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Question 1 – Plastic Analysis and Geometric Nonlinearities (25 points) 
 
The single storey frame structure shown in Figure 4 is subjected to gravity load 𝑁=200kN at 
each column as well as lateral load 𝐹. The final geometry and cross-sectional profiles are shown 
in the figure. The steel material is S355J2 (𝐺 = 200𝐺𝑃𝑎, 𝑓! = 355𝑀𝑃𝑎) 
 

 

Figure 1 – Stability bracing 

 
 

1.1. Calculate the collapse load of the structure till it becomes a complete collapse 
mechanism by neglecting P-Delta effects (i.e., ignore N in this case). 

1.2.Calculate the collapse load of the structure by considering P-Delta effects in your step-
by-step calculations. Calculate the deflection at which the structure loses its lateral load 
resistance. 

1.3. Calculate the collapse load when 𝑁	 = 	2000𝑘𝑁 per column. 
1.4.Compare the three solutions in an equilibrium path. Discuss your findings. 

 
Note: there are several ways to solve this problem; please discuss your assumptions in detail. 
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Suggested Solution 
 
1.1- 

 
Figure 1.2. Lateral deflection shape and assumed inflection points 

 
NOTE: The inflection point is assumed at 2ℎ/3 given that this is the first storey of the steel 
MRF; however, an alternative solution would be acceptable by assuming the inflection point 
at ℎ/2. 
 
The moment diagram prior to the onset of the first plastic hinge is as follows, 
 

 
 Figure 1.3. Moment diagram at first plastic hinge 

 
𝑀"#,!
(&) = 𝑊"#,!

(&) ∙ 𝑓! = 628𝑥10( ∙ 0.355 = 222940𝑘𝑁𝑚𝑚	 (1.1) 
 
 

𝑀"#,!
()) = 𝑊"#,!

()) ∙ 𝑓! = 2410𝑥10( ∙ 0.355 = 855550𝑘𝑁𝑚𝑚 (1.2) 
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Therefore, the plastic resistance of the steel column is larger than that of the steel beam; hence, 
the first plastic hinge will form at the beam based on the beam-to-column joint equilibrium. 
Therefore,  
 

 
Figure 1.4. Assumed plastic hinge position (beam) 

 

𝐹* =
6 ∙ 𝑀"#,!

(&)

ℎ
= 6 ∙

222940
4000

= 334.4𝑘𝑁 (1.3) 

 
However, we need to check if the first plastic hinge may form at the base of the column before 
the beam end. This would imply, 
 

𝐹* =
3 ∙ 𝑀"#,!

())

ℎ
= 3 ∙

855550
4000

= 641.7𝑘𝑁 (1.4) 

 
Therefore, based on the principle of minimum energy, the minimum load that should be applied 
to the structure to actually develop a plastic hinge is, 𝐹* = 334.4𝑘𝑁. 
 
The corresponding deflection at this point is as follows, 
 

 
Figure 4.5. decomposition of lateral deflections based on the assumed inflection point 
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Therefore,  
 

𝛿* =
𝐹* ∙ (2 ∙ ℎ 3⁄ )(

2 ∙ 3 ∙ 𝐸 ∙ 𝐼)
+
𝐹* ∙ (ℎ 3⁄ )+

6 ∙ C
(ℎ 3)⁄
𝐸 ∙ 𝐼)

+
𝐿&

2 ∙ 𝐸 ∙ 𝐼&
E =

334.4 ∙
(2 ∙ 4000 3⁄ )(

2 ∙ 3 ∙ 200 ∙ 3.6667𝑥10,
+ 334.4 ∙

(4000 3⁄ )+

6
∙ C

4000 3⁄
200 ∙ 3.6667𝑥10,

+
8000

2 ∙ 200 ∙ 8.356𝑥10-
E

= 39.9𝑚𝑚	 (1.5)

 

 
To calculate the incremental load at which a collapse mechanism forms,  
 

 
Figure 1.6. Lateral deflection after the formation of the first plastic hinge 

 
The moment diagram in this case is as follows, 
 

 
Figure 1.7. Moment diagram after the formation of the first plastic hinge 

 
Therefore, 
 

𝐹+
2 ∙ ℎ = 𝑀"#,!

()) − 𝐹1 ∙
ℎ
3 ⇒ 𝐹+ =

2 ∙ H𝑀"#,!
()) − 𝐹1 ∙ ℎ3I
h =

2 ∙ H855550 − 334.4 ∙ 40003 I
4000 = 204.8𝑘𝑁	(1.6) 
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The corresponding deflection at this point is as follows, 
 

 
Figure 1.8. Lateral deflection after the formation of the first plastic hinge 

 
 

𝛿+ =
𝐹+ ∙ ℎ(

6 ∙ 𝐸 ∙ 𝐼)
=

204.8 ∙ 4000(

6 ∙ 200 ∙ 3.6667𝑥10, = 29.8𝑚𝑚	 (1.7) 

 
1.2- 
 
When P-Delta effects are considered in the analysis, the load deformation equilibrium path 
rotates by 𝑃 ∙ .

/
; in this case, the load, P is the total vertical load that is supported by the floor. 

Therefore, 𝑃 = 400𝑘𝑁. 
 
At the corresponding deflections, 𝛿*, and 𝛿010 = 𝛿* + 𝛿+, the P-Delta forces should be: 
 

𝑉23∆
(*) = 400 ∙

39.9
4000 = 3.99𝑘𝑁 (1.8) 

 

𝑉23∆
(010) = 400 ∙

39.9 + 29.8
4000 = 6.97𝑘𝑁 (1.9) 

 
Therefore, the corresponding collapse load in this case should be: 
 

𝐹) = 𝐹* + 𝐹+ − 𝑉23∆010 = 344.4 + 204.8 − 6.97 = 532.3𝑘𝑁 (1.10) 
 
Note that the collapse load by including P-Delta effects is close to that without considering P-
Delta effects because the stability coefficient is well below 0.10. This may not be the case if 
the axial load increases. 
 
1.3- 
 
Similarly, if we consider  𝑃 = 4000𝑘𝑁. 
 
At the corresponding deflections, 𝛿*, and 𝛿010 = 𝛿* + 𝛿+, the P-Delta forces should be: 
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𝑉23∆
(*) = 4000 ∙

39.9
4000 = 39.9𝑘𝑁 (1.11) 

 

𝑉23∆
(010) = 4000 ∙

39.9 + 29.8
4000 = 69.7𝑘𝑁 (1.12) 

 
Therefore, the corresponding collapse load in this case should be: 
 

𝐹) = 𝐹* + 𝐹+ − 𝑉23∆010 = 344.4 + 204.8 − 69.7 = 479.5𝑘𝑁 (1.13) 
 
 
1.4- 
 
The solutions from the previous questions are compared in an equilibrium path. Notice that the 
higher the axial load the lower the collapse load. Moreover, notice that once the collapse load 
is attained, the equilibrium path has a negative stiffness; therefore, it is unstable. 

 
s 

Figure 1.9. Equilibrium path of the structure by excluding and including P-Delta effects 
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Question 2 – Buckling analysis (40 points) 
 

Calculate the critical load of the steel column (𝐸 = 210𝑘𝑁/𝑚𝑚+) shown below (see Figure 
2) by solving the differential equation that describes the deflection of the column along its 
length. For your calculations consider the following: 𝑐 = 8,00𝑚 and 𝐼5 = 18260𝑐𝑚6. 
 
Hint: The column is comprised of two members with different geometric characteristics. You 
should derive the deflection equations for each member. The critical load should be calculated 
based on the system of differential equations and the buckling determinant. 
 

 

Figure 2 – Steel column stability 
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Problem definition: 
Calculate the critical buckling load of the structure in Fig. 2.1 
 

 
Figure 2.1- Cantilever with change in cross-section inertia at 𝑐/2 mark. Region above 𝑐/2 
mark is designated by region 1 and below by region 2. In grey is the deformed shape 
according and corresponding load point for demand P. The lateral displacement at the top of 
the cantilever is defined as 𝛿, that is 𝑣(𝑐) = 𝛿 
 
Solution 
 

⎩
⎨

⎧𝐸𝐼* ⋅
𝜕+𝑣*
𝜕𝑧+ = 𝑃 ⋅ (𝛿 − 𝑣*)

𝐸𝐼+ ⋅
𝜕+𝑣+
𝜕𝑧+

= 𝑃 ⋅ (𝛿 − 𝑣+)
→

⎩
⎪
⎨

⎪
⎧𝜕

+𝑣*
𝜕𝑧+

+
𝑃
𝐸𝐼*

𝑣* =
𝑃
𝐸𝐼*

𝛿

𝜕+2
𝜕𝑧+

+
𝑃
𝐸𝐼+

𝑣+ =
𝑃
𝐸𝐼+

𝛿
(2.1) 

 
For convenience, let us define: 
 

𝑘*+ =
𝑃
𝐸𝐼*

	and	𝑘++ =
𝑃
𝐸𝐼+

	 (2.2) 

	Which yields: 
 

⎩
⎨

⎧𝜕
+𝑣*
𝜕𝑧+ + 𝑘*

+ ⋅ 𝑣* = 𝑘*+𝛿

𝜕+𝑣+
𝜕𝑧+

+ 𝑘++ ⋅ 𝑣* = 𝑘++𝛿
(2.3) 

 
The system of differential equations above has homogeneous and particular solutions of the 
form: 

Z𝑣* = 	𝐴	 cos(𝑘*𝑧) + 𝐵 sin(𝑘*𝑧) + 𝛿
𝑣+ = 	𝐶	 cos(𝑘+𝑧) + 𝐷 sin(𝑘+𝑧) + 𝛿

(2.4) 

 
Let us now impose the boundary conditions of our problem. With respect to bar #2: 
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c
𝑣+(0) = 0 → 𝐷 = −𝛿
𝜕𝑣+
𝜕𝑧

(0) → 𝐶 ⋅ 𝑘+ = 0
→ 𝑣+ = −𝛿 ⋅ cos(𝑘+𝑧) + 𝛿 → 𝑣+ = −𝛿(1 − cos(𝑘+𝑧))	 (2.5) 

	  
As for bar #1: 
 

c
𝑣*(𝑐) = 𝛿 → 𝐴	 cos(𝑘*𝑐) + 𝐵 sin(𝑘*𝑐) + 𝛿 = 𝛿

𝑣* H
𝑐
2I

= 𝑣+ H
𝑐
2I

→ 𝐴	 cos d
𝑘*𝑐
2 e + 𝐵 sin d

𝑘*𝑐
2 e + 𝛿 = 𝛿 d1 − cos d

𝑘+𝑐
2 ee

→ c
𝐴	 cos(𝑘*𝑐) + 𝐵 sin(𝑘*𝑐) = 0

𝐴	 cos d
𝑘*𝑐
2 e + 𝐵 sin d

𝑘*𝑐
2 e = −𝛿 ⋅ cos d

𝑘+𝑐
2 e

(2.6)

 

	  
Let us now solve the system of equation using Cramer’s Rule: 
 

𝐷 = f
cos(𝑘*𝑐) sin(𝑘*𝑐)

cos d
𝑘*𝑐
2 e sin d

𝑘*𝑐
2 e

f = cos(𝑘*𝑐) sin d
𝑘*𝑐
2 e − sin(𝑘*𝑐) cos d

𝑘*𝑐
2 e

= sin g𝑘* H
𝑐
2 − 𝑐Ih	 = − sin H𝑘* ⋅

𝑐
2I	

(2.7)

 

 

𝐷7 = f
0 sin(𝑘*𝑐)

−δ ⋅ cos d
𝑘+𝑐
2 e sin d

𝑘*𝑐
2 e

f = 𝛿 ⋅ sin(𝑘*𝑐) cos d
𝑘+𝑐
2 e

(2.8)

	 

 

𝐷8 = f
cos(𝑘*𝑐) 0

cos d
𝑘*𝑐
2 e −δ ⋅ cos d

𝑘+𝑐
2 e

f = −𝛿 ⋅ cos(𝑘*𝑐) cos d
𝑘+𝑐
2 e

(2.9)

 

 

𝐴 =
𝐷7
𝐷
= −𝛿

sin(𝑘*𝑐) cos H
𝑘+𝑐
2 I

sin H𝑘* ⋅
𝑐
2I

= 𝐵 ⋅ tan(𝑘*𝑐)	 (2.10) 

 

𝐵 =
𝐷8
𝐷
= 𝛿

cos(𝑘*𝑐) cos H
𝑘+𝑐
2 I

sin H𝑘* ⋅
𝑐
2I

	 (2.11) 

 
Imposing now a fifth boundary condition, that the tangent at the beginning of bar 1 and end 
of bar 2 have to be the same, i.e.: 
 

𝜕𝑣*
𝜕𝑧 H

𝑐
2I

=
𝜕𝑣+
𝜕𝑧 H

𝑐
2I
	 (2.12) 

We have: 
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−𝐴𝑘* sin H𝑘* ⋅
𝑐
2I + 𝐵𝑘* cos d

𝑘*𝑐
2 e = 𝛿𝑘+ sin H𝑘+ ⋅

𝑐
2I	

(2.13) 

 
Replacing 𝐴 and 𝐵 by the solutions of the system we solved with Cramer’s rule, yields: 
 

𝛿𝑘*
sin(𝑘*𝑐) cos H

𝑘+𝑐
2 I

sin H𝑘* ⋅
𝑐
2I

sin H𝑘* ⋅
𝑐
2I
+ 𝑘*𝛿

cos(𝑘*𝑐) cos H
𝑘+𝑐
2 I

sin H𝑘* ⋅
𝑐
2I

cos d
𝑘*𝑐
2 e = 𝛿𝑘+ sin H𝑘+ ⋅

𝑐
2I
	(2.14) 

 
From the above, one can see that 𝛿 can be completely removed from the equation, meaning 
that no matter the displacement, the stability conditions must hold. Simplifying gives thus: 
 

sin(𝑘*𝑐) cos H
𝑘+𝑐
2 I sin H𝑘* ⋅

𝑐
2I

sin H𝑘* ⋅
𝑐
2I sin H𝑘+ ⋅

𝑐
2I

+
cos(𝑘*𝑐) cos H

𝑘+𝑐
2 I cos H𝑘*𝑐2 I

sin H𝑘* ⋅
𝑐
2I cos H

𝑘*𝑐
2 I

=
𝑘+
𝑘*
	 (2.15) 

 

cot d
𝑘+𝑐
2 e	

sin(𝑘*𝑐) sin H𝑘* ⋅
𝑐
2I + cos(𝑘*𝑐) cos H

𝑘+𝑐
2 I

sin H𝑘* ⋅
𝑐
2I

=
𝑘+
𝑘*
	 (2.16) 

 

	
cot H𝑘+𝑐2 I

sin H𝑘*𝑐2 I
cos H𝑐 −

𝑐
2I =

𝑘+
𝑘*
	 (2.17) 

 

cot d
𝑘+𝑐
2 e cot d

𝑘*𝑐
2 e =

𝑘+
𝑘*
→ tan d

𝑘+𝑐
2 e tan d

𝑘*𝑐
2 e =

𝑘*
𝑘+
	 (2.18) 

 
In our case, we have a fixed ratio for the inertia, which implies that: 
 

𝑘*
𝑘+
=
k 𝑃
𝐸𝐼5

k 𝑃
2𝐸𝐼5

= √2	 (2.19) 

Giving: 
 
 

tan H9!)
+
I tan H9")

+
I − √2 = 0	 (2.20) 

 
Since a change in variable will make things easier to compute, let’s say that 9!)

+
= 𝛼, and 

then, using 𝑘* = √2𝑘+, we can express the previous equation as: 
 

tan(𝛼) tann√2	𝛼o − √2 = 0	 (2.21) 
 
With this equation one needs only to find the angle for the root.  You can use any number of 
methods here, like the Newton-Raphson or the Bi-Section methods.  The solution to this 
equation is around 41.18° or 0.229 radians. 
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The critical buckling load us then obtained by using this root back into our change of 
variable: 
 

𝑘+ =
2𝛼
𝑐
→ p

𝑃
2𝐸𝐼5

=
2𝛼
𝑐
→ 𝑃): ≈ 4.14

𝐸𝐼5
𝑐+
	 (2.22) 
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Question 3 – Interaction of axial load and bending (25 points) 
 

Calculate the critical load of the 𝐻𝐸𝐴	300 steel beam (𝐸 = 210𝑘𝑁/𝑚𝑚+) shown below (see 
Figure 3). 
 

 

Figure 3 – steel beam under axial load and bending 
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Solution: 
 
Figure 3.1 shows the bending moment diagram of the beam: 
 

 
We assume that the beam bending occurs in the strong axis direction. For notation, we denote 
Y the strong axis and Z the weak axis. 
 
Section classification: 
In order to classify our HEA 300 cross section, we assume that it made of S355 (𝑓! = 355 
MPa) steel. 
Moreover, since in this case we have combined compressive axial load and a linear bending 
moment diagram, we will use Tables 5a and 5b of SIA 263 in the case of only compressive 
load. 
-Web slenderness: /"

0#
= +5,

,.<
= 24.47 ≤ 33 ⋅ 𝜀 = 33 ⋅ 0.814 = 26.86 → Class 1 

 
-Flange slenderness: =3:

0$
= *6<3+-

*6
= 8.43 ≤ 14 ⋅ 𝜀 = 11.4 → Class 3 

 
Therefore, the HEA 300 is class 3 and therefore, we should use 𝑀>? = 𝑀@# for our 
computations. 
 
Since we assumed that the bending was with respect to the strong axis, we have: 
 

𝑀>?,! =
𝑊@#,! ⋅ 𝑓!
𝛾A"

=
1260 ⋅ 10( ⋅ 355

1.05 = 426	𝑘𝑁𝑚	 (3.1) 

 
 

𝑁):,! =
𝜋+𝐸𝐼!
𝐿):,!+ =

𝜋+ ⋅ 210000 ⋅ 182.6 ⋅ 10B

16000+
= 1478	𝑘𝑁	 (3.2) 

 
Since the critical lengths for both the weak and strong axis are equal, the weak axis will be 
the determinant case for the computation of the buckling resistance 𝑁9,>?,C 
According to the SIA 263, § 4.5.2.2, we have: 
 

𝑁9,>?,C =
𝜒9𝑓!𝐴
𝛾A*

	 (3.3) 

With: 
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𝜒9 =
1

𝜙9 + k𝜙9+ − 𝜆̅9+
≤ 1	 (3.4) 

 
𝜙9 = 0.5n1 + 𝛼9n𝜆̅9 − 0.2o + 𝜆̅9+o	 (3.5) 

 

𝜆̅9 = p
𝑓!

𝜎):,9,C
	 (3.6) 

With: 
 

𝜎):,9,C =
𝜋+𝐸𝐼C
𝐿):,C+ ⋅ 𝐴 =

𝜋+ ⋅ 210000 ⋅ 63.1 ⋅ 10B

16000+ ⋅ 11300 = 45.2𝑀𝑃𝑎	 (3.7) 

 
Therefore: 
 

𝜆̅9 = p355
45.2

= 	2.80	 (3.8) 

 
For the imperfection factor 𝛼9, based on Figure 7 of the SIA 263, we have: 
 

ℎ − 𝑡D
𝑏 =

290 − 14
300 = 0.92 > 1.2	 (3.9) 

And  
𝑡D ≤ 100𝑚𝑚	 (3.10) 

 
Therefore, we use the buckling curve c, and we have 𝛼9 = 0.49, and therefore: 
 

𝜙9 = 0.5(1 + 0.49(2.8 − 0.2) + 2.8+) = 5.06	 (3.11) 
 

𝜒9 =
1

5.06 + √5.06+ − 2.8+
= 0.108 ≤ 1	 (3.12) 

 
Which finally gives: 

𝑁9,>?,C =
0.108 ⋅ 355 ⋅ 11300

1.05
= 412	𝑘𝑁	 (3.13) 

 
The verification of the stability of the beam is performed using the SIA 263 §5.1.10.1: 
 

𝑁E?
𝑁9,>?,C

+
𝑤!

1 − 𝑁E?
𝑁):,!

⋅
𝑀E?

𝑀F,>?
	≤ 1 (3.14) 

With: 

𝑤! = 0.6 + 0.4 g
𝑀E?,GHI

𝑀E?,G=J
h = 0.6 + 0.4 g

0
𝑀E?,G=J

h = 0.6 > 0.4	 (3.15) 

 
Since we do not consider lateral torsional buckling, we have: 
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𝑀F,>? = 𝑀>?,!	 (3.16) 
And finally, the load P should satisfy: 
 

𝑃
412 +

0.6

1 − 𝑃
1478

⋅
0.8𝑃
426 ≤ 1	 (3.17) 

 
We can solve this equation, and we obtain 	𝑃G=J = 263	𝑘𝑁  


