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Exercise 1: Conservation of angular momentum

Let G(E) ∈ R3 be the total angular momentum contained in subset E ⊂ B, and let M(E) ∈ R3 be the resultant
moment of all forces acting on E. Then, the principle of conservation of angular momentum states that

dG

dt
(E) = M(E), ∀E ⊂ B (1)

For simple bodies, the angular momentum contained in a subbody E is

G(E) =

∫
φ(E)

x× ρvdV (2)

where x is the spatial position vector. In addition, the resultant torque is

M(E) =

∫
φ(E)

x× ρbdV +

∫
∂φ(E)

x× t(n)ds (3)

Prove that σ = σT :

Solution

Combining Equations 1, 2, 3 we obtain:

d

dt

∫
φ(E)

x× (ρv)dV =

∫
φ(E)

x× ρbdV +

∫
∂φ(E)

x× t(n)ds

which is an integral statement of angular momentum balance in spatial form. In order to obtain the corresponding
local form we assume that mass is conserved, so that

d

dt

∫
φ(E,t)

ρfdV =

∫
φ(E,t)

ρ
Df

Dt
dV = (4)

applies, and make use of identity t(n) = σn to obtain∫
φ(E)

ρ
D

Dt
(x× v)dV =

∫
φ(E)

x× ρbdV +

∫
∂φ(E)

x× (σn)ds

The left hand side is∫
φ(E)

ρ
D

Dt
(x× v)dV =

∫
φ(E)

(
ρ(

Dx

Dt
× v + x× Dv

Dt
)

)
dV =

∫
φ(E)

ρ (���v × v + x× a)) dV (5)

For the second term on the right hand side, an application of the divergence theorem gives:∫
∂φ(E)

ϵijkxjσklnlds =

∫
φ(E)

ϵijk(xjσkl),ldV =

∫
φ(E)

ϵijkσkjdV +

∫
φ(E)

ϵijkxj(σkl),ldV . (6)
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Using the previously derived expressions the angular momentum balance reads∫
φ(E)

ϵijk {xj [ρ (ak − bk)− σkl,l] + σjk} dv = 0

Assuming in addition that linear momentum is conserved simplifies this expression to∫
φ(E)

ϵijkσjkdv = 0

But since E is an arbitrary subbody we must have

ϵijkσjk = 0, in φ(B)

This identity is satisfied if and only if
σji = σij

i. e., if the Cauchy stress tensor is symmetric. We have thus proved the following: For a mass, linear and angular-
momentum conserving motion of a simple body the Cauchy stress tensor is symmetric.

Exercise 2: Soap Bubble

A spherical soap bubble contains a certain mass of an ideal monatomic gas. The soap has surface tension σ [J/m2]
both with the inside and outside fluid, and the outside atmospheric pressure is p0. The soap shell has mass ms. In
terms of the radius a(t) of the bubble and its time derivative ȧ(t), find:

i) The kinetic energy K(t) of the bubble.

ii) The external power PE(t).

iii) The internal energy rate Ė(t) of the bubble.

iv) Assuming isothermal conditions, from the principle of conservation of energy, derive the amount of heat
exchange needed to sustain the bubble.

v) Assuming adiabatic conditions, derive an ordinary differential equation governing the evolution of a(t). Solve
that equation for a(t) and plot the result. What kind of motion does the bubble undergo?

Solution

i) We assume that the ideal gas inside the bubble does not contribute to the kinetic energy, but rather to the
internal energy of the system. Statistically the particles move in random direction with a velocity which
depends on the thermodynamic conditions, but that is generally isotropic. Then, the kinetic energy K(t) of
the bubble only includes the contribution of the thin film of soap which is expanding. As the soap film has
mass ms this means that K(t) = 1

2msȧ(t)
2.

ii) The external power is given by the work of the atmospheric pressure to contrast the expansion of the bubble:

PE(t) = Fatmȧ(t) = −p0 · 4πa(t)2 · ȧ(t)

iii) We know that since there are two free surfaces (the interior and the exterior of the soap bubble) the energy
due to the spherical soap bubble is

Eb(t) = 8πσa2(t) .

For an ideal monoatomic gas at constant temperature, the internal energy is simply

Eg(t) =
3

2
Nkbθ(t) =

3

2
pinV (t) = const

The internal energy rate is thus equal to zero Ėg(t) = 0
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Figure 1: Soap radius dynamics a(t), as a function of external pressure. ms = 10, a0 = 1.0, γ = 1.4, σ = 1.0

iv) The principle of conservation of energy is:

Ė(t) + K̇(t) = PE(t) + Q̇(t) .

Therefore
Q̇(t) = mba(t)ä(t) + 16πσa(t)ȧ(t) + 4πp0a

2(t)ȧ(t)

If the soap expands at a constant speed ä = 0 heat needs to moves from the outside to the inside to keep the
temperature constant.

v) The previously derived formulas up to (iii) still hold, except the one for Eg. Since now the gas is adiabatic
we have:

Ėg(t) = pV̇ = p0

(
Mg

ρ0V

)γ

V̇ = p0

(
a30

a3(t)

)γ

4πa2(t)ȧ(t)

Assuming adiabatic conditions we can neglect the term Q̇(t). We are left with the following differential
equation:

msä+ p0

(
a30

a3(t)

)γ

4πa(t)ȧ(t) + 16πσȧ(t) + 4πp0a(t)ȧ(t) = 0 .

The solution with some specific initial conditions is in plotted in Figure 1.

Bonus: Exercise 3

A cylindrical bar of radius R collides head on with a rigid surface. The material in the bar is incompressible.
To obtain approximate solutions, it is assumed that thin slices normal to the axis of the bar at time t and at a
distance z from the wall remain flat and circular after the deformation. The deformation of the axis is described
by the deformation mapping z = ϕ(Z, t), Z ≥ 0, where Z is the distance to the wall along the axis of the bar
in the undeformed configuration. Let λ(Z, t) denote the stretch ratio in the axial direction, S0 the undeformed
cross-sectional area, S(z, t) the deformed cross-sectional area, V (Z, t), v(z, t), A(Z, t) and a(z, t) the material and
spatial velocity and acceleration fields over the axis, respectively.

• Knowing that the bar is free of applied loads, write the virtual work expression in material and spatial forms.
Consider states of uniaxial stress, and let σ ≡ σ33 and P ≡ P33 denote the axial components of the Cauchy
and Piola-Kirchhoff stress tensors, respectively. How are σ and P related? To obtain an axial equation of
motion, consider virtual displacements of the form δϕ1 = δϕ2 = 0, δϕ3 = δϕ. If the bar is of infinite length
and its velocity is prescribed at infinity, what essential boundary conditions must δϕ satisfy? Enforcing the
virtual work principle for all variations of this type, obtain axial equations of motion in material and spatial
form.

• Obtain the same equations of motions directly by establishing the dynamic equilibrium of thin slices of the
bar in its undeformed and deformed configurations.
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Solution

We start with writing the principle of virtual work in material and spatial forms. Neglecting the body forces
and using the notation from above∫

Bo

Pijδϕi,jdVo +

∫
Bo

ρoAiδϕidVo = 0 , (7)

in material form and ∫
B

σijδϕi,jdV +

∫
B

ρaiδϕidV = 0 , (8)

in spatial.

Now consider uniaxial stress loading, such that the only non-zero components of Piola-Kirchoff and Cauchy
stress tensors are P33 and σ33, respectively. The connection between initial and current configurations for
stresses is given as P = JσF−1, where F is deformation gradient and J is the Jacobian of the deformation.

To derive both F and J , we recall the assumption that thin slices normal to the axis of the bar remain flat
and circular after the deformation. Deformation is thus pure expansion

x = λLX (9)

y = λLY (10)

z = λZ (11)

recall that here λ(Z, t) is stretch ratio in the axial direction whereas λL(Z, t) is stretch ratio in the cross-section
plane.

This allows to write deformation gradient

F =

λL 0 0
0 λL 0
0 0 λ


The material of the bar is incompressible, which essentially means that the bar can change the shape but its
overall volume remains constant. This requires J ≡ 1 or λL = λ−1/2. We can rewrite F as

F =

λ−1/2 0 0
0 λ−1/2 0
0 0 λ


which gives the following relation between the only non-zero components of stress P33 =

σ33

λ
.

The next step is to obtain equation of motion using the principle of virtual work in both initial and current
configurations for an infinite bar with virtual displacements δϕ1 = δϕ2 = 0 and δϕ3 = δϕ(z).

In initial configuration we write∫
Bo

P33
dδϕ

dz
dVo +

∫
Bo

ρoA3δϕ3dVo = (12)

=

∫ Lo

0

P33
dδϕ

dz
Sodz +

∫ Lo

0

ρoA3Soδϕdz = 0 (13)

where So is bar cross-section in the initial configuration.

Remember that virtual work principle is valid for all admissible displacement fields. This requires that at the
part of the boundary where the tractions are not prescribed, the virtual displacements δϕ must be zero. In
our problem of infinite bar Lo → ∞, the essential boundary conditions for ϕ(z) are defined as δϕ(0) = 0 and
δϕ(∞) = 0.

∫ +∞

0

P33
dδϕ

dz
Sodz +

∫ +∞

0

ρoA3Soδϕdz = 0 , (14)
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Integrating previous equation by parts and taking boundary conditions into account we obtain

∫ +∞

0

(−(P33So)
′ + ρoA3So) δϕdz = 0 , (15)

since it is valid for any admissible δϕ, the following must hold (equation of motion in material form)

−P ′
33 + ρoA3 = 0 (16)

The same is applied to obtain equation of motion in spatial form∫ +∞

0

σ33
dδϕ

dz
Sdz +

∫ +∞

0

ρA3Sδϕdz = 0 (17)

where S = S(z, t) is bar cross-section which now depends on vertical coordinate.

Integrating by parts yields ∫ +∞

0

(−(σ33S)
′ + ρa3S) δϕdz = 0 (18)

Finally, equation of motion in spatial form is

−(σ33S)
′ + ρa3S = 0 (19)

The same can be obtained considering thin slices of the bar. The forces acting on a thin slice in deformed
configuration are (σ33 + dσ33)(S + dS) and −σ33S which gives

(σ33 + dσ33)(S + dS)− σ33S = ρSdza3 => σ33S
′ + σ′

33S = ρSa3 (20)

Now in undeformed configuration

(P33 + dP33)So − P33So = ρoSodZA3 => P ′
33 = ρoA3 (21)
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