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Thermo-mechanics & constitutive relations

some rough notes

B. Lecampion

May 16, 2025

Indices and bold notation used for tensor - sorry for the confusion - should be clear enough hopefully

1 Preliminaries

Under the small perturbation hypothesis, strain are small and given by

ϵij =
1

2
(ui,j + uj,i) (1)

where ui is the displacement vector. The material and time derivatives merges. The strain rate is
simply the time-derivative of the strain. The change of solid mass density are also negligible. We write
time-derivative with a dot.

I refer you to [4, 2] to a much more details description. I also recommend [3] as a general plasticity
textbook.

1.1 Conservation of energy

ρė = σij ϵ̇ij −Qi,i + r (2)

where Qi is the heat flux, r any possible hear sources, and e the internal energy per unit of mass.

1.2 2nd principle and Clausius-Duhem inequality

Introducing the conservation of energy in the second principle of thermodynamics ṡ ≥ −Qi,i
T + r/T ,

denoting Ψ = e− Ts the specific free energy (per unit of mass), s being the entropy per unit of mass.
We obtain the Clausius-Duhem inequality:

σij ϵ̇ij − ρ
(
Ψ̇ + Ṫ s

)
− QiT,i

T
≥ 0 (3)

The state variables are: T , ϵij and some hidden states variables αk.

1.3 Using Clausius Duhem

We suppose that the infinitesimal strain ϵij partition in an ”elastic” (recoverable) part and an ”inelas-
tic” (plastic in what follows) parts:

ϵij = ϵeij + ϵpij (4)

Generally, we write the specific free energy of the solid as a function of:

• temperature T

• elastic strains ϵeij

• internal variables αk (the latter can be tensorial, scalar or vectorial)
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in other words:
Ψ(T, ϵeij , αk) (5)

Introducing in the Clausius Duhem equation, we obtain:(
σij − ρ

∂Ψ

∂ϵeij

)
ϵ̇eij + σij ϵ̇

p
ij − ρ

(
s+

∂Ψ

∂T

)
Ṫ − ρ

∂Ψ

∂αk
α̇k − QiT,i

T
≥ 0 (6)

In addition, to model all possible viscous effect, we postulate that the stress tensor is the sum of an
elastic and a viscous part:

σij = σe
ij + σv

ij (7)

and assume that the elastic part of the stress tensor is equal to the derivative of the specific free energy
w.r to the elastic strain

σe
ij = ρ

∂Ψ

∂ϵeij
(8)

In the absence of viscous stress, for a transformation under constant uniform temperature, no plastic
deformation and variation of internal variables, Clausius-Duhem inequality is indeed satisfied. Then
further more, for any elastic strain, it follows that the entropy is the derivative of the specific energy
w.r. to the temperature:

s = −ρ
∂Ψ

∂T
(9)

Denoting by Ak the conjugate thermodynamics forces of the internal variable αk:

Ak = ρ
∂Ψ

∂αk
(10)

We can thus re-write the Clausius-Duhem inequality as:

σv
ij ϵ̇

e
ij + σij ϵ̇

p
ij −Akα̇k − QiT,i

T
≥ 0 (11)

We can separate the thermal and the intrinsic dissipation:

ϕ = ϕth + ϕintr (12)

with

ϕth = −QiT,i

T
(13)

ϕintr = σv
ij ϵ̇

e
ij︸ ︷︷ ︸

ϕv

+σij ϵ̇
p
ij −Akα̇k︸ ︷︷ ︸

ϕp

(14)

Decoupling of thermal and intrinsic dissipation It is usual to enforce that both ϕth and ϕintr

must be greater or equal than zero. This is always warranted (pending some peculiar cases associated
with shock waves where temperature and entropy may be locally discontinuous across the shock).

The positivity of the thermal dissipation, is ensured by Fourier’s law, which states that heat flow
from high to low temperature:

Qi = −λT,i (15)

such that we have

ϕth =
QiQi

Tλ
≥ 0 (16)

as the thermal conductivity λ is positive.
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2 Heat equation

We have
ė = Ψ̇ + T ṡ+ sṪ (17)

expressing Ψ̇ as function of its depending variables, we obtain

ρė = σe
ij ϵ̇

e
ij +Akα̇k + ρT ṡ (18)

such that the conservation of energy becomes:

σe
ij ϵ̇

e
ij +Akα̇k + ρT ṡ = σij ϵ̇ij −Qi,i + r (19)

now we also have s = −∂Ψ/∂T , such that:

ṡ = −∂2Ψ

∂T 2
Ṫ − ∂2Ψ

∂T∂ϵeij
ϵ̇eij −

∂2Ψ

∂T∂αk
α̇k (20)

=
∂s

∂T
Ṫ − 1

ρ

∂σe
ij

∂T
ϵ̇eij −

1

ρ

∂Ak

∂T
α̇k (21)

Introducing the heat capacity C = T∂s/∂T , and Fourier’s law, we obtain:

ρCṪ − T

(
∂σe

ij

∂T
ϵ̇eij +

∂Ak

∂T
α̇k

)
= σv

ij ϵ̇
e
ij + σij ϵ̇

p
ij −Akα̇k︸ ︷︷ ︸

ϕintr

+(λT,i),i + r (22)

Usually, the terms associated with thermo-mechanical coupling on the RHS are negligible compared

to the heat capacity: T
(

∂σe
ij

∂T ϵ̇eij +
∂Ak

∂T α̇k

)
≪ ρCṪ . If not, the thermo-mechanical model is said to be

fully coupled.
Note also that plastic deformation, viscous stress and the evolution of internal variables result in

heat production (remember ϕintr ≥ 0).

3 Examples of material behavior

3.1 Linear Thermo-elasticity

Thins simplify as:

ϵpij = 0 αk = 0 σv
ij = 0 (23)

ϵ̇ij = ϵ̇eij (24)

The only dissipation is associated with thermal fluxes. From a reference configuration (Temperature
T o and initial stress σo

ij), we can develop an linear reversible theory under the small strain hypothesis:

∥ϵkk∥ ≪ 1 (25)

and assuming a small variation of temperature

T − T o (26)

.
It is therefore warranted to linearize the behavior around the initial state, by taking a second order

Taylor expansion for the Helmholtz free energy (i.e quadratic around the reference configuration)

ρΨ(ϵ, T ) = σo
ijϵij − ρso(T − T o) +

1

2
ϵijCijklϵkl − kijϵij(T − T o)− 1

2
ρ
C

T
(T − T o)2 (27)

here so is a constant (initial entropy) and
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we thus see that because the small strain tensor is symmetric, the fourth order tensor Cijkl is
defined modulo of a a fourth order anti-symmmetric tensor on indices i, j and k, l. It thus must have
a number of symmetries:

Cijkl = Cjikl = Cijlk = Cjilk (28)

Introducing the linearized form of the Helmholtz free energy, we recover the thermo-elastic consti-
tutive relation relating stress and entropy to strain and temperature variation from the initial state:

σij = σo
ij + Cijklϵkl − kij(T − T o) (29)

s = so +
1

ρ
kijϵij +

C

T
(T − T o) (30)

• σo
ij and so are the initial stress and entropy

• Cijkl is the fourth order stiffness tensor - 21 elastic coefficients in the most general case.

•
1

ρ
Tkij is the second-order tensor of the latent heat of strain, C is the specific heat at constant

strain.

• kij is often re-written as a combination of the elastic stiffness and thermal expansion coefficients
αik (do not confuse this notation with internal variable) - such that the stress induce by the
temperature variation can be re-expressed as strain ϵthermal

ij = αij(T − T o), kij = Cijklαkl

The energy equation becomes:

ρCṪ +
1

ρ
Tkij ϵ̇ij = (λT,i),i + r (31)

Discuss for the case of steel, the relative order of magnitude of the terms on the left hand side.

3.2 Viscoelasticity

3.2.1 Kelvin-voigt

We set the following ansatz for the behavior:

ϵpij = 0 αk = 0 σv
ij = ηϵ̇ij , (32)

thus taking a viscous stress similar to a Newtonian fluid.
In 1D, we therefore have the following ODE for the total stress (sum of the elastic and viscous

stress):
Eϵ+ ηϵ̇ = σ (33)

Such a rheological model consists of a spring in parallel with a dashpot.
Under creep conditions, the strain thus evolves as

ϵ =
σ

E

(
1− e−Et/η

)
(34)

Note that such a model can not simulate stress relaxation after a fixed imposed strain step ! The
stress is constant when the strain rate is zero. It is therefore quite unrealistic for most applications.

3.2.2 Maxwell

Maxwell viscoelastic model corresponds to the following ansatz:

σv
ij = 0, ϵ̇pij ̸= 0, αk = 0 (35)

Here viscous effects are accounted for via inelastic deformation.
More specifically, assuming that the viscoelasticity only acts in shear, the inelastic part of the strain

(the viscous part) is taken akin to a fluid

ϵ̇pij = ϵ̇vij =
1

η
((1 + ν)σij − νσkkδij) (36)
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In addition, the elastic part of the constitutive relation holds. For an isotropic material

σij =
E

1 + ν

(
ϵij − ϵpij

)
+

Eν

(1 + ν)(1− 2ν)
(ϵkk − ϵpkk) δij (37)

In uni-axial condition, taking the time-derivative of the elastic relation, we obtain the following
ODE:

σ̇/E +
1

η
σ = ϵ̇ (38)

Under creep condition (constant stress), the material ”flow” indifinetely like a fluid. Under imposed
fixed strain ϵo, the stress ”relaxes” as follow

σ(t) = Eϵoe
−tη/E (39)

Such a Maxwell rheology consists of a spring and a dashpot in series.

3.2.3 Generalized Maxwell

It consists of combining N Maxwell elements in parallel, with usually one strictly elastic element.
Writing tensors in bold, we have

σσσ = E∞ccc : ϵϵϵ+
∑

k=1,n

ηkϵ̇ϵϵ
v
k (40)

ϵ̇ϵϵvk =
Ek

ηk
ccc : (ϵϵϵ− ϵϵϵvk) (41)

with ccc the elastic stiffness tensor divided by Young modulus (thus only function of Poisson’s ratio):

cijkl =
1

2(1 + ν)
(δikδjl + δilδjk) +

ν

(1 + ν)(1− 2ν)
(42)

Many others viscoelastic models exist. Anisotropy can be accounted for, similarly a volumetric
viscosity can be introduced etc.

3.3 Viscoplasticity

Somehow, very related to viscoelasticity, pending the introduction of a ”yield limit” below which
the behavior is strictly elastic. However, the stresses can exceed such a limit and drives inelastic
deformation.

3.3.1 Bingham: simplest rigid-viscoplastic model

In many materials, at ordinary temperatures, rate-dependent inelastic deformation is insignificant
below a yield stress. The simplest model is the so-called Bingham model, which states that the
material is rigid below the yield stress and flow like a Newtonian fluid if the yield is reached.

ϵ̇ϵϵp = ϵ̇ϵϵ = 0
√
J2(sss) ≤ σY (43)

ϵ̇ϵϵp =

√
J2(σσσ)− σY

η

sss

∥sss∥
(44)

where J2 is the second invariant of the deviatoric part of the stress tensor sss = σσσ− 1
3Tr(σσσ)III: J2 = sss:sss

2 ,

and ∥sss∥ =
√
J2. Note that under simple (pure) shear,

√
J2(σσσ) = τ . Such a model is popular to model

some complex fluids - such as toothpaste. We see that the volumetric part of the inelastic strain is
zero in such a model.

An extension, is to account for a non-linearity of the strain rate with the applied stress above the
yield stress. For a rigid-viscoplastic material, it is refereed to as the Herschel-Bulkley model:

ϵ̇ϵϵp =

〈√
J2(σσσ)− σY

k

〉1/n
sss

∥sss∥
(45)
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with n > 0. n < 1 testifiy of a shear thinning behavior, while n > 1 indicates shear-thicknening.
We have introduced the Macauley bracket (the ramp function: < x >= x if x > 0, zero otherwise).
Explore that we can invert and express the deviatoric stress tensor directly as function of the strain
rate (recall that a fluid is incompressible - zero volumetric strain). Obtain the expression of the tangent
viscosity (at a given level of imposed strain rate).

Uniaxial strain Under uniaxial strain σ, J2 = 2σ2/6, such that the yield criteria is in that case
σ ≤

√
3σY . Denoting Y =

√
3σY , the yield for general stress is often rewritten as σeq =

√
3J2 ≤ Y .

3.3.2 Elasto-viscoplasticity

A simple and popular model for elasto-viscoplasticity is the so-called Norton-Hoff model. It is nothing
else that a Herschel-Bulkley model including an elastic behavior. The Norton model for creep of metal
is the limit where the yield limit is negligible.

Mathematically, it is practical to introduce a yield function f (e.g. function of J2):

f(sss) =
√

3J2 − Y (46)

such that the elasto-viscoplastic relations is simply

σσσ = CCC : (ϵϵϵ− ϵϵϵp) (47)

(which can be similarly expressed in terms of rate). and the plastic strain rate is given by the following
associated flow rule:

ϵ̇ϵϵp = 0 f < 0 (48)

ϵ̇ϵϵp =

(√
3J2 − Y

k

)N
3

2

sss√
3J2

=
∂Ω

∂sss
(49)

with Ω = k
N+1

(√
3J2−Y
k

)N+1

a flow potential. Note the usual notation σeq =
√
3J2 =

√
3
2sss : sss.

Remark : many more complicated models can be developed, notably incorporating internal variables
such as the accumulated inelastic strain (via its invariants), or/and plastic work.

3.3.3 Effect of temperature

Temperature has of course an important effet on viscosity (viscosity usually decreases exponentially
with temperature). Similarly the stress exponents of the Norton-Hoff model varies with temperature
etc.

3.4 Rate-independent elasto-plasticity

3.4.1 Perfect plasticity - no internal variables

Notion of yield and plastic flow rule. In general term, the yield function is a scalar function defined
in terms of the stress tensor (usually via its invariants), and some parameters defining the yield limit.
Associated plastic flow is written as:

ϵ̇ϵϵp = 0 f < 0 (50)

ϵ̇ϵϵp = λ̇
∂f

∂σσσ
f = 0 (51)

where λ̇ > 0 is the plastic multiplier. Such an associated flow rule indicates that plastic flow occurs
along the gradient of the yield function (i.e. normal to the yield function) There is of course the
complementary condition: λ̇f = 0, as f < 0 implies λ̇ = 0 and f = 0 when λ̇ > 0.

Moreover, if plastic flow occurs (λ̇ > 0), the state of stress must remain on the yield function:
in other words λ̇ > 0)ḟ = 0, i.e. ḟ = 0 when λ̇ > 0. This is called the consistency condition in
elasto-plasticity.
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3.4.2 J2-plasticity

Its yield function is written as:
f(sss) =

√
3J2 − Y = σeq − Y (52)

The flow rule is taken as associated. Good model for lots of materials (metals, ...), not so much for
others (foam, soils, rocks, granular matter ...) where the effect of mean stress is prominent on strength.

3.4.3 Isotropic and kinematic hardening

Isotropic hardening relates to the increase of the yield limit as plastic strain accumulates (without
any effect associated to the direction of plastic strain). Also the ”shape” of the yield function (the
elastic domain) remains the same. It is typically ”tracked” with a scalar measure of the plastic strain,
i.e.:

α = ϵ̄p =

∫ t

0

√
2

3
ϵ̇pij ϵ̇

p
ij dt′ (53)

(Note that sometimes the accumulated plastic work w =
∫
σij ϵ̇

p
ijdt is also used).

The yield limit Y appears as the dual thermodynamics force (corresponding Ak) of the accumulated
plastic strain measure. The simplest evolution is linear, e.g. such that

Ẏ = H ˙̄ϵp (54)

with H a hardening modulus. Note that softening can be observed in some materials (negative H)...
this is of course prone to the appearance of material instability (for example when stress are applied
on a specimen).

Kinematic hardening allows to reproduce the so-called Bauschinger effect. The fact that a mate-
rial plastified under tension (which exhibit hardening), then exhibits a lower yield limit. Kinematic
hardening model such effects, by ”translating” the yield function in the stress space. Note that the
”shape” of yield function is again not modified. The total plastic strain is taken as the internal variable,
and the dual thermodynamic forces is denoted as XXX

In the context of J2-plasticity, the yield function is written as:

f(σσσ,ϵϵϵp) =
√
3J2(σσσ −XXX)− Y (55)

The flow rule is

ϵ̇ϵϵp = λ̇
∂f

∂σσσ
(56)

α̇αα = −λ̇
∂f

∂XXX
= λ̇

∂f

∂σσσ
= ϵ̇ϵϵp (57)

The simplest evolution for the thermodynamic forces XXX dual of the plastic strain is

ẊXX = Coϵ̇ϵϵ
p (58)

Isotropic and kinematic hardening can of course be combined.

3.4.4 Pressure dependent plasticity

A large number of materials exhibit a strong effect of the mean-stress on the shear resistance (rocks,
some metals...).

The yield function is therefore expressed as function of the first two invariants of the stress tensor:

p = −σkk/3 q =
√
3J2 (59)

with the previous definition of J2 ( as the second invariant of the deviatoric part of the stress tensor).
For example, the Drucker-Prager criteria reads

f(p, q) = q − 3 sinϕp− 2co cosϕ (60)

B. Lecampion 7



Constitutive relations - May 16, 2025

(note - this is not exactly the correspondence to mohr-coulomb - see e.g. [1] for the correspondence of
the outer and inner with MC).

Such a model has infinite yield at infinite compressive stress. As a result, a”compression” cap is
often added. Such an effect is very important for soils and soft-rocks. For such material a popular
function is the so-called Cam-Clay model (in its modified form):

f(p, q) = q2 −M2p(2pc − p) (61)

which is a ”elliptical” yield surface in the q-p plane. Note that a hardening law for the consolidation
pressure pc allows to reproduce the evolution of such pressure-dependent material toward a ”critical”
state where no more volumetric plastic deformation occurs [5].

The Gurson model in metal plasticity shares some similarities.
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