Introduction to
PyTorch

- §
- 30
m Ecole g "
polytechnique = \\ : ‘\ B
fédérale / % NS,
de Lausanne - s, b
; — N \\ =
,_“'\ a*® - \

Leandro VON KRANNICHFELDT
Vinay SHARMA
Amaury WEI

12.09.2024

=L Wamm-up Quiz

Go to

https://menti.com

Enter the code

5919 7630

EPFL Why PyTorchq - R
O PyTorch

Hardware-accelerated array computation library

Main Features Strong Points

= Automatic differentiation = Open-source & active community
= Hardware acceleration = Easy-to-use (and understand)

= Compatible with Numpy, Scipy, ... = | ots of integrated tools

. Similar Libraries: F TensorFlow adr@

=P"L Leaming PyTorch ™

Documentation Tutorials YouTube

100 stconos oF

O PyTorch O PyTorch

https://pytorch.org/docs/ https://pytorch.org/tutorials
stable/index.html /beqginner/basics/intro.html

https://pytorch.org/tutorials/
beginner/ptcheat.html

| can be outdated

https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/tutorials/beginner/ptcheat.html
https://pytorch.org/tutorials/beginner/ptcheat.html

a2l
=PrL Tensors =< [O

Declaration

X = torch.randn(%size) # tensor with independent N{(@,1) entries

x = torch.[ones|zeros] (*size) # tensor with all 1's [or 0's]

x = torch.tensor(L) # create tensor from [nested] 1ist or ndarray L
y = x.clone() # clone of x

np_array = np.array([[1, 2], [3, 4]])
torch _tensor = torch.from numpy(np_array) i

Dimensions _

=»> t = toxrch.empty(3, 4, 5) 1d-tensor 2d-tensor 3d-tensor
»>»> t.size()
torch.5ize([3, 4, 5])

Most important concept in DL libraries

4d-tensor 5d-tensor 6d-tensor

=PFL Data Types

32-bit floating point

64-bit floating point
16-Dbit floating point

8-bit integer
8-bit integer unsigned

16-bit integer
32-bit integer

torch

torch.
torch.

torch.
torch.

torch.

torch

.float32 Or torch.float

int8
uints8

intlo
.1nt32

a = torch.ones((2, 3), dtype=torch.intl6)
b = toxch.rand((2, 2), dtype=torch.float64)

floatod Or torch.double
floatlo Or torch.half

¢
000

Nz

NumPy «2
NVIDIA.

CUDA
W Cat 1 0 0 0
TRy " * Dog 0 1 0 0
k2 & Turtle 0 0 1 0
e O Eep 0 0 0 1
Grayscale Cat 1 0 0 0

.

Timeseries

One-hot encoding

=P7L " Tensor Operations

Math Operations

ones = torch.zeros(2, 2) + 1 torCh“ak?S ()
twos = torch.ones(2, 2) = 2 torch.linalg.norm()

threes = (torch.ones(2, 2) = 7 - 1) [2 torch.matmul ()

fours = twos *x 2

Shape Manipulation

>»> x = torch.zeros(2, 1, 2, 1, 2)
»»> X.5ize()

torch.squeeze () r \ torch.Size([2, 1, 2, 1, 21)
torCh°unSqueeze () 12 - 4747‘ SRt 8l9A10711A12 z:z : ;i;zﬁgh'ﬁqueeze{x}

[BN 1] torch.S5ize([2, 2, 2])
torch.view () E | ‘ | }, »>> y = torch.squeeze(x, 0©)

" >»> y.size()

torch.reshape () [] torch.5ize([2, 1, 2, 1, 2])
torch.permute () { ||| }
torch.transpose () \ o

view (6,2) 4//

=P*L Autograd Mechanism

Autograd

impoxrt toxch

a
b

Gradient Example 1

Freezing Model Weights

from torch impoxt nn, optim

model = resnetl8(weights=ResNet18_Weights.DEFAULT)

toxch.tensox([2., 3.], requires_grad=True)
torch.tensox([6., 4.], requires_grad=True) # Freeze all the parameters in the network

for param in model.parameters():
param.requires_grad = False

: a=x+5 y.backward()
Q — gﬂ'g bg ﬂ = 9&2 b=a**3 print(x.grad)
da c=b+1
D = Zxaxk’ - bxx2? = c.sum()/3 tensor([25., 36., 49.])
Egg-zz 2b Zrint("Y", y)
ob
. Y tensor(229., grad fn=<DivBackwardo>)
Gradient Example 2 e ’ -
) dy By dc; Ob; Ba; By =2
3 4 Ox; Oc; Ob; Oa; Ox; T Oy /0x = [25, 36, 49]
a=x+5 c=b+1 3az’_1 5’bz'_3 5 dc; oy 1
3 =1, = 3-a; =1 — = —
= b =aq y:::c/3 ox; da; Ob; ac; 3

=" Building Layers

Fully Connected

CLASS toxch.nn.Lineax(in_features, out_features, bias=True, device=None,
dtype=None) [SOURCE]

Applies a linear transformation to the incoming data: y = zAT +b

Convolutional

b

Pooling

CLASS toxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode="'zeros’,

device=None, dtype=None) [SOURCE]

Activation Functions

CLASS toxch.nn.RelLU(inplace=False) [SOURCE]

Applies the rectified linear unit function element-wise:

ReLU(z) = (z)™ = max(0, z)

CLASS torch.nn.MaxPool2d(kernel_size, stride=None,
ceil_mode=False) [SOURCE]

Memory Blocks

CLASS toxch.nn.LSTM(*azrgs, #tkwargs) [SOURCE]

Losses

CLASS toxch.nn.CrossEntropylLoss(weight=None, size_average=None,
ignore_index=- 100, reduce=None, reduction="'mean’,

label_smoothing=0.0) [SOURCE]

="~ Building Models

torch.nn.Module

class MLP(nn.Module):
def _init_ (, input_size, np = 64):
super(MLP,). __init_ ()
.Linl = nn.Linear(input_size, np)
.Lin2 = nn.Linear(np, np)
.Lin3 = nn.Linear(np, 1)
.RelLU = nn.ReLU()

.51ig = nn.Signoid()

2 X))
.ReLU(.Lin1(x))
.ReLU(.Lin2(x))
.Sig(.Lin4(x))

Optimizer

optimizer = optim.S5GD(model.parameters(), 1lr=0.01, momentum=0.%)

Loss Function

»>» loss = nn.MSELoss()

»»>» input = torch.randn(3, 5, requires_grad=True)
»»> target = torch.randn(3, 5)

»>>> output = loss(input, targdet)

torch.nn.Sequential

MLP(nn.Module):
def __init_ (, input_size, np = 64):
super(MLP,). _init_ ()

.Net = nn.Sequential(
torch.nn.Linear(input_size, np),
nn.ReLU(),
torch.nn.Linear(np, np),
nn.RelLU(),
torch.nn.Linear(np, 1),
nn.Sigmoid(),

)

def forward(2 X))

for input, target in dataset:
optimizer.zexo_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backwarxrd()
optimizer.step()

=" Mini-batches for training

Training Set

ltem 1 -—
ltem 2 —
ltem 3 —
ltem 4 —

Item N

S—

Mini-batch A
Size 4
Shuffle NO

ltem 1
ltem 2
ltem 3
ltem 4

Item N

]

Mini-batch A
Size 4
Shuffle YES

=" Mini-batches for training
, e

ltem 1 « @ \

ltem 2 \

ltem 3 3 WorgerZ \\
ltem 4 @
ANGHZEN

Worker 4

(7N
o

DatalLoader
w/ 4 workers

Item N

=PFL GPU Acceleration -

cuda = torch.device('cuda') # Default CUDA device

x = torch.tensox([1., 2.], device=cuda®)
x.device iIs device(type='cuda', index=@)

https://pytorch.org/get-started/locally/

PyTorch Build Preview (Nightlhy)
Package Conda _ LibTorch Source
CUDA CUDA e U

118 121
o pip3 install torch torchvision toxchaudio --index-url https://download.pytorc
Run this Command: h.org/whl/cu124

elif torch.

device

elif torch. . .is available(): Compute Placform

device

Automatic selection of GPU acceleration
Manual override with --cpu CLI argument

Make sure to install the right version

Move data to GPU inside the main
loop, not inside the Dataset class

| Do not forget model. to (device)

https://pytorch.org/get-started/locally/

=PFL Example Training I.OOP

2T T e lll‘:' walTdat+Tan oW = TF norcoc 1/
craining valigation, dac nload if flecessary

+-

e o e)
Lreate datasetrs Io

training_set = torxchvision.datasets.FashionMNIST('./data', train=True, transform=transform,

=

validation set = torchvision.datasets.FashionMNIST('./data', train=False, transform=transform,

Create data loaders for our datasets; shuffle for training, not for validation

training loader = torch.utils.data.Dataloader(training_set, batch_size=4, shuffle=True)
validation loader = torch.utils.data.Dataloader(validation set, batch_size=4, shuffle=False)

PyTorch models inherit from torch.nn.Module

model = GarmentClassifier()
class GarmentClassifier(nn.Module):

optim package def __init__(self):

¥ '_-Il.-' LL

f=
%]
=

Optimizers specified in the tor
optimizer = torch.optim.S5GD(model.parameters(), 1lr=0.501, momentum=£.9) super(GarmentClassifier, self). _init ()
self.convl = nn.Conv2d(1, &, 5)

self.pool = nn.MaxPool2d(2, 2)

= - self.conv? = nn.Conv2d(&, 16, 5)

S 'lﬂ o self.fcl = nn.Linear(16 %= 4 % 4, 128)
i 10 d|g|ts self.fc2 = nn.linear(120, 84)
i l p self.fc3 = nn.Linear(54, 1)
L as output

T-shirt/top Trouser Pullover Dress Coat def formard(self, x):
x = self.pool(F.relu(self.convi(x)))

¥ = self.pool(F.relu(self.conv2(x)))
P x = x.view(-1, 16 * 4 % 4)
Flatten the F.relu(self.fcl(x))
. ¥ = F.relu(self.fc2(x))
convolved IMmages x = self.fc3(x)

Sneaker Ankle boot return x

»
Il

-
|

Sandal

=PFL Example Training Loop '

def train_one_epoch(epoch_index, tb_writer):
running_loss = 0.
last_loss = 0.

Here, we use enumerate(training loader) instead of
iter(training leader) so that we can track the batch
index and do some intra-epoch reporting

for i, data in enumerate(training_loader): <
Every data instance is an input + label pair

inputs, labels = data <

Fero your gradients for every batch!
optimizer.zero_grad()

Make predictions for this batch
outputs = model (inputs)

Compute the loss and its gradients

loss = loss_fn{outputs, labels) <
loss.backward()

Adjust learning weights

optimizer.step()

Gather data and report

running_loss += loss.item()

if i ¥ 1000 == 999;
last_loss = running_loss J 1000 # Ioss per batch
print(' batch {f loss: {}'.format(i + 1, last_loss))
th_x = epoch_index % len(training_loader) + i + 1
tb_writer.add scalar('loss/train', last loss, tb_x)

running_loss = 0.

return last_loss

Cycle through the data

Could use:
inputs inputs. to (device)
labels = labels.to(device)

loss fn canbe CrossEntropyLoss ()

Key step in the learning process

Questions

	Slide 1: Exercises Week 2
	Slide 2: Warm-up Quiz
	Slide 3: Why PyTorch?
	Slide 4: Learning PyTorch
	Slide 5: Tensors
	Slide 6: Data Types
	Slide 7: Tensor Operations
	Slide 8: Autograd Mechanism
	Slide 9: Building Layers
	Slide 10: Building Models
	Slide 11: Mini-batches for training
	Slide 12: Mini-batches for training
	Slide 13: GPU Acceleration
	Slide 14: Example Training Loop
	Slide 15: Example Training Loop
	Slide 16: Questions

