

Problem Set 10

CIVIL-425: Continuum Mechanics and Applications

15 May 2025

Exercise 1: Constitutive laws

For the following strain-energy functions, write: a) the stress-strain relations in material form (i. e., in terms of the second PK stress tensor \mathbf{S} and the right Cauchy-Green deformation tensor \mathbf{C}) and in spatial form (i. e., in terms of the Cauchy stress tensor $\boldsymbol{\sigma}$ and the left Cauchy-Green deformation tensor \mathbf{C}); b) the material and spatial elastic moduli D_{IJKL} and D_{ijkl} , respectively; c) the relation between the Cauchy stress $\boldsymbol{\sigma}$ and the stretch λ in uniaxial tension. If possible, plot the uniaxial stress against the logarithm of the stretch (i. e., the logarithmic strain). Is the predicted stress-strain behavior sensible?

1. Ideal compressible fluid:

$$W = W(J)$$

2. Saint Venant-Kirchhoff solid:

$$W = \frac{1}{2} \left[\lambda_0 (E_{KK})^2 + 2\mu E_{IJ} E_{IJ} \right]$$

3. Neo-Hookean solid:

$$W = \frac{\lambda}{2} \log^2(J) - \mu \log(J) + \frac{\mu}{2} I_1$$

4. *Bonus:* Compressible Mooney-Rivlin solid:

$$W = \frac{\lambda}{2} \log^2(J) - \mu \log(J) + \frac{1}{2} [\alpha_1 (I_1 - 3) + \alpha_2 (I_2 - 3)]$$

In the above expressions, λ, μ, α_1 and α_2 are constants. Consider the case $\alpha_1 = \alpha_2 = \mu$.