

Problem Set 4

CIVIL-425: Continuum Mechanics and Applications

27 March 2024

Exercise 1, Principal directions and stretches

Consider a local deformation gradient \mathbf{F} . Let the spectral decomposition of the right Cauchy-Green deformation tensor be:

$$\mathbf{C} = \sum_{\alpha=1}^3 c_{\alpha} \mathbf{N}_{\alpha} \otimes \mathbf{N}_{\alpha}$$

here c_{α} and $\mathbf{N}_{\alpha}, \alpha = 1, 2, 3$,

$$(\mathbf{C} - c_{\alpha} \mathbf{I}) \cdot \mathbf{N}_{\alpha} = 0, \quad \|\mathbf{N}_{\alpha}\| = 1, \quad \alpha = 1, 2, 3$$

Let $\lambda_{\alpha} = \sqrt{c_{\alpha}}$ be the principal stretches; $\mathbf{F} = \mathbf{VR} = \mathbf{RU}$ the polar decompositions of \mathbf{F} , the $\mathbf{R} \in SO(3)$, $\mathbf{U} = \mathbf{U}^T = \sqrt{\mathbf{C}}$, $\mathbf{V} = \mathbf{V}^T = \sqrt{\mathbf{B}}$; and set $\mathbf{n}_{\alpha} = \mathbf{RN}_{\alpha}$. Prove the identities:

i.1) $\mathbf{n}_{\alpha} = \lambda_{\alpha}^{-1} \mathbf{F} \mathbf{N}_{\alpha}$.

i.2) $\mathbf{F} = \sum_{\alpha} \lambda_{\alpha} \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha}$.

i.3) $\mathbf{R} = \sum_{\alpha} \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha}$.

Exercise 2, Linearization

The volumetric-deviatoric decomposition of the deformation gradients:

$$\mathbf{F} = \mathbf{F}^{\text{vol}} \mathbf{F}^{\text{dev}}, \quad \mathbf{F}^{\text{vol}} \equiv J^{1/3} \mathbf{I}, \quad \mathbf{F}^{\text{dev}} \equiv J^{-1/3} \mathbf{F}$$

where J is the Jacobian of the deformation and \mathbf{I} is the identity tensor. Linearize with respect to a small displacement \mathbf{u} field superposed on the spatial configuration.