

Problem Set 3

CIVIL-425: Continuum Mechanics and Applications

14 March 2024

Exercise 1, compatibility conditions

Consider a cylindrical solid referred to an orthonormal Cartesian reference frame $\{X_1, X_2, X_3\}$. Let the axis of the solid be aligned with the X_3 -direction and let its normal cross-section occupy a region Ω in the $X_1 - X_2$ plane of boundary $\partial\Omega$. Consider deformations which result in the deformation gradients of the form:

$$[\mathbf{F}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \gamma_1 & \gamma_2 & 1 \end{pmatrix}, \quad (1)$$

where γ_1 and γ_2 are functions of (X_1, X_2) .

1. What condition do (γ_1, γ_2) need to satisfy to verify compatibility?
2. Assuming that the compatibility conditions derived in the previous are satisfied, express the deformation mapping in terms of (γ_1, γ_2) and show that it is of the same form as of 1 for some $w(X_1, X_2)$.
3. Consider the deformation defined by:

$$\gamma_1 = -\frac{\sin \theta}{r}, \gamma_2 = \frac{\cos \theta}{r} \quad (2)$$

where (r, θ) are polar coordinates centered at the origin, with θ measured from X_1 , so that:

$$X_1 = r \cos \theta, X_2 = r \sin \theta. \quad (3)$$

Verify that the deformation field in eq. 2 satisfies the compatibility condition derived in the first point everywhere in the $X_1 - X_2$ plane excluding the origin.

4. Compute the displacement field $w(X_1, X_2)$ which gives rise to the deformation 2, assuming that $w = 0$ on the positive half-line $X_2 = 0, X_1 > 0$. Sketch the deformed shape of an initially circular region centered at the origin and contained in the $X_1 - X_2$ plane.
5. Consider the Burgers circuit $r = \text{const}, 0 < \theta < 2\pi$ centered at the origin. Does the same circuit close in the deformed configuration? Interpret the results in term of dislocations.

Exercise 2, Orthogonal cutting

A rigid tool cuts a layer from a metal workpiece with its edge perpendicular to the direction of motion (orthogonal machining). The feed is h , the rake angle is α and the angle of the primary shear zone to the surface of the workpiece is β . The thickness of the resulting chip is d . The material is assumed to be incompressible and undeformed prior to cutting.

1. Calculate the thickness of the chip as a function of h , α and β , by considering conservation of mass at the primary shear zone.
2. Calculate the deformation \mathbf{F} in the chip as a function of α and β . In particular, calculate the shear $\gamma = \mathbf{s} \cdot (\mathbf{F} \mathbf{N})$ through the primary shear zone, where \mathbf{s} and \mathbf{N} are the unit vectors tangent and normal to the primary shear zone, respectively. *Hint: consider there is a discontinuous jump in the deformation field normal to the primary shear zone*

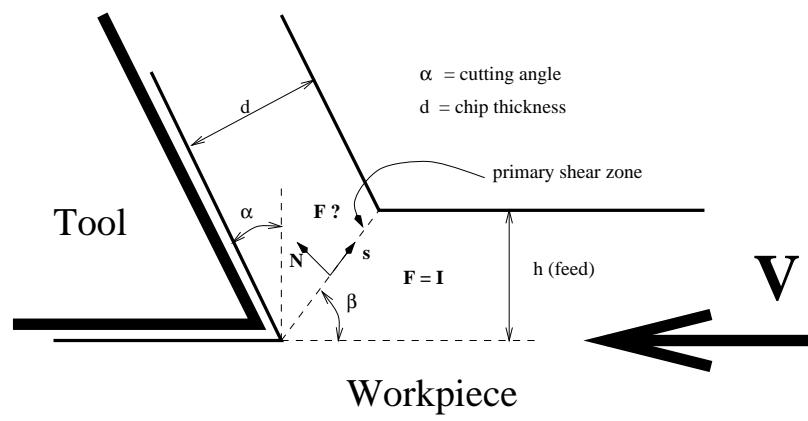


Figure 1: Geometry of orthogonal cutting.

3. Suppose that the material deforms so as to minimize the shear deformation γ . Compute β from this condition. Calculate the corresponding γ and chip thickness.