

Problem Set 8

CIVIL-425: Continuum Mechanics and Applications

01 May 2025

Exercise 1: Thermodynamic potentials

Consider a thermoelastic material in the Lagrangian description, with internal energy per unit mass:

$$U(\mathbf{C}, N, \mathbf{Q}),$$

where:

- \mathbf{C} is the right Cauchy-Green deformation tensor,
- N is the entropy per unit mass,
- \mathbf{Q} is a vector of internal variables.

- Define the thermodynamic potentials: Helmholtz free energy $A(\mathbf{C}, T, \mathbf{Q})$, enthalpy $H(\mathbf{S}^e, N, \mathbf{Q})$, and Gibbs free energy $G(\mathbf{S}^e, T, \mathbf{Q})$ via Legendre transforms of the internal energy $U(\mathbf{C}, N, \mathbf{Q})$.
- Derive expressions for A , H , and G , and then compute H from G , and A from H .
- Let the internal variable be a scalar damage variable $d \in [0, 1]$. Let the Helmholtz free energy per unit mass be:

$$A(\mathbf{C}, T, d) = \frac{1}{2R}(1-d)^2 \mathbf{C} : \mathbb{C}_0 : \mathbf{C} - \left[cT \ln \left(\frac{T}{T_0} \right) - c(T - T_0) \right].$$

- Write the corresponding thermodynamic forces
- State the dissipation inequality for this material.