

Problem Set 6

CIVIL-425 : Continuum Mechanics and Applications

10 April 2025

Exercise 1: Conservation of angular momentum

Let $\mathbf{G}(E) \in \mathbb{R}^3$ be the total angular momentum contained in subset $E \subset B$, and let $\mathbf{M}(E) \in \mathbb{R}^3$ be the resultant moment of all forces acting on E . Then, the principle of conservation of angular momentum states that

$$\frac{d\mathbf{G}}{dt}(E) = \mathbf{M}(E), \quad \forall E \subset B \quad (1)$$

For simple bodies, the angular momentum contained in a subbody E is

$$\mathbf{G}(E) = \int_{\varphi(E)} \mathbf{x} \times \rho \mathbf{v} dV \quad (2)$$

where \mathbf{x} is the spatial position vector. In addition, the resultant torque is

$$\mathbf{M}(E) = \int_{\varphi(E)} \mathbf{x} \times \rho \mathbf{b} dV + \int_{\partial\varphi(E)} \mathbf{x} \times \mathbf{t}(\mathbf{n}) ds \quad (3)$$

Prove that $\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$:

Exercise 2: Soap Bubble

A spherical soap bubble contains a certain mass of an ideal monatomic gas. The soap has surface tension $\sigma [J/m^2]$ both with the inside and outside fluid, and the outside atmospheric pressure is p_0 . The soap shell has mass m_s . In terms of the radius $a(t)$ of the bubble and its time derivative $\dot{a}(t)$, find:

- i) The kinetic energy $K(t)$ of the bubble.
- ii) The external power $P^E(t)$.
- iii) The internal energy rate $\dot{E}(t)$ of the bubble.
- iv) Assuming isothermal conditions, from the principle of conservation of energy, derive the amount of heat exchange needed to sustain the bubble.
- v) Assuming adiabatic conditions, derive an ordinary differential equation governing the evolution of $a(t)$. Solve that equation for $a(t)$ and plot the result.

Bonus: Exercise 3

A cylindrical bar of radius R collides head on with a rigid surface. The material in the bar is incompressible. To obtain approximate solutions, it is assumed that thin slices normal to the axis of the bar at time t and at a distance z from the wall remain flat and circular after the deformation. The deformation of the axis is described by the deformation mapping $z = \phi(Z, t), Z \geq 0$, where Z is the distance to the wall along the axis of the bar in the undeformed configuration. Let $\lambda(Z, t)$ denote the stretch ratio in the axial direction, S_0 the undeformed cross-sectional area, $S(z, t)$ the deformed cross-sectional area, $V(Z, t)$, $v(z, t)$, $A(Z, t)$ and $a(z, t)$ the material and spatial velocity and acceleration fields over the axis, respectively.

- Knowing that the bar is free of applied loads, write the virtual work expression in material and spatial forms. Consider states of uniaxial stress, and let $\sigma \equiv \sigma_{33}$ and $P \equiv P_{33}$ denote the axial components of the Cauchy and Piola-Kirchhoff stress tensors, respectively. How are σ and P related? To obtain an axial equation of motion, consider virtual displacements of the form $\delta\phi_1 = \delta\phi_2 = 0, \delta\phi_3 = \delta\phi$. If the bar is of infinite length and its velocity is prescribed at infinity, what essential boundary conditions must $\delta\phi$ satisfy? Enforcing the virtual work principle for all variations of this type, obtain axial equations of motion in material and spatial form.
- Obtain the same equations of motions directly by establishing the dynamic equilibrium of thin slices of the bar in its undeformed and deformed configurations.