Problem Set 9
CIVIL-425: Continuum Mechanics and Applications

08 May 2025

Exercise 1: Traction test of Elastomer Specimen

We are interested in studying the response of an incompressible elastomeric specimen subjected to homogeneous
deformations. We consider a specimen whose reference underformed configuration is a cube, whose edges of length
L are directed along the axes. The specimen is an elastomer whose constitutive law has the form:

o=—pl+ f(I,)E-F"
with

f() = p=pckpT Neo-Hookean model
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FI) = (3\/;7,) £ (\/?N> 8-chain model

where p is the mass density, Iy = (C : I) is the first strain invariant and £ is the Langevin function defined
as L(x) = cothax — 1/x. It is assumed that the deformations are quasi-static, isothermal, and that the volumetric
strains are negligible.

We consider that the specimen is subjected to an extension by a factor of « in the direction e; while its lateral
faces (with external normal e, and e;) are stress-free. By denoting § as the contraction factor in the directions e,
and e5, we are interested in transformations of the form:

o(X) = aXie, + B (Xaey + X3es)
1. Explicit the deformation gradient tensor I and show that 5 = ﬁ Calculate Iy = C : L.

2. Determine the Cauchy stress tensor using the local equilibrium and the boundary conditions. Is p free to
vary?

3. Deduce the resultant R of the force exerted on the deformed face from the face (X; = L) in the initial

configuration as a function of «, then plot RL"él. Consider the change of area from reference to deformed
configuration.
Solution

1. The uniaxial traction corresponds to a transformation of the form:

F=oe,®e + (e ey +e30¢e3); det £ = af?.

2. The incompressibility condition yields the relationship between o and 3, det ' =1 = 3 = ﬁ We then
obtain:
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Ft = e ®e; +Va(e, ey +e;3®es)

The constitutive law gives us:
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This stress field balances the external forces if:
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This imposes: p = é f(I1). Therefore, the pressure is not a free variable but is fixed due to the incompressibility
constraint of the material. If f(/;) does not depend on z, which will notably be satisfied if C' is constant, then
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. The sum of the forces exerted on the deformed face from the face (X; = L) in the initial configuration is given
by:
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We can then plot RS'—EI = (a - ﬁ) f (oz2 + %) as a function of «, see Figure 1.
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Figure 1: Comparison of the Neo-Hookean and Arruda-Boyce model for a uniaxial tension test (N = 75, u
1[M Pa]). The two curves show a divergent at values of stretch higher than 3



