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In-class Exercise Week #5: Iterative Techniques and Corotational Transformation 
 
 
Exercise #1:  
Consider the following column: 
 

𝐴 = 1.27 ⋅ 10!𝑚𝑚", 𝐼 = 3.66 ⋅ 10#𝑚𝑚", 𝐸 = 200,000𝑀𝑃𝑎 

 
Figure 1.1. Column under axial and lateral loading 

 
Analyze the behavior of the system for the following cases: 

1. 𝛼 = 0	(determine the critical load) 
 

Using load control and nonlinear geometry (with the corotational formulation), determine the 
secondary equilibrium path of the structure when: 

2. 𝛼 = 0.05 
3. 𝛼 = 0.05 and P directed upward 

 
Hint: for 2d elastic beam elements, the element stiffness matrix in the basic reference frame 
𝐊6  is given by: 

𝐊6 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐸𝐴
𝐿 0 0

0
4𝐸𝐼
𝐿

2𝐸𝐼
𝐿

0
2𝐸𝐼
𝐿

4𝐸𝐼
𝐿 ⎦
⎥
⎥
⎥
⎥
⎤
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Solution: 
In this solution, the column is modeled using a single 2D beam-column element. Similar 
procedures can be applied when more beam-column elements are used to model the column. 
The key difference lies in assembling the resisting force vectors and stiffness matrices of all 
elements to form the global internal force vector and global stiffness matrix for the structure. 
 
a) For 𝛼 = 0, to determine the critical load, the following steps are used: 
1) Define the member properties (𝐸, 𝐼, 𝐴 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees 
of freedom 
3) For each member, determine the transformation matrix 𝐓 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element, 
and therefore corresponds to the global 𝑌-axis 
4) Assemble the initial structure stiffness matrix 𝐊$%&'(%'&). The following matrix is 
obtained: 

𝐊!"#$%"$#& =

⎣
⎢
⎢
⎢
⎢
⎡ 1.37 ⋅ 10

' 0 −2.75 ⋅ 10( −1.37 ⋅ 10' 0 −2.75 ⋅ 10(
0 6.35 ⋅ 10) 0 0 −6.35 ⋅ 10) 0

−2.75 ⋅ 10( 0 7.32 ⋅ 10* 2.75 ⋅ 10( 0 3.66 ⋅ 10*
−1.37 ⋅ 10' 0 2.75 ⋅ 10( 1.37 ⋅ 10' 0 2.75 ⋅ 10(

0 −6.35 ⋅ 10) 0 0 6.35 ⋅ 10) 0
−2.75 ⋅ 10( 0 3.66 ⋅ 10* 2.75 ⋅ 10( 0 7.32 ⋅ 10* ⎦

⎥
⎥
⎥
⎥
⎤

 

 
5) Define the boundary conditions, the external loads (i.e., apply the reference load 𝐏&)*	), 
the fixed and the free degrees of freedom of the problem 
6)  Compute the structure displacements 𝐯 corresponding to the refence load 𝐏&)*: 

𝐯* = E𝐊$%&'(%'&),*F
,-𝐏&)* 

Where the subscript 𝑓 denotes the free degrees of freedom of the system 
The following displacement vector is obtained: 

𝐯 = 10,. ⋅

⎝

⎜⎜
⎛

0
0
0
0

−1.575
0 ⎠

⎟⎟
⎞

 

7) Assemble the structure material and geometric stiffness matrices 𝐊),$%&'(%'&) and 
𝐊/,$%&'(%'&). With a loop, go over all elements: 
 7.1) Determine the element displacement vector in the local reference frame 𝐮 

𝐮)0)1 = 𝐓)0)1𝐯)0)1 
Where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to element 
𝑒𝑙𝑒𝑚. For a single element, the following vector is obtained: 

𝐮 = 10,. ⋅

⎝

⎜⎜
⎛

0
0
0

−1.575
0
0 ⎠

⎟⎟
⎞

 

7.2) Using the corotational formulation, compute the element displacements in the 
basic reference frame 𝐮Q = [𝑢T-, 𝑢T", 𝑢T2]3. The following equations from Slide 32 of the 
lecture notes of Week #4 are used: 

𝑢T- = 𝑙4 − 𝑙 
𝑢T" = 𝐮(3) − 𝛽 
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𝑢T2 = 𝐮(6) − 𝛽 
With  

𝑙4 = YE𝑙 + 𝐮(4) − 𝐮(1)F" + E𝐮(5) − 𝐮(2)F" 

𝛽 = arctan `
𝐮(5) − 𝐮(2)

𝑙 + 𝐮(4) − 𝐮(1)a 

  
For a single element, the following vector is obtained: 

𝐮Q = 10,. ⋅ b
−1.575
0
0

c 

7.3) Compute the element internal forces in the basic reference system, 𝐪Q: 
𝐪Q = 𝐊Q𝐮Q 

For a single element, the following value is obtained: 

𝐪Q = b
−1.0
0
0
c 

7.4) Determine the transformation matrix 𝐋 from the basic to the local reference 
system. The following equation from Slide 34 of the lecture notes of Week #4 are 
used:  

𝐋 = f
−𝑐 −𝑠 0 𝑐 𝑠 0

−𝑠/𝐿4 𝑐/𝐿4 1 𝑠/𝐿4 −𝑐/𝐿𝑛 0
−𝑠/𝐿4 𝑐/𝐿4 0 𝑠/𝐿4 −𝑐/𝐿4 1

k 

Where  
𝑐 = cos(𝛽) and 𝑠 = sin(𝛽) 

 
For a single element, the following matrix is obtained: 
 

𝐋 = f
−1 0 0 1 0 0
0 2.5 ⋅ 10,! 1 0 −2.5 ⋅ 10,! 0
0 2.5 ⋅ 10,! 0 0 −2.5 ⋅ 10,! 1

k 

 
7.5) Determine the element geometric stiffness matrix in the local reference frame 
𝐊/,)0)1 . The following equations from Slide 34 of the lecture notes of Week #4 are 
used: 

𝐊!,#$#% =
𝑞$&
𝑙'

⎣
⎢
⎢
⎢
⎢
⎡ 𝑠

( −𝑐𝑠 0 −𝑠( 𝑐𝑠 0
−𝑐𝑠 𝑐( 0 𝑐𝑠 −𝑐( 0
0 0 0 0 0 0
−𝑠( 𝑐𝑠 0 𝑠( −𝑐𝑠 0
𝑐𝑠 −𝑐( 0 −𝑐𝑠 𝑐( 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

+
𝑞$( + 𝑞$)
𝑙'(

⎣
⎢
⎢
⎢
⎢
⎡ −2𝑠𝑐 𝑐( − 𝑠( 0 2𝑠𝑐 −𝑐( + 𝑠( 0
𝑐( − 𝑠( 2𝑐𝑠 0 −𝑐( + 𝑠( −2𝑐𝑠 0
0 0 0 0 0 0
2𝑠𝑐 −𝑐( + 𝑠( 0 −2𝑠𝑐 𝑐( − 𝑠( 0

−𝑐( + 𝑠( −2𝑐𝑠 0 𝑐( − 𝑠( 2𝑐𝑠 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
For a single element, the following value is obtained: 
 

𝐊/,)0)1 = 10,! ⋅

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 −2.50 0 0 2.50 0
0 0 0 0 0 0
0 0 0 0 0 0
0 2.50 0 0 −2.50 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤
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7.6) Assemble the structure material and geometric stiffness matrices 𝐊),$%&'(%'&) and 
𝐊/,$%&'(%'&) with the element quantities 
 
8) Determine the critical load multiplier 𝜆(&5%: 
 8.1) Solve the following eigenvalue problem  

p𝐊),$%&'(%'&),* + 𝜆𝐊/,$%&'(%'&),*q𝚫* = 𝟎 
 

8.2) The critical load multiplier 𝜆(&5% corresponds to the minimum of all eigenvectors 
𝜆 
8.3) The critical load 𝐏(&5% is then given by, 𝐏(&5% = 𝜆(&5%𝐏&)* 
 
For a single element, the following value is obtained, 𝐏(&5% = 1372	𝑘𝑁 

 
b) To determine the secondary equilibrium path for 𝛼 = 0.05, the following steps are used: 
1) Define the member properties (𝐸, 𝐼, 𝐴 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees 
of freedom 
3) For each member, determine the transformation matrix 𝐓 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element, 
and therefore corresponds to the global 𝑌-axis 
4) Assemble the initial structure stiffness matrix 𝐊$%&'(%'&). The following matrix is 
obtained: 

𝐊!"#$%"$#& =

⎣
⎢
⎢
⎢
⎢
⎡ 1.37 ⋅ 10

' 0 −2.75 ⋅ 10( −1.37 ⋅ 10' 0 −2.75 ⋅ 10(
0 6.35 ⋅ 10) 0 0 −6.35 ⋅ 10) 0

−2.75 ⋅ 10( 0 7.32 ⋅ 10* 2.75 ⋅ 10( 0 3.66 ⋅ 10*
−1.37 ⋅ 10' 0 2.75 ⋅ 10( 1.37 ⋅ 10' 0 2.75 ⋅ 10(

0 −6.35 ⋅ 10) 0 0 6.35 ⋅ 10) 0
−2.75 ⋅ 10( 0 3.66 ⋅ 10* 2.75 ⋅ 10( 0 7.32 ⋅ 10* ⎦

⎥
⎥
⎥
⎥
⎤

 

 
5) Define the boundary conditions, the external loads (i.e., apply the reference load 𝐅&)*	), the 
fixed and the free degrees of freedom of the problem 
 
6) Initialize the variables used within the Newton-Raphson scheme: 𝜆 = 0, 𝐯 = 𝟎 
Where 𝜆 denotes the load multiplier (i.e. 𝐅)6% = 𝜆𝐅&)*	) 
7) Define the parameters for the load-control algorithm: 
 - The final external load 𝐅)6%787 = 𝜆%9%𝐅&)* 
 - The number of steps to apply the final external load: 𝑛%9% 
 - At each load step, the increment in external force is given by Δ𝜆̅ = 𝜆%9%/𝑛%9%	 
 - The tolerance 𝑡𝑜𝑙 

- The maximum number of iterations per iteration of the Newton-Raphson scheme 
𝑖:;< 

For the solution procedure described herein, the following values are used: 𝜆%9% = 1100000, 
𝐅&)* = [0	0	0	𝛼 − 1	0]3 , 𝑛%9% = 100 and 𝑡𝑜𝑙 = 1𝑒 − 4 
 
8) For load increment 𝑛, perform the Newton-Raphson iterations: 

8.1) For 𝑖 = 1, set all vectors to the previously converged step: Δ𝐅)6%
4,5=- = Δ𝜆̅𝐅&)*, 

𝐅54%
4,5=- = 𝐅54%4,-, 𝐊$%&>?7>@A

4,- = 𝐊$%&>?7>@A4,-  and 𝐯4,- = 𝐯4,- 
 8.2) Compute the incremental structural displacement vector, Δ𝐯4,5: 

Δ𝐯*
4,5 = E𝐊$%&'(%'&),*

4,5 F
,-
Δ𝐅)6%4  
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Where the subscript 𝑓 denotes the free degrees of freedom of the system. The following 
displacement vector is obtained for the first step and first iteration of the Newton-Raphson 
scheme: 

Δ𝐯-,- =

⎝

⎜⎜
⎛

0
0
0
1.60
−0.017

−6.00 ⋅ 10,!⎠

⎟⎟
⎞

 

 
 8.3) Update the structure displacements for the current step and current iteration: 

𝐯4,5 = 𝐯4,5,- + Δ𝐯4,5 
The following displacement vector is obtained: 

𝐯-,- =

⎝

⎜⎜
⎛

0
0
0
1.60
−0.017

−6.00 ⋅ 10,!⎠

⎟⎟
⎞

 

8.4) Assemble the material and geometric stiffness matrices of the entire structure 
(one element in this case) 𝐊),$%&'(%'&)

4,5  and 𝐊/,$%&'(%'&)
4,5 , respectively, as well as the 

structure resisting force vector 𝐅54%
4,5 . With a loop, go over all elements (if more): 

8.4.1) Determine the element displacement vector in the local reference frame 
𝒖4,5 

𝐮)0)1
4,5 = 𝐓)0)1𝐯)0)1

4,5  
Where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚. For a single element, the following vector is obtained: 

𝐮4,5 =

⎝

⎜⎜
⎛

0
0
0

−0.017
1.60

−6.00 ⋅ 10,!⎠

⎟⎟
⎞

 

 
8.4.2) Using the corotational geometric formulation (or the linear geometric 
formulation), compute the element displacements in the basic reference 
system 𝐮Q = [𝑢T-, 𝑢T", 𝑢T2]3. For the corotational formulation, the following 
equations from Slide 32 of the lecture notes of Week #4 are used: 

𝑢T-
4,5 = 𝑙4

4,5 − 𝑙 
𝑢T"
4,5 = 𝐮4,5(3) − 𝛽4,5 
𝑢T2
4,5 = 𝐮4,5(6) − 𝛽4,5 

With  

𝑙4
4,5 = YE𝑙 + 𝐮4,5(4) − 𝐮4,5(1)F" + E𝐮4,5(5) − 𝐮4,5(2)F" 

𝛽4,5 = arctan`
𝐮4,5(5) − 𝐮4,5(2)

𝑙 + 𝐮4,5(4) − 𝐮4,5(1)a 

  
For a single element, the following vector is obtained using the corotational 
formulation: 
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𝐮Q4,5 = b
−0.017

4.00 ⋅ 10,!
2.00 ⋅ 10,!

c 

 
8.4.3) Compute the element internal forces in the basic reference frame 𝐪Q4,5 : 

𝐪Q4,5 = 𝐊Q4,5𝐮Q4,5 
For a single element, the following value is obtained: 

𝐪Q-,- = b
−1.08 ⋅ 10!
2.20 ⋅ 10.
18.82

c 

 
8.4.4) Determine the transformation matrix 𝐋4,- from the basic to the local 
reference system. The following equation from Slide 34 of the lecture notes of 
Week #4 are used for the corotational formulation:  

𝐋4,5 = f
−𝑐 −𝑠 0 𝑐 𝑠 0

−𝑠/𝐿4 𝑐/𝐿4 1 𝑠/𝐿4 −𝑐/𝐿𝑛 0
−𝑠/𝐿4 𝑐/𝐿4 0 𝑠/𝐿4 −𝑐/𝐿4 1

k 

Where  
𝐿4 = 𝐿4

4,5, 𝑐 = cos(𝛽4,5) and 𝑠 = sin(𝛽4,5) 
 
For a single element, the following matrix is obtained: 

𝐋4,5 = f
−1 4.01 ⋅ 10,! 0 1 −4.01 ⋅ 10,! 0

1.00 ⋅ 10,# 2.50 ⋅ 10,! 1 −1.00 ⋅ 10,# −2.50 ⋅ 10,! 0
1.00 ⋅ 10,# 2.50 ⋅ 10,! 0 −1.00 ⋅ 10,# −2.50 ⋅ 10,! 1

k 

 
8.4.5) Compute the element internal force vector in the local reference system: 

𝐐)0)1
4,5 = E𝐋4,5F3𝐪Q4,5 

 
For a single element, the following vector is obtained: 

𝐐)0)1
4,5 =

⎝

⎜⎜
⎛

1.08 ⋅ 10!
545.69
2.20 ⋅ 10.
−1.08 ⋅ 10!
−545.7
18.82 ⎠

⎟⎟
⎞

 

 
8.4.6) Determine the element geometric stiffness matrix in the local reference 
frame 𝐊/,)0)1

4,5  . The following equations from Slide 34 of the lecture notes of 
Week #4 are used: 
 

𝐊!,#$#% =
𝑞$&
𝑙'

⎣
⎢
⎢
⎢
⎢
⎡ 𝑠

( −𝑐𝑠 0 −𝑠( 𝑐𝑠 0
−𝑐𝑠 𝑐( 0 𝑐𝑠 −𝑐( 0
0 0 0 0 0 0
−𝑠( 𝑐𝑠 0 𝑠( −𝑐𝑠 0
𝑐𝑠 −𝑐( 0 −𝑐𝑠 𝑐( 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

+
𝑞$( + 𝑞$)
𝑙'(

⎣
⎢
⎢
⎢
⎢
⎡ −2𝑠𝑐 𝑐( − 𝑠( 0 2𝑠𝑐 −𝑐( + 𝑠( 0
𝑐( − 𝑠( 2𝑐𝑠 0 −𝑐( + 𝑠( −2𝑐𝑠 0
0 0 0 0 0 0
2𝑠𝑐 −𝑐( + 𝑠( 0 −2𝑠𝑐 𝑐( − 𝑠( 0

−𝑐( + 𝑠( −2𝑐𝑠 0 𝑐( − 𝑠( 2𝑐𝑠 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
For a single element, the following value is obtained: 
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𝐊/,)0)1
4,5 =

⎣
⎢
⎢
⎢
⎢
⎡1.10 ⋅ 10

,! 0.14 0 −1.10 ⋅ 10,! −0.14 0
0.14 −2.70 0 −0.14 2.70 0
0 0 0 0 0 0

1.10 ⋅ 10,! −0.14 0 1.10 ⋅ 10,! 0.14 0
−0.14 2.70 0 0.14 −2.70 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
8.4.7) Assemble the structure material and geometric stiffness matrices 
𝐊),$%&'(%'&)
4,5  and 𝐊/,$%&'(%'&)

4,5  as well as the structure internal force vector 𝐅54%
4,5  

with the element quantities 
8.5) Compute the unbalanced load vector 𝐅'4B

4,5 = 𝐅54%
4,5 − 𝐅)6%4  

For a single element, the following value is obtained: 

𝐅'4B
4,5 =

⎝

⎜⎜
⎛

−545.69
1.08 ⋅ 10!
2.20 ⋅ 10.
−4.31
203.72
18.82 ⎠

⎟⎟
⎞

 

 
8.6) Check if the Newton-Raphson scheme has converged. In source code provided in 
the solution with MATLAB, convergence is achieved once: 

�𝐅'4B,*
4,5 � < 𝑡𝑜𝑙 

8.7) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1 and Δ𝐅)6%
4,5 =

−𝐅'4B,*
4,5,- and go to the next step  

 
Figure 1.2 compares results obtained by neglecting the second-order geometric effects 
(termed ‘Linear’) with those considering geometric nonlinearities using the corotational 
formulation (termed ‘Corotational’). Notice that the results are practically identical only 
when the lateral displacement is less than about 50mm. 

 

 
Figure 1.2. Effects of geometric transformation on member response under compressive load 

 
c) The same approach discussed above is used to determine the secondary equilibrium path 
for 𝛼 = 0.05 and a tensile axial load. In this case, tension is anticipated to create a stable 
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equilibrium path as the column is in traction. Figure 1.3 compares the results by neglecting 
the second-order geometric effects (termed ‘Linear’) with those considering geometric 
nonlinearities using the corotational formulation (termed ‘Corotational’): 

 

 
Figure 1.3. Effects of geometric transformation on member response under tensile load 
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Exercise #2:  
 
Consider the following frame: 

- Members 𝑎𝑏 and 𝑏𝑐: 𝐴 = 2.50 ⋅ 10!𝑚𝑚", 𝐼 = 6.36 ⋅ 10C𝑚𝑚", 𝐸 = 200,000𝑀𝑃𝑎	 
- Members 𝑏𝑑 and 𝑐𝑒: 𝐴 = 1.76 ⋅ 10!𝑚𝑚", 𝐼 = 8.61 ⋅ 10C𝑚𝑚", 𝐸 = 200,000𝑀𝑃𝑎	 

 
Figure 2.1. Planar frame under axial and lateral loading 

 
 

Analyze the behavior of the system for the following cases: 
1. 𝛼 = 0	(determine the critical load) 

Using load control and the corotational formulation, determine the secondary equilibrium 
path of the structure when: 

2. 𝛼 = 0.01 
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Solution: 
In this solution, each member is modeled using a single 2D elastic beam-column element. 
 
a) For 𝛼 = 0, to determine the critical load, the following steps are used: 
1) Define the member properties (𝐸, 𝐼, 𝐴 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees 
of freedom. The figure below shows the global degrees of freedom used for the structure 

 
Figure 2.2. Global degrees of freedom 

 
The mapping matrix 𝒏𝒖𝒎𝑬𝒒 is as follows: 

𝒏𝒖𝒎𝑬𝒒 = �

1 2 3 4 5 6
4 5 6 7 8 9
4 5 6 10 11 12
7 8 9 13 14 15

� 

 
3) For each member, determine the transformation matrix 𝐓 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element 
 
4) Assemble the initial structure stiffness matrix 𝐊$%&'(%'&) 
 
5) Define the boundary conditions, the fixed and free degrees of freedom, and the external 
loads i.e., apply the reference load: 
 

𝐏&)* = [0	0	0	0	0	0	0 − 1	0	0	0	0	0	0	0]3 
 
6)  Compute the structure displacements 𝐯 corresponding to the refence load 𝐏&)*: 

𝐯* = E𝐊$%&'(%'&),*F
,-𝐏&)* 

 
where the subscript 𝑓 denotes the free degrees of freedom of the system 
 
The following displacement vector is obtained: 

! "
#
$

%

& '

()
*
+

,
-
. "$

"*
")

"/
""
"#
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𝐯 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
0

3.33 ⋅ 10,!
−2.00 ⋅ 10,.
−1.20 ⋅ 10,.
3.33 ⋅ 10,-D
−3.60 ⋅ 10,.
−2.00 ⋅ 10,.
4.67 ⋅ 10,-D
−2.00 ⋅ 10,.

0
2.84 ⋅ 10,-D
−3.60 ⋅ 10,.

0
5.16 ⋅ 10,-D⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
7) Assemble the structure material and geometric stiffness matrices 𝐊),$%&'(%'&) and 
𝐊/,$%&'(%'&). With a loop, go over all elements: 
 7.1) Determine the element displacement vector in the local reference frame 𝐮 

𝐮)0)1 = 𝐓)0)1𝐯)0)1 
where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to the 
element 𝑒𝑙𝑒𝑚. 
 
7.2) Using the corotational formulation, compute the element displacements in the 
basic reference frame 𝐮Q = [𝑢T-, 𝑢T", 𝑢T2]3. The following equations from Slide 32 of the 
lecture notes of Week #4 are used: 

𝑢T- = 𝑙4 − 𝑙 
𝑢T" = 𝐮(3) − 𝛽 
𝑢T2 = 𝐮(6) − 𝛽 

With  

𝑙4 = YE𝑙 + 𝐮(4) − 𝐮(1)F" + E𝐮(5) − 𝐮(2)F" 

𝛽 = arctan `
𝐮(5) − 𝐮(2)

𝑙 + 𝐮(4) − 𝐮(1)a 

  
7.3) Compute the element internal forces in the basic reference frame 𝐪Q: 

𝐪Q = 𝐊Q𝐮Q 
7.4) Determine the transformation matrix 𝐋 from the basic to the local reference 
system. The equation from Slide 34 of the lecture notes of Week #4 is used:  

𝐋 = f
−𝑐 −𝑠 0 𝑐 𝑠 0

−𝑠/𝐿4 𝑐/𝐿4 1 𝑠/𝐿4 −𝑐/𝐿𝑛 0
−𝑠/𝐿4 𝑐/𝐿4 0 𝑠/𝐿4 −𝑐/𝐿4 1

k 

where  
𝑐 = cos(𝛽) and 𝑠 = sin(𝛽) 

 
7.5) Determine the element geometric stiffness matrix in the local reference frame 
𝐊/,)0)1 . The following equations from Slide 34 of the lecture notes of Week #4 are 
used: 
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𝐊!,#$#% =
𝑞$&
𝑙'

⎣
⎢
⎢
⎢
⎢
⎡ 𝑠

( −𝑐𝑠 0 −𝑠( 𝑐𝑠 0
−𝑐𝑠 𝑐( 0 𝑐𝑠 −𝑐( 0
0 0 0 0 0 0
−𝑠( 𝑐𝑠 0 𝑠( −𝑐𝑠 0
𝑐𝑠 −𝑐( 0 −𝑐𝑠 𝑐( 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

+
𝑞$( + 𝑞$)
𝑙'(

⎣
⎢
⎢
⎢
⎢
⎡ −2𝑠𝑐 𝑐( − 𝑠( 0 2𝑠𝑐 −𝑐( + 𝑠( 0
𝑐( − 𝑠( 2𝑐𝑠 0 −𝑐( + 𝑠( −2𝑐𝑠 0
0 0 0 0 0 0
2𝑠𝑐 −𝑐( + 𝑠( 0 −2𝑠𝑐 𝑐( − 𝑠( 0

−𝑐( + 𝑠( −2𝑐𝑠 0 𝑐( − 𝑠( 2𝑐𝑠 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
The following quantities are obtained for the four elements of the planar structure: 
-Element 𝑎𝑏: 

𝐮EB =

⎝

⎜⎜
⎛

0
0

3.33 ⋅ 10,-D
−1.20 ⋅ 10,.
2.00 ⋅ 10,.
3.33 ⋅ 10,-D⎠

⎟⎟
⎞

 

 

𝐮QEB = 10,. ⋅ b
−1.20
0
0

c 

 

𝐪QEB = b
−1.00
0
0

c 

 

𝐋EB = f
−1 0 0 1 0 0
0 1.67 ⋅ 10,! 1 0 −1.67 ⋅ 10,! 0
0 1.67 ⋅ 10,! 0 0 −1.67 ⋅ 10,! 1

k 

 

𝐊/,EB = 10,! ⋅

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 −1.67 0 0 1.67 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1.67 0 0 −1.67 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
-Element 𝑏𝑐: 

𝐮B( = 10,. ⋅

⎝

⎜⎜
⎛

−1.20
2.00
0

−2.00
3.60
0 ⎠

⎟⎟
⎞

 

 

𝐮QB( = 10,. ⋅ b
−0.80
0.00
0.00

c 

 

𝐪QB( = b
−1.00
−4.26
4.26

c 

 

𝐋B( = 10,! ⋅ f
−1 0 0 1 0 0
0 2.50 1 0 −2.50 0
0 2.50 0 0 −2.50 1

k 



CIVIL 449: Iterative Techniques and Corotational Transformation Prof. Dr. Dimitrios G. Lignos, EPFL 13 

 

𝐊/,B( = 10,! ⋅

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 −2.50 0 0 2.50 0
0 0 0 0 0 0
0 0 0 0 0 0
0 2.50 0 0 −2.50 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
-Element 𝑏𝑑: 

𝐮BF =

⎝

⎜⎜
⎛

−2.00 ⋅ 10,.
−1.20 ⋅ 10,.
3.33 ⋅ 10,-D
−2.00 ⋅ 10,.

0
2.84 ⋅ 10,-D⎠

⎟⎟
⎞

 

 

𝐮QBF = 10,-- ⋅ b
0
3.30
−1.65

c 

 

𝐪QBF = b
0
4.26
0
c 

 

𝐋BF = 10,! ⋅ f
−1 0 0 1 0 0
0 2.50 1 0 −2.50 0
0 2.50 0 0 −2.50 1

k 

 

𝐊/,BF = 10,# ⋅

⎣
⎢
⎢
⎢
⎢
⎡

0 2.66 0 0 −2.66 0
2.66 0 0 −2.66 0 0
0 0 0 0 0 0
0 −2.66 0 0 2.66 0

−2.66 0 0 2.66 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
-Element 𝑐𝑒: 

𝐮() =

⎝

⎜⎜
⎛

−3.60 ⋅ 10,.
−2.00 ⋅ 10,.
4.67 ⋅ 10,-D
−3.60 ⋅ 10,.

0
5.16 ⋅ 10,-D⎠

⎟⎟
⎞

 

 

𝐮Q() = 10,-- ⋅ b
0

−3.30
1.65

c 

 

𝐪Q() = b
0

−4.26
0

c 
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𝐋() = f
−1 0 0 1 0 0
0 2.50 ⋅ 10,! 1 0 −2.50 ⋅ 10,! 0
0 2.50 ⋅ 10,! 0 0 −2.50 ⋅ 10,! 1

k 

 

𝐊/,() = 10,# ⋅

⎣
⎢
⎢
⎢
⎢
⎡

0 −2.66 0 0 2.66 0
−2.66 0 0 2.66 0 0
0 0 0 0 0 0
0 2.66 0 0 −2.66 0
2.66 0 0 −2.66 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
 

7.6) Assemble the structure material and geometric stiffness matrices 𝐊),$%&'(%'&) and 
𝐊/,$%&'(%'&) with the element quantities 
 
8) Determine the critical load multiplier 𝜆(&5%: 
8.1) Solve the following eigenvalue problem  

p𝐊),$%&'(%'&),* + 𝜆𝐊/,$%&'(%'&),*q𝚫* = 𝟎 
 

8.2) The critical load multiplier 𝜆(&5% corresponds to the minimum of all eigenvectors 
𝜆 
8.3) The critical load 𝐏(&5% is then given by: 𝐏(&5% = 𝜆(&5%𝐏&)* 
 
For a single element, the following value is obtained: 𝐏(&5% = 7300	𝑘𝑁 

 
b) To determine the secondary equilibrium path for 𝛼 = 0.01, the following steps are used: 
1) Define the member properties (𝐸, 𝐼, 𝐴 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees 
of freedom. The figure below shows the global degrees of freedom used for the structure 

 
Figure 2.3. Global degrees of freedom 

 
The mapping matrix 𝒏𝒖𝒎𝑬𝒒 is therefore given by 

𝒏𝒖𝒎𝑬𝒒 = �

1 2 3 4 5 6
4 5 6 7 8 9
4 5 6 10 11 12
7 8 9 13 14 15

� 

 
3) For each member, determine the transformation matrix 𝐓 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element, 
and therefore corresponds to the global 𝑌-axis 
4) Assemble the initial structure stiffness matrix 𝐊$%&'(%'&).  

! "
#
$

%

& '

()
*
+

,
-
. "$

"*
")

"/
""
"#
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5) Define the boundary conditions, the fixed and the free degrees of freedom of the problem, 
and the external loads i.e., apply the reference load: 

𝐅&)* = [0	0	0	0.01	0	0	0.01 − 1	0	0	0	0	0	0	0]3 
6) Initialize the variables used within the Newton-Raphson scheme 

𝜆 = 0, 𝐯 = 𝟎 
where 𝜆 denotes the load multiplier (i.e. 𝐅)6% = 𝜆𝐅&)*) 
 
7) Define the parameters defining the load-control algorithm: 
 - The final external load 𝐅)6%787 = 𝜆%9%𝐅&)* 
 - The number of steps 𝑛%9%  
 - At each load step, the increment in external force is given by Δ𝜆̅ = 𝜆%9%/𝑛%9%	 
 - The tolerance 𝑡𝑜𝑙 

- The maximum number of iterations for each iterations of the Newton-Raphson 
scheme, 𝑖:;< 

For the solution procedure described herein, the following values are used: 𝜆%9% = 4000000, 
𝑛%9% = 100 and 𝑡𝑜𝑙 = 1𝑒 − 4 
8) For load increment 𝑛, perform the Newton-Raphson iterations 

8.1) For 𝑖 = 1, set, Δ𝐅)6%
4,5=- = Δ𝜆̅𝐅&)*, 𝐅54%

4,5=- = 𝐅54%4,-, 𝐊$%&>?7>@A
4,- = 𝐊$%&>?7>@A4,-  and 

𝐯4,- = 𝐯4,- 
 8.2) Compute the increment in structure displacements Δ𝐯4,5: 

Δ𝐯*
4,5 = E𝐊$%&'(%'&),*

4,5 F
,-
Δ𝐅)6%4  

Where the subscript 𝑓 denotes the free degrees of freedom of the system. The 
following displacement vector is obtained: 
 

Δ𝐯-,- =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
0

−1.38 ⋅ 10,!
0.60
−0.046

−2.44 ⋅ 10,G
0.65
−0.078

5.80 ⋅ 10,.
0.60
0

2.95 ⋅ 10,G
0.65
0

2.62 ⋅ 10,G ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
 8.3) Update the structure displacements: 

𝐯4,5 = 𝐯4,5,- + Δ𝐯4,5 
 

The following displacement vector is obtained: 
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𝐯-,- =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
0

−1.38 ⋅ 10,!
0.60
−0.046

−2.44 ⋅ 10,G
0.65
−0.078

5.80 ⋅ 10,.
0.60
0

2.95 ⋅ 10,G
0.65
0

2.62 ⋅ 10,G ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

8.4) Assemble the structure material and geometric stiffness matrices 𝐊),$%&'(%'&)
4,5  and 

𝐊/,$%&'(%'&)
4,5 , as well as the structure resisting force vector 𝐅54%

4,5 . With a loop, go over 
all elements: 

8.4.1) Determine the element displacement vector in the local reference 
system, 𝐮4,5 

𝐮)0)1
4,5 = 𝐓)0)1𝐯)0)1

4,5  
where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚.  
 
8.4.2) Using the corotational or the linear formulation, compute the element 
displacements in the basic reference frame 𝐮Q = [𝑢T-, 𝑢T", 𝑢T2]3. For the 
corotational formulation, the following equations from Slide 32 of the lecture 
notes of Week #4 are used: 

𝑢T-
4,5 = 𝑙4

4,5 − 𝑙 
𝑢T"
4,5 = 𝐮4,5(3) − 𝛽4,5 
𝑢T2
4,5 = 𝐮4,5(6) − 𝛽4,5 

With  

𝑙4
4,5 = YE𝑙 + 𝐮4,5(4) − 𝐮4,5(1)F" + E𝐮4,5(5) − 𝐮4,5(2)F" 

𝛽4,5 = arctan`
𝐮4,5(5) − 𝐮4,5(2)

𝑙 + 𝐮4,5(4) − 𝐮4,5(1)a 

  
8.4.3) Compute the element internal forces in the basic reference system, 𝐪Q4,5 : 

𝐪Q4,5 = 𝐊Q4,5𝐮Q4,5 
8.4.4) Determine the transformation matrix 𝐋4,- from the basic to the local 
reference frame. The equation from Slide 34 of the lecture notes of Week #4 is 
used for the corotational formulation:  

𝐋4,5 = f
−𝑐 −𝑠 0 𝑐 𝑠 0

−𝑠/𝐿4 𝑐/𝐿4 1 𝑠/𝐿4 −𝑐/𝐿𝑛 0
−𝑠/𝐿4 𝑐/𝐿4 0 𝑠/𝐿4 −𝑐/𝐿4 1

k 

Where  
𝐿4 = 𝐿4

4,5, 𝑐 = cos(𝛽4,5) and 𝑠 = sin(𝛽4,5) 
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8.4.5) Compute the element internal force vector in the local reference frame: 
𝐐)0)1
4,5 = E𝐋4,5F3𝐪Q4,5 

 
8.4.6) Determine the element geometric stiffness matrix in the local reference 
frame 𝐊/,)0)1

4,5  . The following equations from Slide 34 of the lecture notes of 
Week #4 are used: 
 

𝐊!,#$#% =
𝑞$&
𝑙'

⎣
⎢
⎢
⎢
⎢
⎡ 𝑠

( −𝑐𝑠 0 −𝑠( 𝑐𝑠 0
−𝑐𝑠 𝑐( 0 𝑐𝑠 −𝑐( 0
0 0 0 0 0 0
−𝑠( 𝑐𝑠 0 𝑠( −𝑐𝑠 0
𝑐𝑠 −𝑐( 0 −𝑐𝑠 𝑐( 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

+
𝑞$( + 𝑞$)
𝑙'(

⎣
⎢
⎢
⎢
⎢
⎡ −2𝑠𝑐 𝑐( − 𝑠( 0 2𝑠𝑐 −𝑐( + 𝑠( 0
𝑐( − 𝑠( 2𝑐𝑠 0 −𝑐( + 𝑠( −2𝑐𝑠 0
0 0 0 0 0 0
2𝑠𝑐 −𝑐( + 𝑠( 0 −2𝑠𝑐 𝑐( − 𝑠( 0

−𝑐( + 𝑠( −2𝑐𝑠 0 𝑐( − 𝑠( 2𝑐𝑠 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
The following quantities are obtained for the four elements: 
-Element 𝑎𝑏: 

𝐮EB
-,- 	=

⎝

⎜⎜
⎛

0
0

−1.38 ⋅ 10,!
−0.046
−0.60

−2.44 ⋅ 10,G⎠

⎟⎟
⎞

 

 

𝐮QEB
-,- = b

−0.0461
−3.77 ⋅ 10,G
7.55 ⋅ 10,G

c 

 

𝐪QEB
-,- = b

−3.84 ⋅ 10!
97.53

4.80 ⋅ 10.
c 

 

𝐋EB
-,- = f

−1 9.99 ⋅ 10,G 0 1 −9.99 ⋅ 10,G 0
1.66 ⋅ 10,C 1.67 ⋅ 10,! 1 −1.66 ⋅ 10,C −1.67 ⋅ 10,! 0
1.66 ⋅ 10,C 1.67 ⋅ 10,! 0 −1.66 ⋅ 10,C −1.67 ⋅ 10,! 1

k 

 

𝐊2,45
6,6 =

⎣
⎢
⎢
⎢
⎢
⎡ 2.66 ⋅ 10

78 1.33 ⋅ 1076 0 −2.66 ⋅ 1078 −1.33 ⋅ 1076 0
1.33 ⋅ 1076 −6.40 0 −1.33 ⋅ 1076 6.40 0

0 0 0 0 0 0
−2.66 ⋅ 1078 −1.33 ⋅ 1076 0 2.66 ⋅ 1078 1.33 ⋅ 1076 0
−1.33 ⋅ 1076 6.40 0 1.33 ⋅ 1076 −6.40 0

0 0 0 0 0 0⎦
⎥
⎥
⎥
⎥
⎤

 

 
-Element 𝑏𝑐: 

𝐮B(
-,- =

⎝

⎜⎜
⎛

−0.046
−0.60

−2.44 ⋅ 10,G
−0.078
−0.65

5.80 ⋅ 10,. ⎠

⎟⎟
⎞

 

 

𝐮QB(
-,- = b

−0.0316
−1.09 ⋅ 10,G
1.09 ⋅ 10,G

c 
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𝐪QB(
-,- = b

−3.96 ⋅ 10!
−1.60 ⋅ 10G
1.76 ⋅ 10.

c 

 

𝐋B(
-,- = f

−1 1.35 ⋅ 10,G 0 1 −1.35 ⋅ 10,G 0
3.37 ⋅ 10,H 2.50 ⋅ 10,! 1 −3.37 ⋅ 10,H −2.50 ⋅ 10,! 0
3.37 ⋅ 10,H 2.50 ⋅ 10,! 0 −3.37 ⋅ 10,H −2.50 ⋅ 10,! 1

k 

 

𝐊2,59
6,6 =

⎣
⎢
⎢
⎢
⎢
⎡ 2.70 ⋅ 10

7: 9.99 ⋅ 107; 0 −2.70 ⋅ 107: −9.99 ⋅ 107; 0
9.99 ⋅ 107; −9.89 0 −9.99 ⋅ 107; 9.89 0

0 0 0 0 0 0
−2.70 ⋅ 107: −9.99 ⋅ 107; 0 2.70 ⋅ 107: 9.99 ⋅ 107; 0
−9.99 ⋅ 107; 9.89 0 9.99 ⋅ 107; −9.89 0

0 0 0 0 0 0⎦
⎥
⎥
⎥
⎥
⎤

 

 
-Element 𝑏𝑑: 

𝐮BF
-,- =

⎝

⎜⎜
⎛

0.60
−0.046

−2.44 ⋅ 10,G
0.60
0

2.95 ⋅ 10,G ⎠

⎟⎟
⎞

 

 

𝐮QBF
-,- = b

2.65 ⋅ 10,#
−3.59 ⋅ 10,G
1.80 ⋅ 10,G

c 

 

𝐪QBF
-,- = b

0.23
−4.64 ⋅ 10.
1.32 ⋅ 10,!

c 

 

𝐋BF
-,- = f−

−1 −1.15 ⋅ 10,G 0 1 1.15 ⋅ 10,G 0
2.88 ⋅ 10,H 2.50 ⋅ 10,! 1 2.88 ⋅ 10,H −2.50 ⋅ 10,! 0
−2.88 ⋅ 10,H 2.50 ⋅ 10,! 0 2.88 ⋅ 10,H −2.50 ⋅ 10,! 1

k 

 

𝐊2,5<
6,6 =

⎣
⎢
⎢
⎢
⎢
⎡ 6.68 ⋅ 10

7: −2.90 ⋅ 1076 0 −6.68 ⋅ 107: 2.90 ⋅ 1076 0
−2.90 ⋅ 1076 5.17 ⋅ 1078 0 2.90 ⋅ 1076 −5.17 ⋅ 1078 0

0 0 0 0 0 0
−6.68 ⋅ 107: 2.90 ⋅ 1076 0 6.68 ⋅ 107: −2.90 ⋅ 1076 0
2.90 ⋅ 1076 −5.17 ⋅ 1078 0 −2.90 ⋅ 1076 5.17 ⋅ 1078 0

0 0 0 0 0 0⎦
⎥
⎥
⎥
⎥
⎤

 

 
-Element 𝑐𝑒: 

𝐮()
-,- =

⎝

⎜⎜
⎛

0.65
−0.078

5.80 ⋅ 10,.
0.65
0

2.62 ⋅ 10,G⎠

⎟⎟
⎞
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𝐮Q()
-,- = b

7.55 ⋅ 10,#
−1.36 ⋅ 10,G
6.82 ⋅ 10,G

c 

 

𝐪Q()
-,- = b

0.66
−1.76 ⋅ 10.
6.32 ⋅ 10,!

c 

 

𝐋()
-,- = f−

−1 −1.94 ⋅ 10,G 0 1 1.94 ⋅ 10,G 0
4.86 ⋅ 10,H 2.50 ⋅ 10,! 1 4.86 ⋅ 10,H −2.50 ⋅ 10,! 0
−4.86 ⋅ 10,H 2.50 ⋅ 10,! 0 4.86 ⋅ 10,H −2.50 ⋅ 10,! 1

k 

 

𝐊/,()
-,- =

⎣
⎢
⎢
⎢
⎢
⎡ 4.28 ⋅ 10

,. −1.10 ⋅ 10,- 0 −4.28 ⋅ 10,. 1.10 ⋅ 10,- 0
−1.10 ⋅ 10,- 1.62 ⋅ 10,! 0 1.10 ⋅ 10,- −1.62 ⋅ 10,! 0

0 0 0 0 0 0
−4.28 ⋅ 10,. 1.10 ⋅ 10,- 0 4.28 ⋅ 10,. −1.10 ⋅ 10,- 0
1.10 ⋅ 10,- −1.62 ⋅ 10,! 0 −1.10 ⋅ 10,- 1.62 ⋅ 10,! 0

0 0 0 0 0 0⎦
⎥
⎥
⎥
⎥
⎤

 

 
 

8.4.7) Assemble the structure material and geometric stiffness matrices 𝐊),$%&'(%'&)
4,5  

and 𝐊/,$%&'(%'&)
4,5  as well as the structure internal force vector 𝐅54%

4,5  with the element 
quantities. The following value of internal force vector is obtained: 
 

𝐅54%
-,- =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−796.21
38375.14
97.53
396.51
24.41
117.90
398.82

−39999.55
20.37
0.22

1159.88
0
0.66
440.12
0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
8.5) Compute the unbalanced load vector 𝐅'4B

4,5 = 𝐅54%
4,5 − 𝐅)6%4  

 
The following value is obtained after doing the matrix operations with the two vectors: 
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𝐅'4B
4,5 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−796.21
38375.14
97.53
−3.49
24.41
117.90
−1.18
0.45
20.37
0.22

1159.88
0
0.66
440.12
0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
 
8.6) Check if the Newton-Raphson scheme has converged. In the source code that is 
provided with the solution in MATLAB, convergence is achieved once 
 

�𝐅'4B,*
4,5 � < 𝑡𝑜𝑙 

 
8.7) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1 and Δ𝐅)6%

4,5 =
−𝐅'4B,*

4,5,- and go to step  
 
Figure 2.4 compares results obtained by using the linear transformation (termed ‘Linear’) 
with those considering geometric nonlinearities using the corotational formulation (termed 
‘Corotational’): 

 

 
Figure 2.4. Effects of geometric transformation on structural response under the external load 


