Problem Set 5 Solutions
CIVIL-425: Continuum Mechanics and Applications

3 April 2025

Exercise 1

Using the principle of conservation of linear momentum, solve the following problems:
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Figure 1: Illustration of the different configurations

a. A rocket of initial mass mg (including shell and fuel) is fired vertically at time ¢ = 0. The fuel is consumed at a
constant rate ¢ = %TT and is expelled at a constant speed u relative to the rocket. Derive an expression for the
velocity of the rocket at time ¢ neglecting the resistance of air.

Solution: Since we are not interested in the details of fluid motion inside the rocket, nor on elastic deformation
of the latter, we can set our control volume 2 around the rocket and we highlight the portion of the contour S’
where the nozzle is. Ambient pressure is to be ignored. Since the rocket is moving, we would like out control

volume to follow its motion. For a moving control volume, with velocity w = (0,0, v), mass conservation yields:
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where we used the fact that the fluid only goes out through the nozzle and that u is already the relative velocity
of the fluid with respect to the moving control volume, whereas u is the fluid velocity from a fixed observer.
Next, the balance of linear momentum reads:
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We assumed that (v — v) is constant over S’.

Integrating over time and applying the initial condition v(0) = vy we obtain the rocket equation:

v(t) = —gt + uln (mo) (6)

mo — qt
The previous equation is valid only for times ¢ < mg/q.

b. A stream of water of cross-sectional area A and velocity vy strikes a plate which is held motionless by a force P.
Determine the magnitude of P knowing that A = 500mm? and vy = 25m/s.

Solution: Considering that the stream flow is in steady-state and assuming (a) a prismatic control volume
enclosing the arriving flow is defined from a section far away from the wall up to the point where the wall starts,
(b) that the flow changes directions (from horizontal, towards the wall, to vertical, over the wall) out of this
control volume, we only need to apply balance of linear momentum in integral form:
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the first term is zero since the system has reached steady state, and the body force is also assumed to be zero.
Projecting along the direction of incoming flow, we obtain:

/09 pvi(—1)dS = —/(mpdS = /ApdS’ (8)

the velocity at the right end of the control volume (termed Ss ) is zero by boundary condition while the pressure
at the left end (termed S; ) is neglected. Assume that the left section of the jet has an area A and that the
density and velocities are uniform (the density assumption is a classic one when working with liquids) there (so
that the velocity can be taken out of the integral) to get

pv?A = pdS =P
o0

from the assumptions that we made at the beginning (regarding the direction of the flow becoming purely vertical
out of the control volume), the second integral is the reaction force exerted by the wall over the fluid. Notice
that we could have reached the same result with the Bernoulli principle.

c. A circular reentrant orifice (also called Borda’s mouthpiece) of diameter D is placed at a depth h below the
surface of a tank. Knowing that the speed of the issuing stream is v = 1/2gh and assuming that the speed of
approach vy is zero, show that the diameter of the stream is d = Dv/2.

Problem 3

A circular reentrant orifice (also called Borda’s mouthpiece) of diameter D is placed at a depth h below the surface
of a tank. Knowing that the speed of the issuing stream is v = v/2¢gh and assuming that the speed of approach vq



is zero, show that the diameter of the stream is d = DV2. (Hint: Consider the section of water indicated, and note
that P is equal to the pressure at a depth h multiplied by the area of the orifice.)

In this case as well, we need to level assumption of steady-state, along with a few others: we assume that
the diameter of the intake, D, is much smaller than the vertical distance between its center and the free surface
(D/h < 1), we also take the velocity at the intake to be negligible.

Now, let us work with balance of linear momentum in integral form once again (the time derivatives are omitted
as we assumed steady-state regime):
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Let us take € to be a control volume enclosing the output jet as well as extending into the deposit deep enough
as for the intake section to satisfy the negligible-velocities condition mentioned earlier. It is also assumed that the
velocities increase in magnitude within the volume yet they always remain horizontal over its side contours (this
assumption will come in handy later) while being uniform at the output section (where v = 1/2gh is known).

Under these assumptions, the horizontal projection of the prior equation yields
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assume the pressure being uniform at the intake (since changes over distance D are tiny compared to pgh due
to the assumption D/h < 1) and neglecting the ambiance pressure
wD?
4
from this equality the relation between diameters is readily obtained: d = D/ V2.
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