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Bending of Beams

Chapter Objectives

* Develop formulas to find the deflection and stresses in a beam made
of composite materials.

* Develop formulas for symmetric beams that are narrow or wide.
¢ Develop formulas for nonsymmetric beams that are narrow or wide.

6.1 Introduction

To study mechanics of beams made of laminated composite materials, we
need to review the beam analysis of isotropic materials. Several concepts
applied to beams made of isotropic materials will help in understanding
beams made of composite materials. We are limiting our study to beams
with transverse loading or applied moments.

The bending stress in an isotropic beam (Figure 6.1 and Figure 6.2) under
an applied bending moment, M, is given by'?

c=—n-, (6.1)

where
z = distance from the centroid
I = second moment of area

The bending deflections, w, are given by solving the differential equation
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FIGURE 6.1
Bending of a beam.

Neutral axis

FIGURE 6.2
Curvature of a bended beam.

d*w

EI
dx?

=M, (6.2)

where E = Young’s modulus of the beam material.

2

d . .
The term of —Zf is defined as the curvature
X

B o*w
=
ox?

, (6.3)
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FIGURE 6.3

Laminated beam showing the midplane and the neutral axis.

giving

Elx,=M .

Mid-plane

Neutral
axis

433

(6.4)

The formula for the bending stress is only valid for an isotropic material
because it assumes that the elastic moduli is uniform in the beam. In the
case of laminated materials, elastic moduli vary from layer to layer.

6.2 Symmetric Beams

To keep the introduction simple, we will discuss beams that are symmetric
and have a rectangular cross-section® (Figure 6.3). Because the beam is sym-
metric, the loads and moments are decoupled in Equation (4.29) to give

M, K,
M, |= [D] y
M,, Kyy
or
KX MX
-1
Ky |5 [D] M,
ny Mxy

Now, if bending is only taking place in the x-direction, then
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* M,
x, |=[D]"| 0 |, 6.7)
Koy 0
that is,
K, =DM, (6.8)
k, = D[, M, (6.8b)
Ky, = D M., (6.8¢)

where D; are the elements of the [D]! matrix as given in Equation (4.28c).
Because defining midplane curvatures (Equation 4.15),

*w,

K, =— (6.9)

the midplane deflection w, is not independent of y. However, if we have a
narrow beam — that is, the length to width ratio (L/b) is sufficiently high,
we can assume that w, = wy(x) only.

2
K, =— dd;‘@ =D}, M, . (6.10)

Writing in the form similar to Equation (6.2) for isotropic beams,
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= (6.11)

where
b = width of beam
E, = effective bending modulus of beam
I = second moment of area with respect to the x—y-plane

From Equation (6.8a) and (6.11), we get

E =12 (6.12)
1°D;,
Also,
b’
=2 6.13
12 (6.13)
M=Mpb. (6.14)

€,= 2K, (6.15a)
€,= 2K, (6.15b)
Yay = 2Ky - (6.15¢)

These global strains can be transformed to the local strains in each ply
using Equation (2.95):

El Ex
e | =[R][T][R] e, | - (6.16)
Y12 |, Yy |,

The local stresses in each ply are obtained using Equation (2.73) as
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G, €
o, | =[Q]l & | - (6.17)
T2 |, Y12 |,

The global stresses in each ply are then obtained using Equation (2.89) as

c, c,
o, | =[T]'|e| - (6.18)

Ty |, T |,

Example 6.1

A simply supported laminated composite beam of length 0.1 m and width
5 mm (Figure 6.4) made of graphite/epoxy has the following layup of [0/
90/-30/30],. A uniform load of 200 N/m is applied on the beam. What is
the maximum deflection of the beam? Find the local stresses at the top of
the third ply (-30°) from the top. Assume that each ply is 0.125 mm thick
and the properties of unidirectional graphite/epoxy are as given in Table 2.1.

Solution

The shear and bending moment diagrams for the beam are given in Figure
6.5. The bending moment is maximum at the center of the beam and is
given by

M= (6.19)

where
g = load intensity (N/m)
L =length of the beam (m)

q =200 N/m

VAN 0]
e om S —sfsmml

FIGURE 6.4
Uniformly loaded simply supported beam.
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q =200 N/m

20 4

0.05 0.1

—20 -

0.25 1

0.05 0.1

-0.25 -
(b)

FIGURE 6.5
Shear (a) and bending moment (b) diagrams of a simply supported beam.

The maximum bending moment then is

~200x0.17
8

M

= 0.25 N-m.

Without showing the calculations because they are shown in detail in
Chapter 4 (see Example 4.2), we get

1.015x 10" 5.494x107"  —4.234x107"
[D] =| 5.494x 10" 5243x10°  -1.567x107" |Pa-m®
—4234x10"  -1.567x10"  9.055x 107"
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1.009x10"  —9.209x10° 4.557x1072
[D]"=|-9209x107  1926x10"  2901x107 |~
4557x107  2901x102  1.131x10° | "

To find the maximum deflection of the beam, §, we use the isotropic beam
formula:

_ 5qLt
384E.1

(6.20)

Now, in Equation (6.12),

h :(8)(0.125><10‘3)

=0.001m

D: =1.009%x10™" )
b Pa—m®

Thus,

E =2
h’Dy;

12
(0.001)"(1.009x 107 )

=1.189%x 10" Pa

From Equation (6.13),

3
[
12

(5x10)(0.001)
12

=4.167x10"°m*.

© 2006 by Taylor & Francis Group, LLC



Bending of Beams 439

Therefore, from Equation (6.20),

(5)(200)(0.1)°

"~ (384)(1.189x10")(4.167x 10

=5.256x10"m

=5.256 mm .
The maximum curvature is at the middle of the beam and is given by
Xx D Il
Xy =|D ;2
Xy Di;

qr
8b

1.009x 107!
=1-9.209x107°
4557 x 1072

200 % 0.1
8 x0.005

1.009 x 107"
=1-9.209% 107 |50
4557 x 1072

5.045 .
=[-0.4605 |— .
2.279

The global strains (Equation 6.15) at the top of the third ply (-30°) are

€, K,
Ey =z Ky
ny ny

5.045

= (~0.00025)| —0.4605

2.279
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-1.261x10°
=| 1.151x10™* |™.
m

—5.696 x107*

The global stresses (Equation 6.18) at the top of the third ply (-30°) then are

c, €,
Gy =[Q] Sy

Txy ny

1.094 x 10" 3246x10°  —5.419x10Y || -1.261x 107
=| 3.246 x 10" 2.365x10°  —2.005x10% || 1.151x107*
-5.419x10° -2.005x10°  3.674x10% |[-5.698 x107*

-1.034 x 108
=|-2.680x107 |Pa .
4.511x107

Example 6.2

In Example 6.1, the width-to-height ratio in the cross-section of the beam
is b/h =5/1 = 5. This may be considered as a narrow-beam cross-section.
If the b/h ratio were large, the cross-section may be considered to be wide
beam. What are the results of Example 6.1 if one considers the beam to be
a wide beam?

Solution
In the case of wide beams, we consider

Then, from Equation (6.5),
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giving
M, =Dy x, (6.21)

M=Mb=D,xb . (6.22)

Thus, from Equation (6.9a), Equation (6.11), and Equation (6.21),

E, 12}?11
) (12)(1.015% 101)
~ (0.001)
=1.218x10" Pa
and, from Equation (6.20),
4
5 (5)(200)(0.1)

(384)(1.218x 10" )(4.167 x107)

=5.131x10"3m
=5.131 mm.

The relative difference in the value of deflection between the assumption
of a wide and narrow beam is

e,|= 6rmrrow _Swide % 100
_ 5.256 — 5.131 %100
5.256
=2.357% .
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Because there is only 2.357% difference in the maximum deflection, does
this mean that the assumption of wide beams influences the stresses only
by a similar amount?

From Equation (6.21),

M,
K, =
Dy,

B 50
1.015%x 10?

=4.926—.

Because K, =0,%K,=0,

4.926
=(-0.00025)| 0
0

-1.232x107

The global stresses (Equation 6.18) at the top of the third ply (-30°) then are
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GX GX
Gy |= [Q] Sy
Txy ny

1.094x 10" 3.246x10"°  —5.419x10" |[-1.232x107°

=| 3.246x10% 2.365%x101°  —2.005%x10%° 0
—5.419x10"° —2.005x10"°  3.674x10% 0
-1.348x 108
=|-3.999%x107 |Pa .
6.676 x 107

The relative differences in the stresses obtained using wide and narrow
beam assumptions are

_ Gx\narrmu - Gx\wide

x 100

Ox

o x|narrow

\—1.034 x10° ~(~1.348 x 108)\
- ‘ ~1.034x10° ‘

=30.37%

_ Gy|narrow B Gy\wide

x 100

Y y|narrow

‘—2.680 x107 ~(~3.999x107)
- ‘ 2.680x10

‘x100

=49.22% .
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_ Txy\narmw B Txy|widz

T

x 100

Tyy
’ xy|narrow

4511x10” —6.676x 10’ |
4511x107 |

x 100

=48.00% .

6.3 Nonsymmetric Beams

In the case of nonsymmetric beams, the loads and moment are not decou-
pled. The relationship given by Equation (4.29) is

[l
Hetel B

Assuming that the preceding 6 x 6 inverse matrix is denoted by [J/] — that is,

or

A | BT
{B D} =[7]. (6.23)
then
”eg" —]11 12 J1s Jia 15 ]16——N"q
Sy ] 21 ] 22 ] 23 ] 24 ] 25 ] 26 Ny
'ng _ Jao Tn Tu Jau T Jas || Nw ‘ (6.24)
Ky Ju T Ju Ju T s || M
Ky s J52 Jss Jsa Js5 Js6 My
| Ky | Jao T Jo Ja T Jes _Mxy_
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If bending is taking place only in the x-direction, then M, is the only
nonzero component, giving

€2=114Mx
€3= Jaa M,
0 _
ny - ]34Mx
Kx = ]44Mx
K, = ]54My
Ky = ]64Mxy . (6.25)

The strain distribution in the beam, then, from Equation (4.16) is

€,=€) +2K, (6.26a)
0

€, =€, +2K, (6.26b)

Yoy = Yoy +2K,, - (6.26¢)

Because the beam is unsymmetric, the neutral axis does not coincide with
the midplane. The location of the neutral axis, z,, is where €, = 0. From
Equation (6.26a),

_0
0 =€, +z,x,
=JuM, +z,JuM,,
giving

i (6.27)

! Jas
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Because, from Equation (4.15),

*w,
Ky =— ,
Y oxdy

the deflection w, is not independent of y. However, if we have a narrow
beam — that is, the length-to-width ratio (L/b) is sufficiently high, we can
assume that w, = wy(x) only.

d*w,
=" 5 ="JulM, (6.28)
writing in the form
d*w,  M,b
=——, 6.29
dx? E.I (6:29)

where
b = width of beam
E, = effective bending modulus of beam
I = second moment of area with respect to the x—y-plane

From Equation (6.28) and Equation (6.29), we get

E, = (6.30)
h3]44
Also,
3
[
12
M=M.b
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To find the strains, we have, from Equation (4.16),

€,= €, +zK, (6.31a)
€,= €, +zK, (6.31b)
Vo = Yoy +2K,, - (6.31¢)

These global strains can be transformed to the local strains in each ply
using Equation (2.95):

& €,
e | =[R][T][R] e, | - (6.32)
Y12 |, Yy |,

The local stresses in each ply are obtained using Equation (2.73) as

G, S
o, | =[Q]l & | - (6.33)
T2 |, Y12 |,

The global stresses in each ply are then obtained using Equation (2.89) as

c, c,
o, | =[T] || - (6.34)

T’“J k T2 k

Example 6.3

A simply supported laminated composite beam (Figure 6.4) of length 0.1 m
and width 5 mm made of graphite/epoxy has the following layup: [0/90/
-30/30],. A uniform load of 200 N/m is applied on the beam. What is the
maximum deflection of the beam? Find the local stresses at the top of the
third ply (-30°) from the top. Assume that each ply is 0.125 mm thick and
the properties of unidirectional graphite/epoxy are as given in Table 2.1.

Solution
The stiffness matrix found by using Equation (4.28) and Equation (4.29) is

© 2006 by Taylor & Francis Group, LLC



448 Mechanics of Composite Materials, Second Edition

[ 1.027x10°  1.768x107 3.497x107° -1.848x10° 1.848x10° 1.694x10° |
1.768x10"7 5.986x107 2.608x107° 1.848x10° -1.848x10° 6.267 x 10>
3497 x107° 2.608x107° 2.195x107 1.694x10®° 6.267x10* 1.848x10°
-1.848x10° 1.848x10° 1.694x10° 9.231 1.473 4.234x10™
1.848x10° -1.848x10° 6.267 x 10? 1.473 4319 1.567 x 107
| 1.694x10° 6.267x10*> 1.848x10° 4.234x107" 1.567x107" 1.829

The inverse of the matrix is

[ 1.068x10® -3.409%10° 7.009%10™° 4298x10° -7.241x10° -9.809x10™ ]
-3.409%10° 1.829x10° 4.042x107° —6.097x10° 1.142x10° -3.083x10°
7.009x107° 4.042x107° 5.035x10° —6.339x10° —3.460x10° —4.989x107°
4298x10° —6.097x10° —-6.339x10° 1.194x10" -4.335x102 —1.940x1072
—7.241x107° 1.142x10° -3.460x10° —4.355x102 2.551x107" -5.480x107°

| -9.809x10° -3.083x10° —4.989x10° -1.940x107> -5480x10~ 6.123x10™" |

h=8x (0.125 x 10-3)

=0.001 m
Ju=1 194x 107 — 1
“o Pa-m®
Now, in Equation (6.30),
12
' h3]44
12

(0.001)"(1.194x107)

=1.005%10" Pa.

From Equation (6.13),
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(5x107)(0.001)°
B 12

=4167x10 B m* .

Thus, from Equation (6.20),

5= (5)(200)(0.1)
(384)(1.005x 10" )(4.167 x107)

=6.219x107 m

=6.219 mm.

The maximum bending moment occurs at the middle of the beam and is
given by

_go N
m

Calculating the midplane strains and curvature from Equation (6.24) gives
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[ 1.068x10°
-3.409x 107’
7.009% 107"
4.298x10°°
—7.241%x10°°

| -9.809x 107

giving

-3.409%107°
1.829%1078
4.042x107°
—6.097 x107°
1.142 %107
-3.083x107°

Mechanics of Composite Materials, Second Edition

=<
go .M

A A

Y

A

7.009% 1071
4.042x107°
5.035x107®
—-6.339x107°
—3.460x10°°
—4.989%107°

m_m
EP<oxro

2

X

Ky

ny

Xy

4.298%107°
—6.097 x 107
—-6.339%x107°
1.194x 107
—4.355x 107
-1.940%1072

[ 2.149% 107
—3.048 x 10
—3.169%x 10

5.970
-2.178

-9.700 x 107!

—7.241x107°
1.142x 107
—-3.460%107°
—4.335x 107>
2.551x107!
-5.480x10°°

-9.809%10° |[

-3.083x10°°
—4.989x107°
-1.940x 1072
-5.480x 107

6.123x107 ||

The global strains (Equation 6.31) at the top of the third ply (-30°) are

EX e?{ Kx
_ 0
Ey = Ey +Zz Ky
0
ny ny ny
2.149x 107 5.970
=|-3.048x10™* +(—0.00025) -2.178
—3.169%x 107 —9.700 x 107"
-1.278x107°
=| 2.397x10™* |—.
—7.431%x107°
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The global stresses (Equation 6.34) at the top of the third ply (-30°) are

GX GX
Gy Z[Q] Sy

Txy ny

1.094 x 10" 3246 x10"°  -5.419x10" || -1.278 x 107
=| 3.246 x 10" 2.365x 10" -2.005x10" | 2.397 x 107*
-5.419x10"  -2.005x10"°  3.674x10" || 7.431x107°

-1.280 x 108
=|-3.431x107 |Pa .
6.170 x 107

Example 6.4

In Example 6.3, the width-to-height ratio in the cross-section of the beam
is b/h =5/1 = 5. This may be considered as a narrow-beam cross-section.
If the b/h ratio were large, the cross-section may be considered to be wide
beam. What are the results of Example 6.3 if one considers the beam to be
a wide beam?

Solution
In the case of the wide beams, we consider

Ky:O.

Then, from Equation (6.24),

Ju Ji2 s Ja J1s 16 0

J1 J» J2s Jos J2s J26 0

Jao  Ta Jos o Jas s Tse 0
K, ]41 ]42 ]43 ]44 ]45 ]46 Mx '

M

0

m. .m
<o ro

= o
=
|

(6.35)

0 Jsi T Jss Jsa Tss s
_ny _]61 ]62 ]63 ]64 ]65 ]66

we get
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€=M, +]5M, (6.36a)
ey =M, +JsM, (6.36b)
Yoy =M, +J3sM, (6.36¢)
Ky = JuM, +]sM, (6.36d)
0=JsM, +]M, (6.36€)
Ky = Jaa M+ JesM,, (6.36f)

To find the neutral axis, €, = 0, we use Equation (6.36a) and Equation
(6.36e) to give

z, =— ]14]55 - ]15]54 (637)
]44]55_]4SIS4

M,, =bM, =b—J5 (6.38)
]44]55 - ]54]45

From Equation (6.9a), Equation (6.11), and Equation (6.38),

12 Jss
E="%2___J5%
1 (Jadss — Jus)ss)

12 2.551x 107"
(0.001)° (1.194 x 10-1)(2.551 x 10-1)— (4.355 x 10-2)(—4.355 x 10-2)

=1.071x10" Pa.

Thus, from Equation (6.20), we get

(5)(200)(0.1)°

-~ (384)(1.072x10")(4.167 x107)
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=5.830x10"m
=5.830 mm.

From Example 6.3, the maximum bendings” moment per unit width is

N-m

M =50—--.
m

x‘max

From Equation (6.36e),

M, | e = =238 M,
’ ]%

_ —4.355x 1072 ( )
© 2551x10™

_g.a97 N
m

From Equation (6.35),

L%y ]

1.068x10° -3.409x10° 7.009x107° 4298x10° -7.241x10° —9.809x10° | O
—3.409%x107° 1.829x10° 4.042x107° —-6.097x10° 1.142x10° -3.083x10°| O
7.009x107° 4.042x107° 5.035x10° -6.339x10° -3.460x10° —4.989x10° || O
4298%x10° -6.097x10° -6.339x10° 1.194x10" —-4.335x107> -1.940x1072|| 50
—7241x10° 1.142x10° -3.460x10° —4.355x102 2.551x107 -5.480x107 || 8.497
—9.809%107° -3.083x10° —4.989x10° -1.940x102 -5.480x10° 6.123x10™ 0

1.534x10™
—2.078x10™*
_|-3463x10™*
| 5602
0
-1.017
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The global strains (Equation 6.15) at the top of the third ply (-30°) are

K

X

+z Ky

Mm
I
m. m
Lo ro

= o

Y KW

2
&
<

[ 1.534x10™ | 5.602
=|-2.078x10* [+(-0.00025)| 0
—3.463x107* -1.017

[ 1247 %107 ]
=|-2.078x10™*
—9.221x107°

S

The global stresses (Equation 6.18) at the top of the third ply (-30°) are

Q
Il

EX
v|=[Q]} &

Txy ny

[ 1.094%x10" 3.246x10"  -5.419x10" || -1.247 x 107
=| 3.246x10" 2.365x10"  —2.005x10" || -2.078 x107*
-5.419%10"  -2.005x10"  3.674x10" | -9.221x107°

[—1.382x10°
=| —4.354x107 |.
6.833x 107

The relative differences
beam assumptions are

€,| in the stresses obtained using wide and narrow

_ Gx\nﬂrww - Gx\wide

= x 100
o

x|narrow
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‘—1.280>< 10° - (-1.382 108)\

x 100
~1.280x 10° ‘

=7.97%

GCx

ylnarrow Gy|wide

o
x 100

Gyhmmrw

~3.431107 - (~4.354x 107)‘

%100
—3.431x10’ ‘

=26.90%

Txy\narmw - Txy\wide

T

%100

xy|narrow

6.170x 10" —6.836x 10|
) |

x 100
6.170x 107

=10.79%.

6.4 Summary

In this chapter, we reviewed the bending of isotropic beams and then
extended the knowledge to study stresses and deflection in laminated com-
posite beams. The beams could be symmetric or unsymmetric, and wide or
narrow cross-sectioned. Differences in the deflection and stress are calculated
between the results of a wide and a narrow beam.

Key Terms

Bending stress
Second moment of area
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q =100 N/m %lSmmle

o
)
o
3
V.

FIGURE 6.6
Uniformly loaded simply supported beam.

Symmetric beams
Wide beams
Narrow beams
Unsymmetric beams

Exercise Set

6.1 A simply supported laminated composite beam (Figure 6.6) made
of glass/epoxy is 75 mm long and has the layup of [£30],,. A uniform
load is applied on the beam that is 5 mm in width. Assume each
ply is 0.125 mm thick and the properties of glass/epoxy are from
Table 2.1.

1. What is the maximum deflection of the beam?
2. Find the local stresses at the top of the laminate.

6.2 A simply supported laminated composite beam (Figure 6.6) made
of glass/epoxy is 75 mm long and has the layup of [+30],. A uniform
load is applied on the beam that is 5 mm in width. Assume each
ply is 0.125 mm thick and the properties of glass/epoxy are from
Table 2.1.

1. What is the maximum deflection of the beam?
2. Find the local stresses at the top of the laminate.

6.3 Calculate the bending stiffness of a narrow beam cross-ply laminate
[0/90],,. Now compare it by using the average modulus of the lam-
inate. Assume that each ply is 0.125 mm thick and the properties of
glass/epoxy are from Table 2.1.
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