

Problem Set 4

CIVIL-425: Continuum Mechanics and Applications

27 March 2025

Exercise 1, Principal directions and stretches

Consider a local deformation gradient \mathbf{F} and the corresponding left and right Cauchy-Green deformation tensors $\mathbf{B} = \mathbf{FF}^T$ and $\mathbf{C} = \mathbf{F}^T\mathbf{F}$, respectively. Let the spectral decomposition of the right Cauchy-Green deformation tensor be:

$$\mathbf{C} = \sum_{\alpha=1}^3 c_{\alpha} \mathbf{N}_{\alpha} \otimes \mathbf{N}_{\alpha}$$

here c_{α} and \mathbf{N}_{α} , $\alpha = 1, 2, 3$, are the eigenvalues and eigenvectors of \mathbf{C} , i. e.

$$(\mathbf{C} - c_{\alpha} \mathbf{I}) \cdot \mathbf{N}_{\alpha} = 0, \quad \|\mathbf{N}_{\alpha}\| = 1, \quad \alpha = 1, 2, 3$$

Let $\lambda_{\alpha} = \sqrt{c_{\alpha}}$ be the principal stretches; $\mathbf{F} = \mathbf{VR} = \mathbf{RU}$ the polar decompositions of \mathbf{F} , the $\mathbf{R} \in SO(3)$, $\mathbf{U} = \mathbf{U}^T = \sqrt{\mathbf{C}}$, $\mathbf{V} = \mathbf{V}^T = \sqrt{\mathbf{B}}$; and set $\mathbf{n}_{\alpha} = \mathbf{RN}_{\alpha}$.

i) Prove the identities:

i.1) $\mathbf{n}_{\alpha} = \lambda_{\alpha}^{-1} \mathbf{F} \mathbf{N}_{\alpha}$.

We have $\mathbf{U} = \sum_{\alpha=1}^3 \lambda_{\alpha} \mathbf{N}_{\alpha} \otimes \mathbf{N}_{\alpha}$. Hence

$$\mathbf{F} \mathbf{N}_{\alpha} = (\mathbf{RU}) \mathbf{N}_{\alpha} = \mathbf{R} \left(\sum_{\beta=1}^3 \lambda_{\beta} \mathbf{N}_{\beta} \otimes \mathbf{N}_{\beta} \right) \mathbf{N}_{\alpha} = \lambda_{\alpha} \mathbf{RN}_{\alpha} = \lambda_{\alpha} \mathbf{n}_{\alpha},$$

where we used the identity $(\mathbf{a} \otimes \mathbf{b})\mathbf{c} = (\mathbf{a} \otimes \mathbf{c})\mathbf{b}$, and the fact $\mathbf{N}_{\alpha} \otimes \mathbf{N}_{\beta} = \delta_{\alpha\beta}$, since $\|\mathbf{N}_{\alpha}\| = 1$.

i.2) $\mathbf{F} = \sum_{\alpha} \lambda_{\alpha} \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha}$.

$$\mathbf{F} = \mathbf{RU} = \mathbf{R} \left(\sum_{\alpha=1}^3 \lambda_{\alpha} \mathbf{N}_{\alpha} \otimes \mathbf{N}_{\alpha} \right) = \sum_{\alpha=1}^3 \lambda_{\alpha} \mathbf{RN}_{\alpha} \otimes \mathbf{N}_{\alpha} = \sum_{\alpha=1}^3 \lambda_{\alpha} \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha}$$

i.3) $\mathbf{R} = \sum_{\alpha} \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha}$.

$$\mathbf{F} = \sum_{\alpha=1}^3 \lambda_{\alpha} \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha} = \left(\sum_{\alpha=1}^3 \mathbf{n}_{\alpha} \otimes \mathbf{N}_{\alpha} \right) \left(\sum_{\beta=1}^3 \lambda_{\beta} \mathbf{N}_{\beta} \otimes \mathbf{N}_{\beta} \right) = \mathbf{RU}$$

Exercise 3, Linearization

Linearize the following kinematic relations with respect to a small displacement \mathbf{u} field superposed on the spatial configuration:

ii) The volumetric-deviatoric decomposition of the deformation gradients is:

$$\mathbf{F} = \mathbf{F}^{\text{vol}} \mathbf{F}^{\text{dev}}, \quad \mathbf{F}^{\text{vol}} \equiv J^{1/3} \mathbf{I}, \quad \mathbf{F}^{\text{dev}} \equiv J^{-1/3} \mathbf{F}$$

where J is the Jacobian of the deformation and \mathbf{I} is the identity tensor.

Keeping only the linear terms in $\|\nabla \mathbf{u}\|$ and using the Taylor's expansion for the volumetric part we obtain:

$$J = 1 + \text{tr}(\nabla \mathbf{u}) + \mathcal{O}(\|\nabla \mathbf{u}\|^2) \quad (1)$$

$$J^{1/3} \approx (1 + \text{tr}(\nabla \mathbf{u}))^{1/3} \approx 1 + \frac{1}{3} \text{tr}(\nabla \mathbf{u}) \quad (2)$$

$$F^{\text{vol}} = \mathbf{I} + \frac{1}{3} \text{tr}(\nabla \mathbf{u}) \mathbf{I}. \quad (3)$$

Analogously for the deviatoric part:

$$J = 1 + \text{tr}(\nabla \mathbf{u}) + \mathcal{O}(\|\nabla \mathbf{u}\|^2) \quad (4)$$

$$J^{-1/3} \approx 1 - \frac{1}{3} \text{tr}(\nabla \mathbf{u}) \quad (5)$$

$$\begin{aligned} F^{\text{dev}} &= J^{-1/3} \mathbf{F} \approx \left(1 - \frac{1}{3} \text{tr}(\nabla \mathbf{u})\right) (\mathbf{I} + \nabla \mathbf{u}) = \\ &= \mathbf{I} + \nabla \mathbf{u} - \frac{1}{3} \text{tr}(\nabla \mathbf{u}) \mathbf{I} - \frac{1}{3} \text{tr}(\nabla \mathbf{u}) \nabla \mathbf{u} \approx \mathbf{I} + \nabla \mathbf{u} - \frac{1}{3} \text{tr}(\nabla \mathbf{u}) \mathbf{I} \end{aligned} \quad (6)$$