

FORMULAE – LECTURE 6**Critical State Concept**

Specific volume

$$v = 1 + e$$

Over-consolidation ratio

$$OCR = \frac{p'_0}{p'}$$

Normal compression line
(NCL) in $v - \ln(p')$ plane

$$v = N - \lambda \cdot \ln(p')$$

Unloading-reloading line
(URL) in $v - \ln(p')$ plane

$$v = v_k - \kappa \cdot \ln(p')$$

Critical state line (CSL) in
 $q - p'$ plane

$$q = M \cdot p'$$

CSL in $v - \ln(p')$ plane

$$v = \Gamma - \lambda \cdot \ln(p')$$

Peak shear strength
envelope in $q - p'$ plane

$$q = a_{peak} + M_{peak} \cdot p'$$

Peak shear strength
envelope in $\tau - \sigma'_n$ plane

$$\tau = c'_{peak} + \sigma'_n \cdot \tan(\varphi'_{peak})$$

Peak shear strength angle

$$\varphi'_{peak} = \sin^{-1} \left(\frac{3 \cdot M_{peak}}{6 + M_{peak}} \right)$$

Peak intercept cohesion

$$c'_{peak} = \frac{a_{peak}}{M_{peak}} \cdot \tan(\varphi'_{peak})$$

CSL in $\tau - \sigma'_n$ plane

$$\tau = \sigma'_n \cdot \tan(\varphi'_{cv})$$

Critical shear strength
angle

$$\varphi'_{cv} = \sin^{-1} \left(\frac{3 \cdot M}{6 + M} \right)$$