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Assignment #2: Nonlinear geometric analysis of structures 

 
Q1 (65 points): Extend the program you wrote for Assignment #1 to conduct nonlinear 
analysis of frame structures by considering nonlinear geometric effects. The program can be 
written at any programming language of your preference. Your program should consider the 
following: 
 

• Linear and corotational geometric transformation 
• Load and displacement control for load application 

 
Your program should be able to determine the nodal displacements, member forces and 
support reactions for planar frames by nonlinear analysis. Assume that the members are all 
prismatic, i.e., the axial and flexural rigidities of the members are constant along their length.  
 
Q2 (35 points): Use your program from Q1 to compute the following: 
 

1. The critical load, 𝑃!" and the buckled shape of the frame shown in Figure 1. 
2. What is the horizontal displacement, 𝛿!", at which the frame reaches 𝑃!"? 
3. Compare the moment diagram for linear and nonlinear analyses for 𝑃 = 0.5𝑃!".  
4. Compare the total base shear versus lateral displacement equilibrium path based on 

the linear and the corotational transformation. 
5. Compare the total base shear versus lateral displacement equilibrium paths when 

considering load and displacement control. Comment on your results based on the 
choice of the analysis used. 

 
Figure 1. Planar frame 
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Solution: 
To determine the critical load, the following steps are used: 
1) Define the member properties (E, I, A and l) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees 
of freedom.  In this case, each column is divided into 50 2D elastic beam-column elements, 
while the beams are modeled with a single 2D elastic beam-column element 
3) Assemble the initial structure stiffness matrix 𝑲#$"%!$%"&  
4) Define the boundary conditions, the external loads (i.e., apply the reference load 𝑷"&'), the 
fixed and the free degrees of freedom of the problem 
5)  Compute the structure displacements 𝒗 corresponding to the refence load 𝑷"&': 

𝒗' = *𝑲#$"%!$%"&,'+
)*𝑷"&' 

Where the subscript 𝑓 denotes the free degrees of freedom of the system 
6) Assemble the structure material and geometric stiffness matrices 𝑲&,#$"%!$%"& and 
𝑲+,#$"%!$%"&. With a loop, go over all elements: 
 6.1) Determine the element displacement vector in the local reference frame 𝒖 

𝒖&,&- = 𝑻&,&-𝒗&,&- 
Where 𝑻&,&- is the transformation matrix between local and global degrees of 
freedom and the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚. 
6.2) Using the corotational formulation, compute the element displacements in the 
basic reference frame 𝒖2 = [𝑢5*, 𝑢5., 𝑢5/]0. The following equations from Slide 32 of the 
lecture notes of Week #4 are used: 

𝑢5* = 𝑙1 − 𝑙 
𝑢5. = 𝒖(3) − 𝛽 
𝑢5/ = 𝒖(6) − 𝛽 

With  

𝑙1 = >*𝑙 + 𝒖(4) − 𝒖(1)+. + *𝒖(5) − 𝒖(2)+. 

𝛽 = arctan H
𝒖(5) − 𝒖(2)

𝑙 + 𝒖(4) − 𝒖(1)I 

  
6.3) Compute the element internal forces in the basic reference frame  𝒒2: 

𝒒2 = 𝑲2𝒖2 
6.4) Determine the transformation matrix 𝑳 from the basic to the local reference 
frame. The following equation from Slide 34 of the lecture notes of Week #4 are used:  

𝑳 = L
−𝑐 −𝑠 0 𝑐 𝑠 0

−𝑠/𝐿1 𝑐/𝐿1 1 𝑠/𝐿1 −𝑐/𝐿1 0
−𝑠/𝐿1 𝑐/𝐿1 0 𝑠/𝐿1 −𝑐/𝐿1 1

Q 

Where  
𝑐 = cos(𝛽) and 𝑠 = sin(𝛽) 

6.5) Determine the element geometric stiffness matrix in the local reference frame 
𝑲+,&,&- . The following equations from Slide 34 of the lecture notes of Week #4 are 
used: 

𝑲!,#$#% =
𝑞$&
𝑙'

⎣
⎢
⎢
⎢
⎢
⎡ 𝑠

( −𝑐𝑠 0 −𝑠( 𝑐𝑠 0
−𝑐𝑠 𝑐( 0 𝑐𝑠 −𝑐( 0
0 0 0 0 0 0
−𝑠( 𝑐𝑠 0 𝑠( −𝑐𝑠 0
𝑐𝑠 −𝑐( 0 −𝑐𝑠 𝑐( 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

+
𝑞$( + 𝑞$)
𝑙'(

⎣
⎢
⎢
⎢
⎢
⎡ −2𝑠𝑐 𝑐( − 𝑠( 0 2𝑠𝑐 −𝑐( + 𝑠( 0
𝑐( − 𝑠( 2𝑐𝑠 0 −𝑐( + 𝑠( −2𝑐𝑠 0
0 0 0 0 0 0
2𝑠𝑐 −𝑐( + 𝑠( 0 −2𝑠𝑐 𝑐( − 𝑠( 0

−𝑐( + 𝑠( −2𝑐𝑠 0 𝑐( − 𝑠( 2𝑐𝑠 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤
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6.6) Assemble the structure material and geometric stiffness matrices 𝑲&,#$"%!$%"& and 
𝑲+,#$"%!$%"& with the element quantities 

7) Determine the critical load multiplier 𝜆!"2$: 
7.1) Solve the following eigenvalue problem  

V𝑲&,#$"%!$%"&,' + 𝜆𝑲+,#$"%!$%"&,'W𝚫' = 𝟎 
7.2) The critical load multiplier 𝜆!"2$ corresponds to the minimum of all eigenvectors 
𝜆 
7.3) The critical load 𝑷!"2$ is then given by  

𝑷!"2$ = 𝜆!"2$𝑷"&' 
For the number of elements discussed above, the following value is obtained: 

𝑷!"2$ = 4803.4	𝑘𝑁 
8) The eigen vectors 𝚫' associated with the critical load multiplier 𝜆!"2$ are of the nodal 
displacements of the buckled structure. The following buckled shape is obtained: 

 
Figure 2. Buckled shape 

 
 
 
To compute the base shear versus lateral displacement equilibrium path, the following steps 
are used: 
1) Define the member properties (𝐸, 𝐴, 𝐼 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees 
of freedom. In this case, each column is divided into two 2D elastic beam-column elements, 
while the beams are modeled with a single 2D elastic beam-column element 
3) Assemble the initial structure stiffness matrix 𝐊#$"%!$%"&  
4) Define the boundary conditions, the fixed and the free degrees of freedom of the problem, 
the external loads (i.e., apply the reference load 𝑭2&3$) 
5) Initialize the variables used within the displacement-control and load-control procedures 
 

𝜆 = 0, 𝒗 = 𝟎 
 
6) Define the parameters defining the displacement-control and load-control algorithms: 
For displacement-control: 
 - The dof controlling the displacement 𝑞45' 
 - The final displacement at 𝑞45':  𝑣!,-63 
 - The number of steps 𝑛$5$ 
 - At each load step, the increment in displacement is given by Δv5 = 𝑣!,-63/𝑛$5$	 
 - The tolerance 𝑡𝑜𝑙 

- The maximum number of iterations for each iterations of the displacement control 
loop 𝑖789 

For load-control: 
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 - The maximum value of the load multiplier:  𝜆-63 
 - The number of steps 𝑛$5$ 
 - At each load step, the increment in external force is given by Δλ5 = 𝜆-63/𝑛$5$	 
 - The tolerance 𝑡𝑜𝑙 

- The maximum number of iterations for each iterations of the displacement control 
loop 𝑖789 

7) For the displacement or load increment 𝑛, perform the Newton-Raphson iterations 
7.1) For 𝑖 = 1, set: 
𝜆1,2:* = 𝜆1)*, 𝐅21$

1,2:* = 𝐅21$1)*, 𝐊#$";<=;>?
1,* = 𝐊#$";<=;>?1)*  and 𝐯1,* = 𝐯1)* 

 
7.2) Determine 𝛿𝐯"

1,2and 𝛿𝐯@
1,2: 

𝛿𝐯@,'
1,2=	*𝐊#$"%!$%"&

1,2)* +
)*
𝐅5&3$	

𝛿𝐯",'
1,2 = −*𝐊#$"%!$%"&

1,2)* +
)*
𝐅%1A
1,2)* 

Where the subscript 𝑓 denotes the free degrees of freedom of the system 
7.3) Compute the increment in the load multiplier 𝛿𝜆1,2: 
For load control: 

𝛿𝜆1,2 = n𝛥𝜆̅
1	𝑖𝑓	𝑖 = 1
0	𝑒𝑙𝑠𝑒

 

 
For displacement control: 

𝛿𝜆1,2 =

⎩
⎪
⎨

⎪
⎧
Δv51

𝛿𝐯@
1,2 if	𝑖 = 1	(𝑛𝑜𝑡𝑒, 	𝛿𝐯"

1,* = 𝟎)

−
𝛿𝐯"

1,2

𝛿𝐯@
1,2 	else

 

 7.4) Compute the increment in structure displacements Δ𝐯1,2: 
𝛿𝐯1,2 = 𝛿𝜆1,2𝛿𝐯@

1,2 + 𝛿𝐯"
1,2 

 7.5) Update the structure displacements and the load multiplier: 
𝐯1,2 = 𝐯1,2)* + δ𝐯1,2 
𝜆1,2 = 𝜆1,2)* + Δ𝜆1,2 

7.6) Assemble the structure material and geometric stiffness matrices 𝐊&,#$"%!$%"&
1,2  and 

𝐊+,#$"%!$%"&
1,2 , as well as the structure resisting force vector 𝐅21$

1,2 . With a loop, go over 
all elements: 

7.6.1) Determine the element displacement vector in the local reference frame 
𝒖1,2 

𝐮&,&-
1,2 = 𝐓&,&-𝐯&,&-

1,2  
Where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚  
7.6.2) Using the linear or the corotational formulation for the 2d elastic beam-
column element, compute the element displacements in the basic reference 
frame 𝐮2 
7.6.3) Compute the element internal forces in the basic reference frame  𝐪21,2 : 

𝐪21,2 = 𝐊21,2𝐮21,2 
7.6.4) Determine the transformation matrix 𝐋1)* from the basic to the local 
reference system	 
7.6.5) Compute the element internal force vector in the local reference frame: 
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𝐐&,&-
1,2 = *𝐋1,2+0𝐪21,2 

 
7.6.6) Determine the element geometric stiffness matrix in the local reference 
frame 𝐊+,&,&-

1,2   
7.6.7) Assemble the structure material and geometric stiffness matrices 
𝐊&,#$"%!$%"&
1,2  and 𝐊+,#$"%!$%"&

1,2  as well as the structure internal force vector 𝐅21$
1,2  

with the element quantities 
7.7) Compute the unbalanced load vector 𝐅%1A

1,2 = 𝐅21$
1,2 − 𝐅&3$1  

7.8) Check if the Newton-Raphson procedure has converged. In the source code, 
convergence is achieved once 

~𝑭%1A,'
1,2 ~ < 𝑡𝑜𝑙 

7.9) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1 and go back 
to step (7.2) 

 
The following figure compares the total base shear versus lateral displacement equilibrium 
path based on the linear and the corotational transformation:  
 

 
Figure 3. Total base shear versus lateral displacement equilibrium paths 

 
From this figure, it can be seen that since the equilibrium path does not exhibit a snap-
through response, both displacement-control and load-control will give the same equilibrium 
path. 
 
When considering linear geometry, the frame reaches 𝑃!" at a horizontal displacement 𝛿!" =
237.1mm. When considering nonlinear geometry with the corotational formulation, the 
frame reaches 𝑃!" at a horizontal displacement 𝛿!" = 1344.0mm. 
 
The internal forces (i.e., normal and shear forces and the bending moment) are obtained by 
reading the element resisting force vector in the local reference frame  𝐐&,&-

1,2 . 
Figures 4 and 5 below compare the bending moment diagrams for linear and nonlinear 
analysis for 𝑃 = 0.5𝑃!" . Figure 4 shows the diagram for linear geometry, while Figure 5 
shows the diagram for nonlinear geometry. 
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Figure 4. Bending moment diagram linear geometry (units: kNm)  

 
 
 

 
Figure 5. Bending moment diagram nonlinear geometry (units: kNm)  


