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Abstract

For the prebuckling range an extensive literature of effective
.solutiontechniques exists for the numerical solution of structural
problems but onlya few algorithms have been proposed to trace
nonlinear response from the pre-limit into the post-limit range.
Among these are the simple method of suppressing equilibrium
iterations, the introduction of artificial springs, the displace-
ment control method and the "constant-arc-length method' of
Riks/Wempner. It is the purpose of this paper to review these
metheds and to discuss the modifications to a program that are
necessary for their implementation. Selected numerical exam-
ples show that a modified Riks /Wempner method can be espe-
cially recommended. ‘

1. [ntroduction

Usually posteritical states are not tolerated in the design of a
structure. However, the prediction of response in this range
may still be of great value., Atypical example is the imperfection
sensitivity of certain structures which in general is directly
related to the posteritical respbnse. In particular this is true
for structures exhibiting a decreasing post-limit characteristic.
This may resultinadynamic snap-through or snap-back phenom-
enondepending on whether’the load or the displacement controls
the system. However, a static analysis traces the whole post-
critical range allowing for a better judgement of the overall

structural response.

It is wellknownthat the usually applied Newton-Raphson itez‘ation

methods are not very efficient and often fail in the néighborhood
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of c\riti‘calpoi‘nts‘ The stiffness matrix approaches singularity result-
_ing in an increasing number of iterations and smaller and smaller
"load steps. Finally the solution diverges. In recent years several
strategies have been proposed to overcome these problems and to

trace the response beyond the critical point,

It is the purposeof this paper to describe some of the most commonly
used techniunes. These are the method of suppressing the equilibrium
iterations in the neighborhoodvof the critical point, the method of
artificial springs, the displacement control technique and the ''con-
stant - arc - length method" of Riks [1], [2] and Wempner [3]. In
particular an attempt is made t6 show the correlation of the latter
procedures. Special emphasis is given to some modifications of the
Riks /Wempner method leading to an efficient iterative technique

throughout the entire range of loading and not only near the critical
point, Other methods for solving the same type of problem, e.g. ‘the

perturbation method or dynamic relaxation, are not studied,

The discussion refers to limit points only. Bifurcation problems may
% included either by introducing a small perturbation in geometry
orload kimperfect approach) or by superimposing on the displacement
field of the critical load a part of the eigenmode (perfect approach).
Theprocedures aredescribed in conjunction with the Newton- Raphson
method in its standard or modified versions., A combination with
accelerated quasi Newton methods is possible. «2roportional loading

is assumed but few changes are necessary for non proportional load-

ing.

2, Starting Point and Notation

The study is based on the incremental/iterative solution procedure
ina nonlinear finite element analysis; i.e. the nonlinear problem is
stepwise linearized and the linearization error is corrected by addi-
tionalequilibrium iterations, seefor instance [4]. A left superscript

indicates the current configuration of the total displacements "u , the

N
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load vector " P, the internal forces 'F and the out-of-balance
. m 5 . : . )
forces R | Ior proportional loading the loads may be expressed

by one load factor ™

m ) .

P="\P (1)
where P iga vector of reference loads. Within one increment from
configuration m to m + 1, the positions i and j =i + 1, before and

after an arbitrary iteration cycle, are distinguished (figure 1),
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Figure 1: Notation

The totalincrements between positions m and i are denoted by U(l),

P (1) and A (1) whereas the changes in increments from i to j' are
denoted by Au(‘]), AP(‘]) and AK(J), respectively:

'"P="p L PP i D
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)u - mu . u<i)+4u(j>

o (2)
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In view of the fact that iteration takes place in the displacement and
load space the load level may change from one iterate to the:othcr.
i

Inthis caseanintermediate position j’ for the same load level j,k = X

is introduced before the final state j is reached (figure 1).

Supposedly configuration i has already been determined and the in-
cremental equilibrium equations may be expressed by the linearized

stiffness expression,

'K - a4l gPY P - F (3a)
If the out-of-balance forces 'R = ‘P . F are inserted
K - aulaVlP . R (3b)

The tangent stiffness matrix iK atposition i mayinclude all possible
nonlinear effects. It may be kept unchanged through several iteration
cycles following the modified Newton-Raphson technique., Eq. (3) is
the basic relationused as the starting point for the different iterative

techniques described below;

The static stability criterion indicates a limit or bifurcation point by

‘K- au®=0 (4)

where 4u° is the eigenmode of the critical point. The singularity is

usually checked by the determinant
det ‘K = 0 - (5)

The determinant can easily be calculated as the product of all diagoﬁal
terms inthe triangularized matrix during Gaussian elimination. Note
that a positive determinant is not a sufficient criterion for stable
equilibrium. Rather, the signs of the diagonal terms should be moni-
toredtodetect negative eigenvalues. This is the pc;int when the liﬁ]it

load is passed and unloading should start.

: P

3. Desceription of Some Iterative Techniques

3.1 Suppressing Bquilibrivm Ttevations

As mentioned the equilibrium iterations usually break down near the
limit point even if the load increment is small. "The simplest way of
avoiding this difficulty is to suppress the iterations in the critical
zone. This procedure is used with great success by Bergah [5] who
introduced the ''current stiffness parameter' to guide the algorithm

(figure 2).

load
’ increm, + e pure —sleincrem.~ displ.
iteration increment iteration
Figure 2: Suppressing iterations due to Bergan (5]

Ataprescribed value of the stiffness parameter the iteration proce-
dureis discontinued (point A). Then pure incrementation is used. If
the Euclideannorm of the displacement increments exceeds a certain
prescribed limit (point C’) load and displacements are linearly

scaled back‘ (point C). Iere negative diagonal elements may be de-
tected in which case negative load increments are applied (point D),
The iteration procedure is resumed when the stiffness parameter
againreaches its prescribed value (point E). The limit pointis located
by a zero value of the stiffness.parameter. The technique requires
very small load increments to avoid drifting away from the equilib-

rium path,

3.2 Artificial - Spring - Method

'l‘hi?s method was developed for frames by Wright and Gaylord (6]
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\ to shell structures by the author [ 8]. The technique is based on the

obs ervation thata spap-through problem may be transformed intg one

w1thapoa,1t1ve definite characteristic if linear artificial springs are

. added to the system (figure 3).

load

‘G

Figure 3.

Artificial spring method

The method is described in detail in appendix I. It is an essential
requirement that a separation of the real problem must be possible
after the analysis of the stiffened systein is obtained, i.e. for each

stage only one load-reduction factor is defined. Furthermore the

symmetry of the augmented stiffness matrix should be preserved.

These requirements lead to springs at all loaded degrees of freedom,
which are coupled, and depend on one singie reference stiffness,
This parameter has to be found by trial. The coupling of all artificial
stiffnesses may destroy the banded nature of the stiffness matrix,
In [ 8] the elements outside the band were omitted from the stiffness
matrix but were retained on the right hand side to find the proper
internal forces. Augmenting the spring stiffnesses on the band by a

factor of three to five accelerates the convergence,

Because the "nonlinearity" of the system is diminished Ly the artifi-

cial springs the total number of iterations can nevertheless be re-

duced compared tothe analysis without springs. Numerical experi-
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problems where the springs can keep the destabilizing structure alive,

The method cannot be recommended for structures with local buckling

or when a tendency to bifurcation is present,

3.3 Displacement - Control

The most often used method to avoid the singularity at the critical

pointisthe interchange of dependent and independent variables. Here

asingle displacement component selected as a controlling parameter

is prescribed and the corresponding load level is taken as unknown,

GQH

The procedure was introduced first by Argyris [ 9] but in the meantime

has been modified by several authors.,

For simplicity let us assume that the stiffness expression, eq. (3),
is reordered so that the prescribed component 4 u( ) = ﬁ is the last
one in the displacement vector AU(J),

composed into two parts

] () . 1
K Kio| | 44, R R,
- A}\(j)_ + (6)
Ko Kyl |au; P2 R2
Interchanging the variables - .
i () i i
Ki -Pi||au, R, Ky,
= - Uy (7)
IKZI “P | |aA Ry Koo

itis obvious thatthe loss of the symmetrical and banded structure of
the stiffness matrix is a severe handicap. l.ater it was recognized
that the solution of eq. (7) could be formed in two parts, The first

line of eq. (7)
Ky ad=a0-p + R _ K, 0, (8)

is linear in the unknown increment at the load parameter AX(J)_

Then equatlon (3 ) may be de-
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Therefore its solution may be decomposed into (figure 4)

i I I
au"= g ad?T o 4l (9

corresponding tothe two parts ol the right hand side of eq. (8). T'hat
is, both solutions are obtained simultaneously using two-different

"load" vectors
. -

'Ky adl= R, - 'Ky - O, (10b)

;)\A

— —
1 A
U] ! UQ ‘UQ
Figure 4: Displacement - Control Method

The displacement increment a4 (1J)’ eq. (9), is introduced into the
second part of eq, (7). This allows the determination kof the load

parameter A\ (j):

- Ry o+ Kyadl” + Ky O
Pr = Ky guft

o0 -

PN

Thus instead of solving an unsymmctr‘icai equation the modified stiff-
nessoexpression, eq, (8), is analysed for lwo right hand sides pro-
vided that iK - is not singular. Since the displacement ﬁz is held
lixedduring the iteration the underlined terms in equations (10 b) and

(11) are omitted in all further iteration cycles.,

This modified displacement control method was described first by
Pian and Tong [1’0] without mentioning the out-of-balance terms.
Zienkiewicz [11] refers to the standard programming technique and
gives a physicalinterpretation of the two step method. Sabir and Lock
[12] explicitly introduced the out-of-balance terms into the formula-
tion. The method was also described in detail by Stricklin et al, [13],
A similar procedure has been applied by Nemat-Nasser and Shatoff
[14) who used a direct substitution method instead of the Newton-

Raphson technique.

Avaluable simplification was utilized by Batoz and Dhatt [ 15], Since
the technique above described requires a modilication of the stiffness
matrix (i K - iK 11) the authors point out that it is not very likely
toobtainexactly the singular point. llence the original matrix L K may

still be used and equations (10) are replaced by

'K oz p  (12a)

'K a1 R ‘ (12 b)

where the underlined term in eq. (10 h) is not required to be formed,

Again both solutions are added:

a0 40T, 4 I (13a)
The vector includes also the prescribed component

Cady =N 4L o Au(zj,)ﬂf G, (13 b)

This constraint equation used in the first iteration cycle {(m= j = 1)
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allows the determination of the incremental load parameter

G, - auPl

14
au,0 1 ae

Supposedly the structure is in an equilibrium state at the beginning

ofa step sothe out-of-balance forces vanishand so does A ug‘]) H, Then
A)\(l) is simply a scaling factor pro?iding the constraint ngl) = 32.
. SN

Batoz and Dhatt [ 15] even drop this first cycle, They update the dis-

1
placement field only by its component A u; ) and start to iterate,

For all further cycles u;‘]) does not chahge i.e. A ug) is zero and
AN (1 is

AUQ(J)]I

D)
aN - —
AU?(J)I

j=2,3 (15)
Applying the modified Newton-Raphson technique eq. (12 a) needs to
be solved only when the stiffness matrixis updated. Then no additional
computer time is required and the only additional vector stored is
1
Au(l) . The iterationis continued until all other displacement com-

ponents are adjusted and the new equilibrium position is found (fig. 4).

The displacement control method is usually used only in the neighbor-
hood of the critical point although it may be applied throughout the
entire load range. Obviously the method fails whenever the structure

snaps back from one load level to a lower one (see example 5. 2).

Some knowledge of the failure mode is required for a proper choice

ofthe controlling displacement. It might even be necessary to change
the prescribed parameter, Therefore an obvious modification is to
relate the procedureto a meas ure including all displacements rather

than to one single component. This is discussed in the next section,

3.4 Modified Constant - Arc - Length - Method of Riks /Wempner

This iterative technique has been independently introduced by Riks

[l], (2] and Wempher [3]. Both authors limit the load step Ak(l)

by the constraint equation

; ) ) V
Aumf a0 v (M - ds (16)

Thatis, the generalized "arc length'' of the tangent at m is fixed to a

prescribed valueds. Thenthe iteration path follows a ''plane' normal .

. - (1
tothe tangent (figure 5); so the scalar product of the tangent t< ) and
the vector A—*u(J) containing the unknown load and displacement incre-

ments must vanish:

10, 502 g o (17a)
Y . /) :
7= (4u”, A

or in matrix notation

2" 4l . 0 0L g ,  (17b)
j=2,3
A\
' —->(2) /’?
new tangent ty/ |
7 o
‘normal plane’ - :‘0‘“1
i
|

Figure 5: Constant - Arc - Length Method



The &Snstraint equations originally were added to the incremental
stiffness expressiondestroying symmetry and the banded structure of
the matrix. It was realized by Wessels [16] based Qn geometrical
considerations that these difficulties could be removed by a two step
technique similar to that described in the previous section, Tt is this
idea followed in this study. *)

()

Again the unknown vector 40"’ is formed in two parts

A—G(J): A}\(J) .?(J) . A—G(J) (18a)

or in matrix notation equivalent to eq. (13 a).

au') = 0. g, 2uE (18 b)

Also here AU(J)[ G

and 4U are obtained by equations (12) using
either the reference load vector P (AX = 1) or the out-of-balance forces
IR as right hand sides. Then eq. (18) is inserted into the constraint

e(, (17) and solved for the unknown load increment A)\('])

T .
() - AU(U ’AU“)H’ .
4N - o~ 5 (19)
AU() .Au(j) + A}\(U

v N
Geometrically this is the intersection j of the new tangent tm with the

"normal plane' (figure 5). Eq. (19) is equivalent to eq. (15) but con-

tains the influence of alldisplacement components in an integral sense. .

(1)

The load increment AX in the denominator, which dbviously has
another dimension, expresses the different scaling of the load axis
with respect to the displacement space, It may be seen for the one
degree-of-freedomsystem infigure Ga that a low value’A)\“) tends to
adisplacement controland a large value to a load control of the itera-

tion. In many degree-of-freedom systems the value Ak(l) in eq. (19)

does not play an important role and may be suppressed,

*) During the preparation of this study the’ author became aware
of the valuable paper by Crisfield [17] devoted to the same
subject,

N

.,
i Y

Again the modified Newton-Raphson technique simplifies the method

because eq. (12 a) is solvedonly once at the beginning of the step and (

(1)

may even be replaced by the first solution au’"":

0 ' i
ax” Au’ - Au’ , 20)
A}\(l) AU(”T' Au(l) . ’(A}\(H)Z
o "L 2L
Instead of iterating in the 'plane normal to the tangent t it might

be usefulto define a "sphere'’ with a center at m and a radius ds [17]

(see appendix 1I). Alternatively the ''normal plane' may be updated

(1)

ineveryiterationceycle (figure 6 b), That is, in eq. (19) 4U is re-

(1)'

placed by the total increment U It was found that except for very
large load steps the differences resulting from these formulations are

minor.

Py | ® "N A

‘sphere!

a ) |

Figure 6: Modification of constant - arc - length method

Numerical experience has shown that this iterative technique is very
efficientin the entire load range particularly when automatic load in-
crementation based on eq. (16) is used. The only additional storage

1)

required is the vector AU( . The extra computer time is negligible.
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In addition to the "

constant-arc-length' the step size may be scaled
by relating the number of iterations, ng, used in the previous step toa
desired value, ﬁ,, It was found that a factor f, /n results in oscillations
in the number of iterations required from btep to step so that Ao, /n

is recommended. [ material nonlinearities are involved smaller load
steps should be definedto avoid drifting., Whenever a negative element
inthe triangula'r'ize,d matrix is encountered unloading is initiated. The
convef'gence may be either monotonic or alternating and may in some
cases be slow. Then relaxation factors may accelerate the iteration

process. For instance, in the alternating case a cut-back of the next

load change to 50 % resulted in a considerable improvement,

4. summary of the Displacement Control and Modified

Riks /Wempner Method

The algorithms for the displacement control method and the modified
Riks /Wempner method differ only in the equation used for the evalua-

tion of & X! The algorithm is summarized as follows:

1. Select a basic load increment as the reference load P | thus

defining the length ds in the first step (eq. 16).

2. In any step:
a) Solve the equilibrium equations for P and linearly scale
the load and displacelnenfS to produce the length ds. This

1) o)

»

determines 4 A
b)  Adjust the step size to the desired number of iterations n
e.g.Jn, /n

c)  Check the Lmangulalfized matrix for unloading,

3. a)* Update the stiffness matrix 'K
b)  and, simultaneously, determine the out-of-balance forces'R

()1

¢)* sSolve for P to determine 4u
d) and, simultaneously, solve for the out-of-halance forces 'R

to determine 4u (J)H.

NT s n a v
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1. Uso conslraint \'«v|, (1H) o (19) to determine the load increment

AXU) and eq. (13 a) = c¢q. (18 b) to determine displacement in-
)

1
crements “ . (If needed use acceleration lactors. )

Update the load level and the displacement field.

o

6. Repeat steps 3 - 5 until the desired accuracy is achieved.

7. Reformulate the stiffness matrix and start a new step by re-

turning to 2,

5. Numerical Examples

The examples have been analysed on CDC 6600/Cyber 174 computers
using the nonlinear finite element code NISA [ 18], The geometrical
nonlinearity is based on the total Lagrangian formulation. For the
archexample, an 8 node isoparametric plane stress element is used
[4]. The plate and shell structures are idealized by degenerated iso-
parametric elements developed in [8], [19]. The modified Riks/
Wempner method, in combination with the modified Newton-Raphson
technique, has been applied exclusively. The ratio of the change of
the incremental displacements to the total disphceLnent increments,

using Euclidean norms, is used for the convergence criterion,

5.1 shallow Arch

The shallow circular arch under uniform pressure (figure 7) has al-

ready been analysed in [8] applying the artificial spring method

( 11
elements were used for one half of the arch. The analysis with a basic

728 1b/in), see also [7]. Ten 8 node isoparametric plane stress

loadoi p= 0.3 and using the constant-arc-length constraint shows the
typical step size reduction in the neighborhood of the limit point.
Thirty steps with 1 to 2 iterations per stap were needed, The analysis
has been repeated for a basic load step of p = 1.0, The step size has
beenadjusted by the factor “/—51/%“; with a desired number of iterations

A i ) .
n, =&, In addition, the load increment was reduced to 50 % whenever
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sufficient, The number of iterations required are indicated in the Sabir and Lock [20) who used a combination of the displacement and

figure. The diagram also shows the starting point in each step after load control techniques. In Lthe present study one quarter of thesshell

the first Newton-Raphson iterate, Compared to the artificial spring has beenidealized by four 16 node bicubic degenerated shell elements,

technique considerable savings are achieved.

As the basic load step, I = 0.4 kN was chosen,. Again the load steps
were adjusted with ﬁi/ni and theacceleration scheme described for
1.4 ¥ = _ the arch was applied. The entire load deflection diagram is obtained
| eose p—03 basic load t
T \ 000 p=1 0 as oad step inone solution with 15 steps and 3 to 9 iterations per step as indicated
|
12 : ! 4 in the figure. If the acceleration technique was not used the number
LT | i
' ! ! of iterations increased considerably especially at the minimum load.
3 7 X ) )
Q.
© 6
v 1.0- X .
NS ; X 4 * = Sabir and Lock
<l W ; ) : 06- [20]
N : ‘ x Tl T ‘
08{ ! TR S .
] ' 5 7 C{
/
0.41
06+
R=100in, h=2b=2in, %
2 .
oL =008 ,E=10"psi , p=0.25 |
) , 0.24
p
!
!
024 |
0.0
OO T T T T . T
0.00 0.02 0.04 0.06
w/R
Figure 7: Shallow circular arch -0.2
5.2 Shallow Cylindrical Shell | R=10L=2540mm
The shallow cylindrical shell under one concentrated load (figure 8) 0.4 h=6.35mm
. ) VA T T T ¥
is hinged at the longitudinal edges and free at the curved boundaries, 0 10 ’ e, Wi [(mm] 30
The structure exhibits snap-through as well as shap-back phenomena Figure 8: Shallow cylindrical shell

with horizontaland vertical tangents. The shell has been analysed by

This part of the load-deflection curve is numerically diffionlt hananea
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the free edge. The structure has also been analysed using 36 bilinear maximum amplitude of 0.294 mm. The yield limit oy of the elastic-

4 node degenerated elements in combination with an uniform 1 x 1 re- ideally plastic stecl is 240 N/mm?® . Iighteen bicubic degenerated

duced 1ntegr'at10n scheme. Approximately the same results have been elements unevenly spaced were used for one quarter of the plate, The

obtained but at about 20 % of the CP-time, thickness was divided into seven layers. The total load P is non-

. dimensionalized with the linear elastic buckling load Pcr of the plate
5.3 Elastic - Plastic Buckling of a Plate k

with uniform load on the entire boundary:

3
i -k b- ”——E——h?—j D k=1 «2)? (21)
- P 2(1-p)a ,
D='F3‘
< The basic load step chosen was p = 0.25, In figure 9 the normalized
g :
0.6 elastic load is plotted versus the center lateral displacement. The plate fails
under combined geometrical and material failure. The initial yield
~ point at a deflection of about 6 mm is immediately followed by the
] limit ploint at about 8.3 mm. Thirty steps with 1 or 2 iterations per k
L . step were used. The elasto-plastic analysis was supplemented by a
elastic - plastic ~
0L purely elastic solution also shown in the figure, Here the typical in-
. creasing postbuckling response of plates is recognized.
B 5.4 Cylindrical shell under Wind lLoad
Y |
s The buckling analysis of the closed cylindrical shell under wind load
G, i g J” I l I I I 1 ; ] { T (figure 10) studiedin[ 21] has been extended to the postbuckling range.
0.21 : c . o
— ; ; I . R a
} [ ; ‘ __L
3 T 5 5 h @
] |<—ﬁb/2—>| P:Gh? P 1.01
=240 N/mm’  b=4a=1680 mm , h=6mm T — . L
° ° ° 135° 1
E=210 kN/mm* |, u=03 ! 0 4 45 90 : 80 5
OO O - T - T T T N T .
10 200w [mm] 30 4
X ,10—
Figure 9: Buckling of a long plate

R=L/2 = 220 mm , h= O1OSmm
E=6.87-10" N/ mm? , 1 =03

The simply supported plate shown in figure 9 has an aspect ratio of

@ =1/4 andis loaded only on its middle part. The plate has an initial

geometrical imperfection, defined by a double sin-function with a Figure 10: Geometrv and lnad funstinn af o avlinAdniand alal
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The extremely thin structure with a radius to thickness ratio of over
2000 is simply supported at both ends. The vgriatiozm of the wind load
definedinfigure 10is taken as constant over the length of the cylinder,
The maximalload p at the stagnation point is normalized to the linear

buckling load of the shell under uniform pressure

0918 -£(8) _p N
" == __ 'R P = — (22)
lé_ L;L -0.657 P

One quarter of the shellis idealized by 2 x 18 bicubic 16 node elements,
Two elements of unequal length are used in the axial direction, while
the 18 elements in the circumferential direction are concentrated near
" the stagnation zone. The first load increment defined the basic step
size as p = 0.25. Both the perfect and an imperfect shell have been

analysed. Figure 11 shows the displacement pattern of one quarter of

I

Figure 11: Displacement pattern

the shell near the limit point. A failure mode with one half awave in
the axial direction and a few buckling waves in the circumferential
direction, located in the compression zone, is indicated. The post-
buckling minimum of the load-deflection diagram (figure 12) is about
60 % of the limit point. The imperfection assumed for the second
analysis corresponds to the failure mode of the perfect structure. The

maximum imperfectionamplitude is 2.5 times the wall thickness. The

P

load deflection path (figure 12) indicates a reduction of the limit load

to 68 % of that for the perfect shell. The postbuckling minima nearly

coincide. Tt should be noted that the example is numerically very
sensitive because of the extreme slenderness ratio and the localnature
of the failure mechanism. Inboth cases over 60 steps were necessary.

1.5

perfect shell

\\~O— o —

/L/ imperfect shell

054 / ]

OO T T L

Figure 12:  Load - deflection - diagram of a wind loaded shell

6. Conclusions

This study oniterative techniques for passing limit points allows the

following conclusions:

#* Suppressionof equilibrium iterations near the limit point may

be a useful procedure but requires very small load steps,

#* The method of artificial springs is based on numerical experi-

ence and trial solutions. For local failure it mav not be suc-



.(; e, o
P

o

* The displacement control method requires a proper selectionof

the controlling parameter. It fails in snap-back situations.

* The constant - arc - length method of Riks /Wempner seems to

be the most versatiletechnique, being advantageous inthe entire
load range.

Due to modifications of the original method the constraint equa-
tiondoes not need to be solved simultaneously with the equilib-
rium equations.

Automatic adjustment of the load step and acceleration schemes
»fnay further improve the performance. Only minor changes in
coding are necessary. Applying the modified Newton-Raphson
technique requires the storage of one additional vector., The

extra computer time is negligible.
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Appendix 1 The Artificial spring Method

i
According to figure 3 the vector of the total external loads G of the
v i
modified system is decomposed into the real load vector P and the

. . i
part resisted by the springs f .

6 - 'P + 't , (A1)

To retain the desired ratio of specified loads it is required that all
components of the real load can be obtained by one common '"'load-re-

. i
duction-factor' 'y

P ='y.'G (A2)
That is, all components of configuration i have the same ratio
'f ~ ,
‘Tﬁf; =1 -y 1=1,23 " n (A 3)

It follows that springs have to be attached to all loaded-degrees-of-
freedom and all spring stiffnesses are coupled. The spring stiffness

matrix € is defined by

f =c.'u (A 4)
Energy principles require € tobea symmetrical matrix (CkL = ch).
Equation (A 3) allows the elements et of the matrix to be determined
if one reference stiffness c11 is prescribed
v
in . iGt L
Cy = PNRY: Ci Ty (AS)
( G]) '
or if the reference load vector P is introduced
c .
c =—1L PP (A 6)
P; ,

The iteration equation, eq. (3 a), is modified to

(K + c)-au=P _+1f —F - ciy (A7)



i e, S
P

[
The ri_ .t hand side expresses the out-of-balance sorces. After itera-

tion (j» m + 1) the real loads are determined by eq. (A 2):

fT‘MP __l_’n~1 mi

G - with ™G ™ L p (A 8)

The "load-reduction factor' is obtained by eq. (A 3):

' C
m+l N T m
=1 - —1__ plmy . (A 9)
x mﬂ}\ . P12
It was found that an effective value of c11 is one which leads to
+1
0< ™y < 0.6 at the beginning of the analysis [ 7], [8].

Appendix IT: Iteration on a "Sphere"

The "sphere' with the center at m and the radius ds of the initial

tangent vector ?(1) (figure 13) is defined by

TO. FW o gs2o g (A 10)

A

Figure 13: Iteration on a "sphere'
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If the radius ‘ve</:’tor is feplaced by

oo o ) | (A11)
and eq. (16) is taken into consideration eq. (10)results in

a0 400 270 < (A 12)

or in matrix notation
auT( U 2.4ty AT 2 00) = 0 (a1

au () is expressed by eq. (13a). Then eq. (A 13) leads to a quadratic

constraint equation for the load parameter AX ) whichis the equivalent
to eq. (19)

alaA? s 2b A0 4 ¢ -0 | (A 14)
with the coefficients

a = 1 + (AU(J)I)TAU(‘)I

b - }\(l) + (AU(’)I)T(AU(J)H*‘ u(i) ) (A 15)

T .
C = (auWI)(4uW T , .40
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