Problem Set 2
CIVIL-425: Continuum Mechanics and Applications

6 March 2025

Exercise 1

Given the deformation mapping
LP(X) = [3517 T2, (E3}T = [Xl + aXQQt, (1 + ﬂt)XQ, )(3]—r (1)

, where o, 8 € R, compute Lagrangian velocity and deformation fields.

Exercise 2

Consider a deformation mapping of the type:

xr1 = Xl ) (2)
To = XQ N (3)
I3 :X3+’LU(X1,X2) s (4)

where w : R x R — R. This mapping, when restricted to the plane X5 = 0, represents moderate deformation of a
membrane occupying a domain Q C R2.

1. Using the Piola transformation, write an expression for the element of oriented membrane area on the deformed
configuration.

2. Write an integral expression for the area of the deformed membrane.

3. Show that, for small deflections, i.e., for w — 0, the deformed area of the membrane may be approximated as

1
a=A+ / 5(10721 + w?Q)Xmng . (5)
Q

Exercise 3

Consider a cylindrical solid referred to an orthonormal Cartesian reference frame {X;, Xo, X5}. Let the axis of
the solid be aligned with the Xs-direction and let its normal cross-section occupy a region €2 in the X; — X5 plane
of boundary 9Q2. An anti-plane shear deformation of the solid can be defined as one for which the deformation
mapping is of the form:

o(X) = [z1, 22, 73] " = [X1, Xo, X3+ w(X1,X2)]", (6)

where, in this definition, the spatial and material reference frames are taken to coincide, and the function w is
defined over €.

i) Sketch the deformation of the region.

ii) Compute the deformation gradient field, the right Cauchy-Green deformation tensor field and the Jacobian
of the deformation field in terms of w. Does the solid change volume during the deformation process? Are
the local impenetrability conditions satisfied?



iii)

iv)

vi)

Consider the unit vectors:

w1G1 +waGa p_ ~w2G1+wiGs
Wi+ wh VWi +wh
where {Gr}, I =1, 2, 3 are the (orthonormal) material basis vectors. How are A and B related to the level

contours of w(X7, X3)? Compute, in terms of w, the change in length (measured by the corresponding strecth
ratios) of A and B, as well as the change in the angle subtended by A and B. Interpret results.

A:

(7)

Using the Piola transformation, compute (in terms of w) the change of area of, and in the normal to, an
infinitesimal material area contained in the X{-X5 plane.

Derive an integral expression for the deformed area of the domain 2.

Let the boundary 0f2 of 2 be defined paramatrically by the equations
X1 =X41(95), Xo = X5(5), (8)

where 0 < § < L is the arc-length measured along 0f). Derive an integral expression for the perimeter of the
deformed boundary ¢(052).



Solutions

Exercise 1

(a) In order to obtain the velocities we have to compute regular time derivatives (Lagrangian velocities):

_ O dp1

V; 5 Vi 5 aXy, (9a)
_9p2 _
_ Ops _
(b)
Likewise,
A1:A2:A3:0, (10&)

Exercise 2

(1) Begin by computing the deformation gradient and its inverse, which will be necessary later.

O 1 0 0
Fj=—=F=1|0 1 0], (11)
0X;
w1 wa 1]
1 0 0]
0X
Fil=""LoFl=| 0 1 0], (12)
8J]i
—w1 —Wp2 1_
(13)
moreover, see that J = det F = 1 (hence no volume changes).
To compute area changes, we use the relation (Nanson’s formula a.k.a. Piola transformations)
nida = JF;;'NdA, (14)

where dA is a differential element of area in the deformed configuration and dA idem in deformed configuration.
Since we are working in the X3 = 0 plane, the normal vector will be Ny = [0, 0, 1]T, we have that

1 0 0
nida=1-[0,0,11| 0 1 0|dA=[-w,, —wa, 1]TdA. (15)
—Wwi— Wpe 1

The prior result represents the components of the oriented-area vector in deformed configuration. The infinites-
imal area element is therefore the modulus of this vector:

da = ||da|| = ||nda|| = \/1 + w? + w%dA. (16)

To find the total area, integrate the differential element of area over the domain of definition 2 (which has not
changed as the deformation does not involve the X7 and X5 components, only X3):

a:/da:/ ,/1+w_21+w22dX1dX2. (17)
Q Q ’ ’

Assuming that |w?% + w%| < 1 holds all over the integration domain, we can write the square root as

1
VI+Hwh +wd =1+ J|Vuf + 0(Vul'), (18)

where of course Vw = [w 1, wo] " is the gradient of the scalar function w(X7, X2), the latter means that the square
root can be approximated with the quadratic function up to terms that decrease as |Vw|* when |Vw| — 0, so they
can arguably be neglected in favor or 1 and lower-order terms that scale as |Vw|?.



Making this approximation, one finally reaches

a= /Qda = /Q 1+ w? +whdXdX, (19a)
w? + w?
~ / (1 + 12) dX,dX, (19b)
Q 2
1
=Ao+ 5/ ‘VU/PXmdXQ (190)
Q

Exercise 3

(i) Sketch
(ii) Start with the deformation gradient tensor

oz 1 0 0
Fj=—"-—=2F=10 1 0f, (20)
0X;
wyp wpa 1
and thus the Jacobian det F' = 1 — no volume change during deformation. Next, the Cauchy-Green tensor:
1+ w?l wiwo W
Cry=FnF;—-C=F'F=|wow; 1l+w} wy. (21)
w1 w2 1
(iii) See that the vectors can also be written as
A= o 0T, B= o o (22
= ——[wi, w = ——[-wo, w .
|vw| .1 29 ) |vw| ,2 .1

See that the vector A is aligned with the gradient, i.e., along the direction of maximum descent/ascent of w,
thus it must be orthogonal to the contour curves. On the other hand, B is orthogonal to A, hence it “follows” the
level set, this it indicates the direction along which w does not change at all.

Recall that the change in length along the direction of a vector, say, A is Ay = AT C A, hence

1 Wi
124 = W[mh wga, 0]C |wa| =14 |Vuw|, (23a)
0
1 —w2
N = |Vwl|? [~wz2, wy, 0]C | wy | =1. (23b)
0

Notice that the two vectors are clearly orthogonal in the undeformed configuration, A;B; = 0, but how the
deformed one remain orthogonal as well:

COS(ZE) = A'"CB=0. (24)

What kind of deformation is this?
(iv) and (v) Just like in exercise 2.
(vi) Let us compute the tangent vector over the contour: each point is defined by [X1(s), X2(s)] for some value of
X3, so the tangent vector T is

(25)

o 0X/0S 1 [axl 09X, }
T 10X /0S| : oS’ 9S’ '
|0X /0S| \/(dgg)2+(a§)§2)2

In order to compute the new perimeter we have to integrate over the arc-length of the contour in the deformed
configuration, we can do so because, thanks to knowing C', we can account for the differential stretch of each and
every fiber making the contour up. Mathematically,

e:/ ds:/ ArdS, (26)
©(09) a0



where

X1\’ 09X, 0X 0X5\>
N =TTCT = (1 +w?) <asl> + 2wwy o+ (1+ w) <2> : (27)

thus, plugging the expression for Ar in the integral formula,

t= [ Ards (28a)

X, 0X X
/\/1+w1 asl> + 2wy ws asl 852+(1+w)(852> ds. (28D)

A good sanity check for the formula just obtained is making sure that in the absence of deformation, i.e.
p(0Q) = 09Q, ¢ = L (the undeformed perimeter length):

g = /\/ 0X, aX?) ds = /|T|dS /1 dS=1. (29)




