

Problem Set 8

CIVIL-425: Continuum Mechanics and Applications

01 May 2025

Exercise 1: Thermodynamic potentials

Consider a thermoelastic material in the Lagrangian description, with internal energy per unit mass:

$$U(\mathbf{C}, N, \mathbf{Q}),$$

where:

- \mathbf{C} is the right Cauchy-Green deformation tensor,
- N is the entropy per unit mass,
- \mathbf{Q} is a vector of internal variables.

- (a) Define the thermodynamic potentials: Helmholtz free energy $A(\mathbf{C}, T, \mathbf{Q})$, enthalpy $H(\mathbf{S}^e, N, \mathbf{Q})$, and Gibbs free energy $G(\mathbf{S}^e, T, \mathbf{Q})$ via Legendre transforms of the internal energy $U(\mathbf{C}, N, \mathbf{Q})$.
- (b) Derive expressions for A , H , and G , and then compute H from G , and A from H .
- (c) Let the internal variable be a scalar damage variable $d \in [0, 1]$. Let the Helmholtz free energy per unit mass be:

$$A(\mathbf{C}, T, d) = \frac{1}{2R}(1-d)^2 \mathbf{C} : \mathbb{C}_0 : \mathbf{C} - \left[cT \ln \left(\frac{T}{T_0} \right) - c(T - T_0) \right].$$

- Write the corresponding thermodynamic forces
- State the dissipation inequality for this material.

Solution

(a) Thermodynamic Potentials via Legendre Transform

Helmholtz free energy:

$$A(\mathbf{C}, T, \mathbf{Q}) = \inf_N \{U(\mathbf{C}, N, \mathbf{Q}) - TN\}.$$

Enthalpy:

$$RH(\mathbf{S}^e, N, \mathbf{Q}) = \inf_C \{RU(\mathbf{C}, N, \mathbf{Q}) - \mathbf{S}^e : \frac{1}{2}\mathbf{C}\}.$$

Gibbs free energy:

$$RG(\mathbf{S}^e, T, \mathbf{Q}) = \inf_C \{RA(\mathbf{C}, T, \mathbf{Q}) - \frac{1}{2}\mathbf{C} : \mathbf{S}^e\}.$$

Note: All potentials are per unit mass. To convert derivatives to per unit volume, multiply by the reference mass density R .

(b) Derivation Between Potentials

From the definition of G and A , we get:

$$G(\mathbf{S}^e, T, \mathbf{Q}) = \inf_{\mathbf{C}} \left\{ \inf_N (U(\mathbf{C}, N, \mathbf{Q}) - TN) - \frac{1}{2R} \mathbf{C} : \mathbf{S}^e \right\}.$$

So, combining these steps:

$$G(\mathbf{S}^e, T, \mathbf{Q}) = \inf_{\mathbf{C}, N} \{U(\mathbf{C}, N, \mathbf{Q}) - TN - \frac{1}{2R} \mathbf{C} : \mathbf{S}^e\}.$$

Recovering Enthalpy from Gibbs:

$$H(\mathbf{S}^e, N, \mathbf{Q}) = \inf_T \{G(\mathbf{S}^e, T, \mathbf{Q}) + TN\}.$$

Recovering Helmholtz free energy from Enthalpy:

$$A(\mathbf{C}, T, \mathbf{Q}) = \inf_{\mathbf{S}^e, N} \{H(\mathbf{S}^e, N, \mathbf{Q}) - \mathbf{S}^e : \frac{1}{2R} \mathbf{C} - TN\}$$

(c) Helmholtz Free Energy and Dissipation with Scalar Damage

Derived thermodynamic quantities:

$$\begin{aligned} \mathbf{S}^e &= 2R \frac{\partial A}{\partial \mathbf{C}} = 2(1-d)^2 \mathbb{C}_0 : \mathbf{C}, \\ N &= -\frac{\partial A}{\partial T} = c \ln \left(\frac{T}{T_0} \right), \\ Y &= -R \frac{\partial A}{\partial d} = 2(1-d) \mathbf{C} : \mathbb{C}_0 : \mathbf{C}. \end{aligned}$$

In the Lagrangian configuration, the Clausius-Duhem inequality (per unit reference volume) is:

$$\mathcal{D} = \mathbf{S} : \frac{1}{2} \dot{\mathbf{C}} - R \dot{U} + RT \dot{N} + \nabla \cdot \mathbf{h} \geq 0.$$

Substituting $dU = dA + TdN$, and using the chain rule:

$$\mathcal{D} = Y \dot{d} - \frac{1}{T} \mathbf{h} \cdot \nabla T \geq 0.$$

Thus, for admissible thermomechanical processes:

$$2(1-d) (\mathbf{C} : \mathbb{C}_0 : \mathbf{C}) \dot{d} \geq \frac{1}{T} \mathbf{h} \cdot \nabla T.$$

This ensures non-negative dissipation from damage and heat conduction.

This shows:

- If there is no heat flux, the damage evolution must satisfy $2(1-d) \dot{d} (\mathbf{C} : \mathbb{C}_0 : \mathbf{C})$, which reduces to $\dot{d} \geq 0$, i.e. damage irreversibility
- If there is no damage, the heat flux must satisfy Fourier's law direction: $\mathbf{h} \cdot \nabla T \leq 0$.

These relations are consistent with the first and second laws of thermodynamics in the Lagrangian formulation.