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17 April 2025

Problem 1: Finite element formulation

Consider a two-dimensional simplex element which, in its deformed configuration, occupies a triangular region
Ω whose corners, or ’nodes’, are labelled 1,2 and 3 consecutively and counterclockwise. The element lies in the
x1 − x2 plane. Let xa, a = 1, 2, 3, be the coordinates of the nodes and x ∈ Ω a point in the element. Denote
ra = xa − x, a = 1, 2, 3. Define ’shape functions’ of the form:

N1(x) = [e3, r2, r3] /(2A)

N2(x) = [e3, r3, r1] /(2A)

N3(x) = [e3, r1, r2] /(2A)

where A is the area of the element and e3 is the unit vector normal to the plane of the element.
i) Show that N1 +N2 +N3 = 1.
Incremental displacements u(x) and accelerations ü(x) over the element are defined by interpolation,

u(x) =

3∑
a=1

uaNa(x)

ü(x) =

3∑
a=1

üaNa(x)

where ua and üa, a = 1, 2, 3, are the nodal displacements and accelerations. The Cauchy stresses σ are taken to be
constant over the element. The element is under the action of body forces b defined over Ω, and boundary tractions
t applied over a part ∂Ωτ of the boundary of the element.

ii) Using the principle of virtual work and restricting virtual displacements to be of the form (2), show that the
equation of linear momentum balance for the element reduces to:

Mü+ABTσ = f

where ü = {ü1, ü2, ü3} is an array which collects all nodal accelerations, M is a 6×6 ’mass’ matrix, σ is redefined
as the array {σ11, σ22, σ12}, B is a 3× 6 matrix, and f is a 6-dimensional ’nodal force’ array. Compute the arrays
M,B and f in terms of the nodal coordinates, the mass density ρ,b and t.

Solution

Na =
Aa

A
⇒

3∑
a=1

Na =
1

A

3∑
a=1

Aa = 1

Note that Na (xb) = δab. Also,

N1 = (x2α − xα) (x3β − xβ) ϵαβ3 = (x2αx3β − xαx3β − x2αxβ) ϵαβ3

N2 = (x3α − xα) (x1β − xβ) ϵαβ3 = (x3αx1β − xαx1β − x3αxβ) ϵαβ3

N3 = (x1α − xα) (x2β − xβ) ϵαβ3 = (x1αx2β − xαx2β − x1αxβ) ϵαβ3

since xαxβϵαβ3 = 0. Hence, the shape functions Na are linear in x. The gradients of the shape functions follow
as:
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N1,α = (x3β − x2β) ϵαβ3

N2,α = (x1β − x3β) ϵαβ3

N3,α = (x2β − x1β) ϵαβ3

and they are constant. From virtual work:∫
Ω

[
σαβη(α,β) + ρ (üα − bα) ηα

]
dV −

∫
∂Ωτ

t̄αηαdS = 0

Inserting interpolation:∫
Ω

[
σαβ

3∑
a=1

1

2
(ηaαNa,β + ηaβNa,α) + ρ

(
3∑

a=1

ηaαNa

)(
3∑

b=1

übαNb

)]
dV

−
∫
Ω

ρbα

(
3∑

a=1

ηaαNa

)
dV −

∫
∂Ω

t̄α

(
3∑

a=1

ηaαNa

)
dS = 0

which must hold for all ηaα. Arrange in matrix form. Define:

{η}T = (η11, η12, η21, η22, η31, η32)

{ü}T = (ü11, ü12, ü21, ü22, ü31, ü32)

{σ}T = (σ11, σ22, σ12)

Then:

σαβ

3∑
a=1

1

2
(ηaαNa,β + ηaβNa,α) = {η}TBT {σ}

where:
Likewise,

B =

 N1,1 0 N2,1 0 N3,1 0
0 N1,2 0 N2,2 0 N3,2

N1,2 N1,1 N2,2 N2,1 N3,2 N3,1


where: ∫

Ω

ρ

(
3∑

a=1

ηaαNa

)(
3∑

b=1

übαNb

)
dΩ = {η}TMT {ü}

Define nodal forces:

Maαbβ =

∫
Ω

ρNaNbδαβdΩ

faα =

∫
Ω

ρbαNadV +

∫
∂Ω

t̄αNadS

and arrange into force array:

{f}T = {f11, f12, f21, f22, f31, f32}

With these definitions, the virtual work expression becomes:

{η}T
(
M{ü}+ABT {σ} − {f}

)
= 0

Enforcing this constraint for all {η} gives:

M{ü}+ABT {σ} = {f}
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bonus: Entropy and concentration equilibrium

Consider two perfectly miscible solid solutions placed in contact through an adiabatic but permeable boundary.
The combined system is otherwise isolated from the rest of the world. Suppose that the subsystems have N1 and
N2 intersticial locations, and, initially, n1 and n2 atoms, respectively. We proceed to compute the equilibrium
concentrations in the two subsystems.

i) Show that ceq1 = ceq2 = ceq at equilibrium.

ii) Compute the internal entropy Sint ≥ 0 produced in going from the initial conditions to equilibrium and show
that △Sint ≥ 0.

Solution: The total number of interstiticial location isN = N1+N2 and the total number of atomsN = N1+N2.
The equilibrium condition is when the entropy is maximum. The total entropy is:

S = S1 + S2 . (1)

For it to be maximum it must be a stationary point of either n1 or n2.
Let us choose n1 (even though this does not change the solution) and take the derivative:

∂S(n1, n)

∂n1
=

∂S1(n1, n)

∂n1
+

∂n2

∂n1

∂S(n1, n)

∂n2
=⇒ ∂S1

∂n1
=

∂S2

∂n2
(2)

or
∂

∂c1

( S1

N1

)
=

∂

∂c2

( S2

N2

)
(3)

But S1/N1 and S2/N2 are identical functions of c1 and c2, respectively. Hence, at equilibrium,

ceq1 = ceq2 = ceq (4)

Since, in addition, n1 + n2 = n or c1N1 + c2N2 = n, it follows that

ceq =
n

N1 +N2
=

N1

N1 +N2
c1 +

N2

N1 +N2
c2 ≡ α1c1 + α2c2 (5)

where c1 and c2 are the initial concentrations of solute systems. We may also compute the internal entropy
production

△Sint = Seq
1 + Seq

2 − (S1 + S2) (6)

resulting from mass transfer. To this end, write η(c) = S/N . Since, at equilibrium, ηeq1 = ηeq2 = η(ceq), it follows
that

△Sint = (N1 +N2)η(c
eq)−

[
N1η(c1) +N2η(c2)

]
(7)

or
△Sint

N1 +N2
= η(α1c1 + α2c2)−

[
α1η(c1) + α2η(c2)

]
(8)

But, η is a concave function of c, which implies that △Sint ≥ 0, in agreement with the second law.
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