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In-class Exercise Week #5: Iterative Techniques and Corotational Transformation

Exercise #1:
Consider the following column:

A=1.27-10*mm?,1 = 3.66 - 107mm?,E = 200,000MPa

.
S A
4m
l Ve

Figure 1.1. Column under axial and lateral loading

Analyze the behavior of the system for the following cases:
1. a = 0 (determine the critical load)

Using load control and nonlinear geometry (with the corotational formulation), determine the
secondary equilibrium path of the structure when:

2. a=0.05

3. a = 0.05 and P directed upward

Hint: for 2d elastic beam elements, the element stiffness matrix in the basic reference frame
K is given by:

rEA 0 0 1
L
- 4E1 2EI
K= O -
L L
0 2E1 A4EI
L L L
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Solution:

In this solution, the column is modeled using a single 2D beam-column element. Similar
procedures can be applied when more beam-column elements are used to model the column.
The key difference lies in assembling the resisting force vectors and stiffness matrices of all
elements to form the global internal force vector and global stiffness matrix for the structure.

a) For ¢ = 0, to determine the critical load, the following steps are used:

1) Define the member properties (E, I, A and 1)

2) Define the connectivity matrix and the mapping matrix between local and global degrees
of freedom

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element,
and therefore corresponds to the global Y-axis

4) Assemble the initial structure stiffness matrix Kgipycrure. The following matrix is
obtained:

1.37 - 103 0 —2.75-10° —1.37-103 0 —2.75 - 106
0 6.35 - 10° 0 0 —6.35-10° 0
K _[-2.75-10° 0 7.32-10°  2.75-10° 0 3.66 - 10°
structure | _137.103 0 2.75-106  1.37-103 0 2.75 - 106
0 —6.35 - 10° 0 0 6.35 - 10° 0
—2.75 - 10° 0 3.66-10°  2.75-10° 0 7.32 - 10°

5) Define the boundary conditions, the external loads (i.e., apply the reference load P™¢/ ),
the fixed and the free degrees of freedom of the problem
6) Compute the structure displacements v corresponding to the refence load P7¢/:

-1
Vr = (Kstructure,f) pref

Where the subscript f denotes the free degrees of freedom of the system

The following displacement vector is obtained:

0
0
- 0
v=10"¢-
0
—1.575
0
7) Assemble the structure material and geometric stiffness matrices K, siryceure and
Ky structure- With a loop, go over all elements:
7.1) Determine the element displacement vector in the local reference frame u
Ueiem = LetemVelem
Where the subscript elem denotes the degrees of freedom corresponding to element

elem. For a single element, the following vector is obtained:
0

0

0
—1.575

0

0
7.2) Using the corotational formulation, compute the element displacements in the

basic reference frame U = [#i, U,, U3]7. The following equations from Slide 32 of the
lecture notes of Week #4 are used:
ﬁl = ln - l

U =u3)—-p

u=10"°-
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Uz =u(6) -
With

L, = J (I+u@® —u®)’ + (u@) - u@))’

_ arct u(5) —u(2)
B = arctan| R T ain)

For a single element, the following vector is obtained:

—1.575
u=10"°- ( 0 )
0

7.3) Compute the element internal forces in the basic reference system, q:
q=Ku
For a single element, the following value is obtained:

o

7.4) Determine the transformation matrix L from the basic to the local reference
system. The following equation from Slide 34 of the lecture notes of Week #4 are
used:

—C -s 0 c s 0
L= [—S/Ln c/L, 1 s/L, —c/Ln 0]
-s/L, c¢/L, 0 s/L, -—c/L, 1
Where
¢ = cos(f) and s = sin(f)

For a single element, the following matrix is obtained:
-1 0 0 1 0 0
L=|0 25-100* 1 0 -25-107* 0
0 25-100* 0 0 —-25-107* 1

7.5) Determine the element geometric stiffness matrix in the local reference frame
Ky ciem - The following equations from Slide 34 of the lecture notes of Week #4 are

used:
s2 —¢s 0 —s? ¢ 0 —2sc c?—-5s2 0 2sc —c?2+s5%2 0
|mes 20 es = 0o -5 2cs 0 —c?+s?> —2cs 0
K q1] 0 0 0 0 0 0 + q; +qs 0 0 0 0 0 0
getem = 1 [_s2 ¢s 0 s —cs O 12 2sc —c?+s?> 0 —2sc c2—s2 0
¢s —c> 0 —cs ¢ 0 —c? + 52 —2cs 0 ¢?-5s? 2cs 0
0 0 0 0 0 0 0 0 0 0 0 0
For a single element, the following value is obtained:
0 0 0 0 0 07
0 —250 0 0 250 O
_ 0 0 0 0 0 0
Kg etem = 10 .
' 0 0 0 0 0 0
0 250 0 0 -—-250 0O
L0 0 0 0 0 0
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7.6) Assemble the structure material and geometric stiffness matrices K sty ceure and
Ky structure With the element quantities

8) Determine the critical load multiplier A, :
8.1) Solve the following eigenvalue problem

[Ke,structure,f + AKg,structure,f]Af =0

8.2) The critical load multiplier A.,.;; corresponds to the minimum of all eigenvectors
A
8.3) The critical load P,,;; is then given by, P.;y = A P™¢/

For a single element, the following value is obtained, P,,;; = 1372 kN

b) To determine the secondary equilibrium path for ¢ = 0.05, the following steps are used:

1) Define the member properties (E, I, A and 1)

2) Define the connectivity matrix and the mapping matrix between local and global degrees
of freedom

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element,
and therefore corresponds to the global Y-axis

4) Assemble the initial structure stiffness matrix Kgipycture- The following matrix is
obtained:

1.37 - 103 0 —2.75-10° —1.37-103 0 —2.75 - 10°
0 6.35 - 10° 0 0 —6.35 - 10° 0
K _[-2.75-10° 0 7.32-10°  2.75-10° 0 3.66 - 10°
structure | _137.103 0 2.75-106  1.37-103 0 2.75 - 106
0 —6.35 - 10° 0 0 6.35 - 10° 0
—2.75 - 10° 0 3.66-10°  2.75-10° 0 7.32 - 10°

5) Define the boundary conditions, the external loads (i.e., apply the reference load F™¢/ ), the
fixed and the free degrees of freedom of the problem

6) Initialize the variables used within the Newton-Raphson scheme: A = 0,v =0
Where A denotes the load multiplier (i.e. F, = AF"¢/)
7) Define the parameters for the load-control algorithm:
- The final external load Ffof = AtotFTef
- The number of steps to apply the final external load: 1.,
- At each load step, the increment in external force is given by A1 = A%t /n,,
- The tolerance tol
- The maximum number of iterations per iteration of the Newton-Raphson scheme
lmax
For the solution procedure described herein, the following values are used: A*°* = 1100000,
F/ =[000a—10]",n,, = 100 and tol = 1e — 4

8) For load increment n, perform the Newton-Raphson iterations:
8.1) For i = 1, set all vectors to the previously converged step: AF2=" = AAFTef,

ext
ni=1 _ pn-1 n,1 _ wn—-1 nl _ yn—1
Fint - Fint > Kstructure - Kstructure and v =V )
8.2) Compute the incremental structural displacement vector, Av™*:
, , -1
n,t __ n, n
AVf - (Kstructure,f) AFext
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Where the subscript f denotes the free degrees of freedom of the system. The following
displacement vector is obtained for the first step and first iteration of the Newton-Raphson

scheme:
0

0
0
1.60
—0.017
—6.00-107*

Avil =

8.3) Update the structure displacements for the current step and current iteration:
Vn,i — vn,i—l + Avn,i
The following displacement vector is obtained:
0
0
11 _ 0
1.60
—-0.017
—6.00-107%
8.4) Assemble the material and geometric stiffness matrices of the entire structure

. . n,i n,i :
(one element in this case) K¢'serycrure a0 Ky cryres Tespectively, as well as the

structure resisting force vector F:,llz With a loop, go over all elements (if more):
8.4.1) Determine the element displacement vector in the local reference frame
un,i
n,i _ n,i
Uelem = Telemvelem

Where the subscript elem denotes the degrees of freedom corresponding to

element elem. For a single element, the following vector is obtained:
0

0
0
—0.017
1.60
—6.00-107*

8.4.2) Using the corotational geometric formulation (or the linear geometric
formulation), compute the element displacements in the basic reference
system U = [, 1y, U3]". For the corotational formulation, the following
equations from Slide 32 of the lecture notes of Week #4 are used:
ﬁTL,i _ lTL,i _ l
7 1 - . n .
@' = uri(3) - pr
@ = uri(e) - pr
With

= J (L +uri(4) — uri(D)” + (uni(5) — uni(2))’

un,i(s) _ un,i(z)
[+ u™i(4) — u"'i(1)>

ni— arctan<

For a single element, the following vector is obtained using the corotational
formulation:
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. ~0.017
u™i = (4.00-107*

2.00-107*

8.4.3) Compute the element internal forces in the basic reference frame q™* :
ﬁn,i — Kn,iﬁn,i
For a single element, the following value is obtained:
—1.08 - 10*
q-' = ( 2.20 - 10° )
18.82

8.4.4) Determine the transformation matrix "~ from the basic to the local
reference system. The following equation from Slide 34 of the lecture notes of
Week #4 are used for the corotational formulation:
—c -s 0 c s 0
Lt = [—S/Ln c/L, 1 s/L, —c/Ln O]
-s/L, c/L, 0 s/L, —c/L, 1
Where
L, = L, ¢ = cos(B™) and s = sin(B™)

For a single element, the following matrix is obtained:
' -1 401-107* 0 1 —4.01-107* 0
L = [1.00 -1077 250-10* 1 -1.00-10"7 -2.50-10"* 0]
1.00-1077 250-107* 0 —-1.00-10"7 —-250-10"* 1

8.4.5) Compute the element internal force vector in the local reference system:
; \T__. .
Qiem = (1) @

For a single element, the following vector is obtained:
1.08 - 10*
545.69
Qhi = 2.20 - 10°
etem | —1.08 - 10*
—545.7
18.82

8.4.6) Determine the element geometric stiffness matrix in the local reference

n,' . . .
frame K{"; .., - The following equations from Slide 34 of the lecture notes of
Week #4 are used:
s2 —¢s 0 —s? ¢ 0 —2sc c?—-5s2 0 2sc —c?2+s% 0
|mes 20 s = 0o 0 |c*F-s? 2cs 0 —c?+s?> —2cs 0
K q1] 0 0 0 0 0 0 + q; +qs 0 0 0 0 0 0
gelem = 1 [_s2 ¢s 0 s —cs O 12 2sc —c?+s?> 0 —2sc c2—s2 0
¢s —c> 0 —cs ¢ 0 —c? + 52 —2cs 0 ¢?-5s? 2cs 0
0 0 0 0 0 0 0 0 0 0 0 0

For a single element, the following value is obtained:
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1.10-107* 014 0 -1.10-10"* —0.14 0

014  —-270 0  —0.14 270 0

K 0 0 0 0 0 0
gelem =1110-10™* —0.14 0 1.10-107* 0.14 0
—0.14 270 0 0.14 ~2.70 0

L0 0 0 0 0 0

8.4.7) Assemble the structure material and geometric stiffness matrices

n,i n,i . n,i
Ke'structure and Kg,structure as well as the structure internal force vector F;,;

with the element quantities

8.5) Compute the unbalanced load vector F/%, = F/:! — F%,

For a single element, the following value is obtained:
—545.69

1.08 - 10*
2.20 - 10°
—4.31
203.72
18.82

ni __
Funb -

8.6) Check if the Newton-Raphson scheme has converged. In source code provided in
the solution with MATLAB, convergence is achieved once:

IF5sz | < tol
8.7) If iteration i has converged, go to next load step n, else seti = i + 1 and AF:,’Cit =
—F ]1c and go to the next step

Figure 1.2 compares results obtained by neglecting the second-order geometric effects
(termed ‘Linear’) with those considering geometric nonlinearities using the corotational
formulation (termed ‘Corotational’). Notice that the results are practically identical only
when the lateral displacement is less than about 50mm.

1200
1000

8001

4 — Linear
== == == == (orotational

_Zi 600}
=B
400+

200

200 400 600 800

uy [mm]

Figure 1.2. Effects of geometric transformation on member response under compressive load

¢) The same approach discussed above is used to determine the secondary equilibrium path
for ¢ = 0.05 and a tensile axial load. In this case, tension is anticipated to create a stable
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equilibrium path as the column is in traction. Figure 1.3 compares the results by neglecting
the second-order geometric effects (termed ‘Linear’) with those considering geometric
nonlinearities using the corotational formulation (termed ‘Corotational’):

1200 - . .

1000+

400F —— Linear

== == == = (Corotational

0 50 100 150
u, [mm)]

Figure 1.3. Effects of geometric transformation on member response under tensile load
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Exercise #2:

Consider the following frame:
- Members ab and bc: A = 2.50 - 10*mm?,I = 6.36 - 108mm?,E = 200,000MPa
- Members bd and ce: A = 1.76 - 10*mm?,I = 8.61 - 108mm?,E = 200,000MPa

P
aPy e

il A\

e 4m —

Figure 2.1. Planar frame under axial and lateral loading

Analyze the behavior of the system for the following cases:

1. a = 0 (determine the critical load)
Using load control and the corotational formulation, determine the secondary equilibrium
path of the structure when:

2. a=0.01
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Solution:
In this solution, each member is modeled using a single 2D elastic beam-column element.

a) For a = 0, to determine the critical load, the following steps are used:

1) Define the member properties (E, I, A and [)

2) Define the connectivity matrix and the mapping matrix between local and global degrees
of freedom. The figure below shows the global degrees of freedom used for the structure

Figure 2.2. Global degrees of freedom

The mapping matrix numEq is as follows:

123 4 5 6
numEq=|* 5 6 7 8 9
4 5 6 10 11 12
7 8 9 13 14 15

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element

4) Assemble the initial structure stiffness matrix Kgipycrure

5) Define the boundary conditions, the fixed and free degrees of freedom, and the external
loads i.e., apply the reference load:

P =[0000000—-10000000]"

6) Compute the structure displacements v corresponding to the refence load P7¢/:
-1
Vr = (Kstructure,f) pref

where the subscript f denotes the free degrees of freedom of the system

The following displacement vector is obtained:
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0

0
3.33-107*
—2.00-107°
—1.20-107°
3.33-1071°
—3.60-107°
v=| —-2.00-10"°
4.67 - 10710
—2.00-107°

0
2.84-10710
—3.60-107°

0
5.16 - 10710

7) Assemble the structure material and geometric stiffness matrices K, sryceure and
Ky structure- With a loop, go over all elements:
7.1) Determine the element displacement vector in the local reference frame u

Ueiem = LetemVelem
where the subscript elem denotes the degrees of freedom corresponding to the

element elem.

7.2) Using the corotational formulation, compute the element displacements in the
basic reference frame U = [#i, U,, U3]7. The following equations from Slide 32 of the
lecture notes of Week #4 are used:

a,=1,—1
u, =u3)—-p
uz =u(6) —p

With

L, = J (1+u@® —u®)” + (uG) —u(@))’

_ arct u(5) —u(2)
B = arctan| R Tain

7.3) Compute the element internal forces in the basic reference frame q:
q=Ku
7.4) Determine the transformation matrix L from the basic to the local reference
system. The equation from Slide 34 of the lecture notes of Week #4 is used:
—C -s 0 c s 0
L= [—S/Ln c/L, 1 s/L, —c/Ln 0]

-s/L, c¢/L, 0 s/L, -—c/L, 1

where

¢ = cos(B) and s = sin(p)

7.5) Determine the element geometric stiffness matrix in the local reference frame
Ky ciem - The following equations from Slide 34 of the lecture notes of Week #4 are
used:

CIVIL 449: Iterative Techniques and Corotational Transformation Prof. Dr. Dimitrios G. Lignos, EPFL. 11



s2 —¢s 0 —s? ¢ 0 —2sc
—cs ¢ 0 ¢ —-c* 0 c?—s?
K 4| o 0 0 0 0 0|, 42+ a3 0
gelem = 1 [_s2 ¢s 0 s —cs O 12 2sc
¢s —c> 0 —cs ¢ 0 —c? + 52
0 0 0 0 0 0 0

c?-5s2 0 2sc —c?2+s5%2 0
2cs 0 —c?+s? —2cs 0

0 0 0 0 0
—c?+s%2 0 =2sc c?—5s5%2 0
—2cs 0 (¢?-5s? 2cs 0
0 0 0 0 0

The following quantities are obtained for the four elements of the planar structure:

-Element ab:
0
0
w. = 3.33-10710
ab —-1.20-1076
2.00- 1076
3.33-10710
-1.20
U, =105 0
0
—1.00
qab: 0
0
-1 0 0 1 0 0
L,=|0 167-100* 1 0 —-167-10"* 0
0 167-107% 0 0 —-1.67-10% 1
0 0 0 0 0 01
0 —167 0 0 167 0
_ 10—+ |0 0 0 0 0 0
Kgap =10 0 0 0 0 0 0
0 167 0 0 —167 0
L0 0 0 0 0 0
-Element bc:
-1.20
2.00
_ 0
Upe =107°- | 00
3.60
0
—0.80
U, =107¢-| 0.00
0.00
—1.00
Qv = | —4.26
4.26
-1 0 0 1 0 0
L,,=10"*-{0 250 1 0 -250 0
0 250 0 0 —-250 1
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0 0 0 0 0 07
0 —250 0 0 250 O
_ 10 |0 0 0 0 0 0
Kope =101 0 00 0 o
0 250 0 0 —250 O
n 0 0 0 0 0-
-Element bd:
—2.00-107°
—-1.20-107¢
w. = | 333-107%°
ba —2.00-107°
0
2.84 10710
0
ﬁbd - 10_11 . 330
—1.65
0
qbd: 426
0
-1 0 0 1 0 0
L,;,=10"*-{0 250 1 0 —-250 0
0 250 0 0 —-250 1
0 266 0 0 —2.66 0
2.66 0 0 —2.66 0 0
_ 07| 0 0 0 0 0 0
Kgpa =10 0 -266 0 0 266 0
—2.66 0 0 266 0 0
0 0 0 0 0 0-
-Element ce:
—3.60-107°
—2.00-107°
w. = | 467-1071°
ce —3.60-107°
0
5.16 - 10710

0
U, =10"11.( -3.30
1.65

0
G = (—4.26)
0

CIVIL 449: Iterative Techniques and Corotational Transformation Prof. Dr. Dimitrios G. Lignos, EPFL 13



-1 0 0 1 0 0
Le=|0 250-10* 1 0 -250-10"* 0
0 250-100* 0 0 -250-10"* 1

0 —2.66 0 0 2.66 0
—2.66 0 0 2.66 0 0

_ a7 | O 0 0 0 0 0
Kgce =10 0 266 0 0 —2.66 0
2.66 0 0 —2.66 0 0

0 0 0 0 0 0.

7.6) Assemble the structure material and geometric stiffness matrices K¢ s¢ryceure and
Ky structure With the element quantities

8) Determine the critical load multiplier A,.;;:
8.1) Solve the following eigenvalue problem

[Ke,structure,f + AKg,structure,f]Af =0

8.2) The critical load multiplier A.,;; corresponds to the minimum of all eigenvectors
A
8.3) The critical load P,,;; is then given by: P,y = AziePTS

For a single element, the following value is obtained: P.,.;; = 7300 kN

b) To determine the secondary equilibrium path for ¢ = 0.01, the following steps are used:

1) Define the member properties (E, I, A and [)

2) Define the connectivity matrix and the mapping matrix between local and global degrees
of freedom. The figure below shows the global degrees of freedom used for the structure

Figure 2.3. Global degrees of freedom

The mapping matrix numEq is therefore given by
1 2 3 4 5 6

o pa |45 6 7 8 9
914 5 6 10 11 12
7 8 9 13 14 15

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element,
and therefore corresponds to the global Y-axis

4) Assemble the initial structure stiffness matrix Kgspycture-
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5) Define the boundary conditions, the fixed and the free degrees of freedom of the problem,
and the external loads i.e., apply the reference load:
F/ =[0000.01000.001—10000000]7
6) Initialize the variables used within the Newton-Raphson scheme
A=0,v=0
where 1 denotes the load multiplier (i.e. F,,, = AF"¢/)

7) Define the parameters defining the load-control algorithm:
- The final external load Ffof = AtotFTef
- The number of steps n;,;
- At each load step, the increment in external force is given by A1 = A%t /n,,
- The tolerance tol
- The maximum number of iterations for each iterations of the Newton-Raphson
scheme, i,.«
For the solution procedure described herein, the following values are used: A*°* = 4000000,
Ngor = 100 and tol = 1e — 4
8) For load increment n, perform the Newton-Raphson iterations

8.1) Fori = 1, set, AF.L™1 = AJF7ef FLI=1 = gt K™

— rn—-1
ext s> tint structure — Kstructure and

vl = yn-1
8.2) Compute the increment in structure displacements Av™:
, , -1
Av = (K3, ) "AFZ,

structure,f

Where the subscript f denotes the free degrees of freedom of the system. The
following displacement vector is obtained:

0
0
-1.38-107*
0.60
—0.046
—2.44-107°
0.65
Avil = —0.078
5.80-10°°
0.60
0
295-1075
0.65
0
2.62-107°

8.3) Update the structure displacements:
vyl = yhi-1 + Ayl

The following displacement vector is obtained:
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0
0
—1.38-107*
0.60
—0.046
—2.44-1075
0.65
vil = —0.078
5.80-107°
0.60
0
2.95-1075
0.65
0
2.62-107° ,
8.4) Assemble the structure material and geometric stiffness matrices K¢ g/ ceure and

n,i
Kg,structure >
all elements:

8.4.1) Determine the element displacement vector in the local reference
system, u™t

n,i
int*

as well as the structure resisting force vector F.’.. With a loop, go over

n,i _ n,
Ugrom = Telemvelem

where the subscript elem denotes the degrees of freedom corresponding to
element elem.

8.4.2) Using the corotational or the linear formulation, compute the element
displacements in the basic reference frame U = [iiy,1,,13]7. For the
corotational formulation, the following equations from Slide 32 of the lecture
notes of Week #4 are used:
ut =0t -1

@' = uri(3) - pr

@ = uri(e) - pr
With

lZ'i — \/(l + uni(4) — u"'i(l))z n (u”'i(S) — un,i(z))Z

i u™i(5) — u™(2)
p = arctan ( — u™i(4) — uri(1)

8.4.3) Compute the element internal forces in the basic reference system, q™* :
ﬁn,i = Knight

8.4.4) Determine the transformation matrix "~ from the basic to the local

reference frame. The equation from Slide 34 of the lecture notes of Week #4 is

used for the corotational formulation:

—C -s 0 c s 0
Lt = [—S/Ln c/L, 1 s/L, —c/Ln O]
-s/L, c/L, 0 s/L, -—c/L, 1
Where
L, = L ¢ = cos(B™) and s = sin(B™)
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8.4.5) Compute the element internal force vector in the local reference frame:
: T«
Qe = (L) @

8.4.6) Determine the element geometric stiffness matrix in the local reference

n,i
frame K gelem

Week #4 are used:

. The following equations from Slide 34 of the lecture notes of

s2 —¢s 0 —s? ¢ 0 —2sc c?-5s2 0 2sc —c?2+s%2 0
. —cs ¢ 0 ¢ —-c* 0 . czgsZ 2(c)s g —c20+s2 —%cs g
Ky ctem q_n—(lz cos 8 502 —(z‘s g+qT 2sc —c?+s?> 0 —2sc c2—s?> 0
¢s —c> 0 —cs ¢ 0 —c? + 52 —2cs 0 ¢?-5s? 2cs 0
0 0 0 0 0 0 0 0 0 0 0 0
The following quantities are obtained for the four elements:
-Element ab:
0
0
utl = —-1.38-107*
ab —0.046
—0.60
—2.44-107°
—0.0461
uy = (—3.77 : 10—5>
7.55-107°
—3.84-10%
ﬁi’,}=( 97.53 )
4,80 - 10°
-1 9.99-107° 0 1 —-9.99-10"° 0]
Ly, = [1.66-10‘8 1.67-107% 1 —1.66-10"% —1.67-107% 0
1.66-1078 1.67-107* 0 -166-10"8% —-1.67-10"* 11
266-107> 1.33-107! 0 —-2.66-10"° —1.33-10"! 0]
1.33-1071 —6.40 0 —1.33-1071 6.40 0
KM = 0 0 0 0 0 0
gab —1_266-10"° -1.33-10"! 0 266-107° 1.33-10"! 0
-1.33-1071 6.40 0 133-1071 —6.40 0
0 0 0 0 0 0
-Element bc:
—0.046
—0.60
1,1 _ —2.44-107°
be —0.078
—0.65
5.80-107°
—0.0316
u,l = (—1.09 : 10—5>
1.09-107°
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~3.96 - 10*
@l =(-160-10°

1.76 - 10°
L -1 1.35-1075 0 1 —1.35-1075 0]
Ly, =(337-10"° 250-10™* 1 -3.37-10"° —250-10"%* 0
3.37-107° 250-107% 0 -3.37-10"° —250-10"% 1.
2.70-10¢  9.99.102 0 —270-10"% —9.99-10~2 0]
9.99 - 1072 —9.89 0 —9.99-1072 9.89 0
K 0 0 0 0 0 0
gbc T 1_270-10"® —9.99-10"2 0 2.70-10"% 9.99.10"2 0
—9.99.1072 9.89 0 9.99-.1072 —9.89 0
0 0 0 0 0 04
-Element bd:
0.60
—0.046
w = —2.44-1075
bd 0.60
0
2.95-1075
2.65-1077
u,;=|-359-10"°
1.80 - 1075
0.23
q,; = | —4.64-106
1.32-107*
L -1 —-1.15-105 0 1 1.15-1075 0
Ly,;=|—288-10"° 250-10™* 1 2.88-10"° —250-10"* 0

—2.88-107° 250-107* 0 2.88-107° —-250-10"* 1

6.68-107¢ —290-10"' 0 —-6.68-10"% 290-10"! 0
-290-10"' 517-105> 0 290-10"!' -517-10"5 0
KUl = 0 0 0 0 0 0
gbd —1_668-10"¢ 290-1071 0 6.68-107® —290-10"1 0
290-10°! -517-105 0 -290-10"'! 5.17-107° 0
0 0 0 0 0 0
-Element ce:
0.65
—0.078
ul = 5.80-107°
ce 0.65
0
2.62-107°
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7.55.107
u., =(-1.36-10"°

6.82 1075
0.66
gt =|—-1.76-10°
6.32-107*
L -1 ~194-1075 0 1 1.94-1075 0
L =|—486-10"° 250-107* 1 4.86-10"9 —250-10"%* 0
—486-10"° 250-10"* 0 4.86-10"° —2.50-10"* 1
1 428-10° —1.10-10"' 0 —4.28-10"° 1.10-10"! 0]
-1.10-10"1 1.62-10* 0 1.10-10"! —-1.62-107%* 0
KM = 0 0 0 0 0 0
gce—1_428-10% 1.10-10"' 0 4.28-10"® —1.10-10"1' 0
1.10-107 —-1.62-10"* 0 -1.10-10"' 1.62-107* 0
0 0 0 0 0 0-

8.4.7) Assemble the structure material and geometric stiffness matrices KZ:;thmre

and K;l";tmcture as well as the structure internal force vector Fl’:lé with the element

quantities. The following value of internal force vector is obtained:

—796.21
38375.14
97.53
396.51
2441
117.90
398.82
—39999.55
20.37
0.22
1159.88
0
0.66
440.12
0

1,1
F =

int

8.5) Compute the unbalanced load vector F/!, = F[%! — FlL,

The following value is obtained after doing the matrix operations with the two vectors:
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~796.21
38375.14
97.53
—3.49
24.41
117.90
, ~1.18
F'o=| 045
20.37
0.22
1159.88
0
0.66
440.12
0

8.6) Check if the Newton-Raphson scheme has converged. In the source code that is
provided with the solution in MATLAB, convergence is achieved once

[ rI| < tol
8.7) If iteration i has converged, go to next load step n, else set i = i + 1 and AF}, =
—F,, + and go to step

Figure 2.4 compares results obtained by using the linear transformation (termed ‘Linear’)
with those considering geometric nonlinearities using the corotational formulation (termed
‘Corotational’):

4000

3000

Linear
== == == == (Corotational

2000

P [kN]

1000

0 20 40 60 80 100 120 140
u, [mm]

Figure 2.4. Effects of geometric transformation on structural response under the external load
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