taken to apply element loads:
- The section forces are computed using

$$Q_s^{n,i,j} = \mathbf{b}(x)\Delta\bar{\mathbf{q}}^{n,i,j} + \mathbf{b}_g(x)\mathbf{W}^n$$

\mathbf{b}_g is a force transformation matrix that relates the applied element loads \mathbf{W}^n to the element forces in a beam without rigid body modes

- Once the element state determination has converged, the element resisting force vector in the local reference frame $Q^{n,i}$ is computed using

$$Q^{n,i} = \mathbf{L}\bar{\mathbf{q}}^{n,i,j} + \mathbf{t}_g(x)\mathbf{W}^n$$

\mathbf{t}_g is a transformation matrix that depends on the applied element loads \mathbf{W}^n

EPFL Application of element loads : Force-based elements (2)

- For uniformly distributed loads $W^n = [w_x^n, w_y^n]^T$, the matrices \mathbf{b}_g and \mathbf{t}_g follow the assumed sign convention and are given as follows:

$$\mathbf{b}_g(x) = \begin{bmatrix} L - x & 0 \\ 0 & \frac{L}{2}x(L - x) \end{bmatrix}$$

$$\mathbf{t}_g(x) = \begin{bmatrix} -L & 0 & 0 & 0 & 0 & 0 \\ 0 & -L/2 & 0 & 0 & -L/2 & 0 \end{bmatrix}$$

- For different load cases, these matrices can be derived from equilibrium considerations

EPFL Application of element loads : Displacement-based elements

- For **displacement-based** beam-column elements, element loads should be transformed into nodal loads and applied accordingly
- This may require a finer discretization into elements

EPFL Example: OpenSees

EleLoad Command

Command_Manual

https://opensees.berkeley.edu/wiki/index.php/EleLoad_Command

The eleLoad command is used to construct an ElementalLoad object and add it to the enclosing LoadPattern.

```
load $eleLoad $arg1 $arg2 $arg3 ....
```

The element loads are only applied to line elements. Continuum elements do not accept element loads. When NDM=2, the beam column elements all accept eleLoad commands of the following form:

```
eleLoad -ele $eleTag1 <$eleTag2 ....> -type -beamUniform $Wx <$Wx>
```

```
eleLoad -range $eleTag1 $eleTag2 -type -beamPoint $Py $xL <$Px>
```

When NDM=3, the beam column elements all accept eleLoad commands of the following form:

```
eleLoad -ele $eleTag1 <$eleTag2 ....> -type -beamUniform $Wx $Wz <$Wx>
```

```
eleLoad -range $eleTag1 $eleTag2 -type -beamPoint $Py $Pz $xL <$Px>
```

\$eleTag1 \$eleTag2 ...	tag of PREVIOUSLY DEFINED element
\$Wx	mag of uniformly distributed ref load acting in direction along member length
\$Wy	mag of uniformly distributed ref load acting in local y direction of element
\$Wz	mag of uniformly distributed ref load acting in local z direction of element
\$Py	mag of ref point load acting in direction along member length
\$Py	mag of ref point load acting in local y direction of element
\$Pz	mag of ref point load acting in local z direction of element
\$xL	location of point load relative to node l, prescribed as fraction of element length