[1]:

[2]:

Solution to Exercise 12 — Plate Buckling - Part 1 - Effective widths
and Class 4 cross section resistance

May 26, 2022

1 Introduction

import numpy as np
import pandas as pd

Class 4 cross-sections must ensure the following cross-section check, according to SIA263-§5.3.5:

N M + Nggqe, M + Ngqe,
UEd:AEd 4 PyEd Bd®: | MyBd Bd% _ Iy

(1)

eff Wy ers Wy ers T

In this exercise we are asked to verify cross-setion resistance solely to axial load, meaning that the
above equation, worst-case scenario, will look like this:

N Np.e I
Opg = AEd + WEd z S Yy (2)
eff yeff TM1

Now, each effective geometric property in the above expression corresponds to different load con-
ditions (pure compression and ppure bending), meaning that each of their effective properties need
to be computed separately.

Before we continue let’s define our geometric variables:

« The top flange will be called plate 1, with ¢;y = 10mm and gross width b;; = 590mm;

o The bottom flange will be called plate 2, with ¢, = 10mm and gross width b;, = 590mm;
o The left plate will be called plate 3, with ¢,; = 10mm and gross width b,,;3 = 585mm;

o The right plate will be called plate 4, with ?,,, = 10mm and gross width b,,; = 585mm;

t_£1=10.
b_£1=590.

t_£2=20.
b_£2=590.

t_w3=10.
b_w3=585.

t_wd=10.

b_w4=585.

2 Gross section properties

Let’s pick as reference point the lower left corner of the intersecting mid-lines of our box-section

[3]: grossSectionPlates={1:{'length_y':b_f1,

'length_z':t_f1,
'y':b_f1/2.,
'z':b_w3},

2:{'length_y':b_£2,
'length_z':t_£2,
'y':b_f1/2.,
'z':0.0},

3:{'length_y':t_w3,
'length_z':b_w3,
'y':0,
'z':b_w3/2.%},

4:{'length_y':t_w4,
'length_z':b_w4,
'y':b_f1,
'z':b_w4/2.}}

Cross-section Area

A_gross=0.0
for plateNo, plateChar in grossSectionPlates.items():
A_gross+=plateChar['length_y']#*plateChar['length_z']

print('The gross section area is equal to ',A_gross, ' mm2')

Center of gravity

y_G=0.0

for plateNo, plateChar in grossSectionPlates.items():
y_G+=plateChar['length_y']*plateChar['length_z']*plateChar['y"']

y_G=y_G/A_gross

z_G=0.0

for plateNo, plateChar in grossSectionPlates.items():
z_G+=plateChar['length_y']+*plateChar['length_z']+*plateChar['z']

z_G=z_G/A_gross

print('The gross section center of gravity is at y=',round(y_G,2), ' mm and at
wz= ',round(z_G,2),' mm')

[4]:

[5]:

Moments of Inertia
I_z_gross=0.0

for plateNo, plateChar in grossSectionPlates.items():
I_z_gross+=plateChar['length_y']**3*plateChar['length_z']/12. +\
(]
oplateChar['length_y']l*plateChar['length_z']*(plateChar['y']-y_G)**2 ##,
<Steiner

print('The gross section moment of inertia about z is equal to ', I_z_gross, ',
<—>II]IH4:')

I_y_gross=0.0

for plateNo, plateChar in grossSectionPlates.items():
I_y_gross+=plateChar['length_y']*plateChar['length_z']**3/12. +\
(]
~plateChar['length_y']l*plateChar['length_z']*(plateChar['z']-z_G)**2 ##,
~Steiner

print('The gross section moment of inertia about y is equal to ', I_y_gross, ',
qmm4')

The gross section area is equal to 29400.0 mm2

The gross section center of gravity is at y= 295.0 mm and at z= 233.8 mm

The gross section moment of inertia about z is equal to 1531737500.0 mm4

The gross section moment of inertia about y is equal to 1747157735.9693878 mm4

Because we will be using this over and over let’s create a function for the critical load (Eq. 12 in
Part 1 of plate lecture series):

mE
Tor = K =02 0/072) ®)

def sigma_cr(k,E,nu,b,t):
return kxnp.pi**2*E/(12x(1-nu**2)*(b/t)**2)

3 Uniform compression load scenario

compressionEffectivePlates={}

3.1 Section classification and effective width computations

A plate under pure compression has a slenderness limit for class 3 section of 42¢

The steel type requires us to use € = , /% = 1/% =0.924

[6]:

[6]:

[7]:

[7]:

[8]:

[8]:

[9]:

[9]:

[10]:

[11]:

fy=275
epsilon=(235/275.)**0.5
epsilon

0.9244162777371754

Meaning that the slenderness limit is

42x0.924

38.808

3.1.1 Plate 1
b_f1/t_f1
59.0

59.0>38.8 —> Class 4
From slide 42, and STA §5.6.4.3 we have that

A, — 0.055(3 + 1)
besr = =33 b (4)
p

also from Eq. 18 in Part 1 of plate lecture series,

pT|
I
—~~
()
~—

S)

k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_f1,t_£f1)
lambda_p=(fy/sig_cr)**0.5

psi=1.0 #un<form compression

b_f1_eff=(lambda_p-0.055% (3+psi))/lambda_p**2*+b_f1
b_f1 _eff

422.48393226647954

compressionEffectivePlates.update({'1_left':{'length_y':b_f1 eff/2.,
'length_z':t_f1,
'y':b_f1_eff/4.,
'z':b_w3}})

compressionEffectivePlates.update({'1_right':{'length_y':b_f1_eff/2.,
'length_z':t_f1,
'y':b_fl-b_f1_eff/4.,

[12]:

[12]:

[13]:

[14] :
[14] :
[15]:

[15]:

[16]:

[16]:

[17]:

[18]:

[19]:

'z':b_w3}})

3.1.2 Plate 2
b_£2/t_£2

29.5

29.5<38.8 —-> Class 3 or smaller

compressionEffectivePlates.update({2:{'length_y':b_£2,
'length_z':t_£2,
'y':b_f1/2.,
'z':0.0}})

3.1.3 Plates 3 and 4

b_w3/t_w3
58.5
b_w4/t_wéd
8.5

58.0>38.8 —> Class 4

k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_w3,t_w3)
lambda_p=(fy/sig_cr)**0.5

psi=1.0 #un<form compression

b_w3_eff=(lambda_p-0.055%(3+psi))/lambda_p**2*b_w3
b_w3_eff

421.60408253326756

compressionEffectivePlates.update({'3_bottom':{'length_y':t_w3,
'length_z':b_w3_eff/2.,
'y':0.,
'z':b_w3_eff/4.}})

compressionEffectivePlates.update({'3_top':{'length_y':t_w3,
'length_z':b_w3_eff/2.,
'y':0.,
'z':b_w3-b_w3_eff/4.}})

k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_wd,t_w4)

lambda_p=(fy/sig_cr)**0.5
psi=1.0 #un<form compression

b_w4_eff=(lambda_p-0.055%(3+psi))/lambda_p**2*b_ws
b_wé_eff

[19]: 421.60408253326756

[20]: compressionEffectivePlates.update({'4_bottom':{'length_y':t_w4,
'length_z':b_w4_eff/2.,
'y':b_f1,
'z':b_wd_eff/4.}})

[21]: compressionEffectivePlates.update({'4_top':{'length_y':t_w4,
'length_z':b_wd_eff/2.,
'y'ib_f1,
'z':b_wh-b_wld_eff/4.}3})

3.2 Effective properties
[22]: # Effective Area - Compresstion

A_eff_comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
A_eff_comp+=plateChar['length_y']*plateChar['length_z']

print('The effective (compression) area is equal to ',A_eff comp, ' mm2')

Center of gravity

y_G_eff_comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
y_G_eff_compt=plateChar['length_y']*plateChar['length_z']*plateChar['y']

y_G_eff_comp=y_G_eff_comp/A_eff_comp

z_G_eff_comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
z_G_eff_comp+=plateChar['length_y']*plateChar['length_z']*plateChar['z']

z_G_eff_comp=z_G_eff_comp/A_eff_comp

print('The effective (compression) center of gravity is aty
sy=',round(y_G_eff_comp,2), ' mm and at z= ',round(z_G_eff_comp,2),' mm')

Moments of Inertia

[23]:

[23]:

[24]:

I _z_eff comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
I _z_eff_comp+=plateChar['length_y']#**3*plateChar['length_z']/12. +\
(]
~plateChar['length_y'l*plateChar['length_z']*(plateChar['y']-y_G_eff_comp)**2,
~## Steiner

print ('The effective (compression) moment of inertia about z is equal to ',
~I_z_eff_comp, ' mm4')

I_y_eff_comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
I_y_eff_comp+=plateChar['length_y']+*plateChar['length_z']**3/12. +\
(]
~plateChar['length_y'l*plateChar['length_z']*(plateChar['z']-z_G_eff_comp)**2
~## Steiner

print('The effective (compression) moment of inertia about y is equal to ',

~I_y_eff_comp, ' mm4')

The effective (compression) area is equal to 24456.920973330147 mm2

The effective (compression) center of gravity is at y= 295.0 mm and at z=
201.9 mm

The effective (compression) moment of inertia about z is equal to
1243402360.9914234 mm4

The effective (compression) moment of inertia about y is equal to
1497112560.0709546 mm4

Then the eccentricity is,

e_z=z_G-z_G_eff_comp
e z

31.898463174436557

4 Pure bending load scenario

bendingEffectivePlates={}

4.1 Section classification and effective width computations

A plate under pure compression has a slenderness limit for class 3 section of 42¢

The steel type requires us to use € = 4 /% = \/% =0.924

[25] :

[25] :

[26] :

[26] :

[27]:

[27]:

[28]:

[28]:

[29]:

[30]:

fy=275
epsilon=(235/275.)**0.5
epsilon

0.9244162777371754

Meaning that the slenderness limit is

42x0.924

38.808

4.1.1 Plate 1 - under pure compression (same as before)
b_f1/t_f1
59.0

59.0>38.8 —-> Class 4
From slide 42, and SIA §5.6.4.3 we have that

A, — 0.055(3 + 1))
beyr = 3 b
A

also from Eq. 18 in Part 1 of plate lecture series,

5 f
Ay = 4] L

Ucr

k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_f1,t_£f1)

lambda_p=(fy/sig_cr)**0.5
psi=1.0 #un<form compression

b_f1_eff=(lambda_p-0.055% (3+psi))/lambda_p*+*2+b_f1
b_fl_eff

422.48393226647954

bendingEffectivePlates.update({'1_left':{'length_y':b_f1_eff/2.,
'length_z':t_f1,
'y':b_f1l_eff/4.,
'z':b_w3}})

bendingEffectivePlates.update({'1l_right':{'length_y':b_f1_eff/2.,
'length_z':t_f1,

'y':b_fi-b_f1_eff/4.,

[31]:

[31]:

[32]:

[33]:
[33]:
[34]:

[34]:

[35]:

[35]:

[36]:

[36]:

'z':b_w3}})

4.1.2 Plate 2 - under tension
b_f2/t_f2

29.5

29.5<38.8 —-> Class 3 or smaller

bendingEffectivePlates.update({2:{'length_y':b_£f2,
'length_z':t_£2,
'y':b_£f1/2.,
'z':0.0}})

4.1.3 Plates 3 and 4 under pure bending

b_w3/t_w3
58.5
b_wid/t_wé
58.5

The slenderness limits here are somewhat a chicken and the egg situation: the classification depends
on the uniaxial stress distribution that depends on effective center of gravity, but the effective center
of gravity can only be computed if we know the section classification and its effective width.

The solution for this is to iterate. First, we need to arbitrate a stress distribution. Then we
calculate the effective properties. After the effective properties are calculated, we re-do the effective
properties with that stress distribution. And so on until we converge.

As a first guess I'll use a stress distrbution in the web for the gross section.

psi= z_G/(z_G-b_w3)
psi

-0.6657223796033994

The slenderness limit from SIA263 is given by

42¢
0.67 4+ 0.33%

42%0.924/(0.67+0.33*psi)

86.18032209360845

58.5<86.18 —-> Class 3 or smaller

And so, in this case, we don’t even have to compute effective widths and can just add the webs to
our cross-section

[37]: bendingEffectivePlates.update({3:{'length_y':t_w3,
'length_z':b_w3,
'y':0,
'z':b_w3/2.3},

4:{'length_y':t_w4,

'length_z':b_w4,
'y':b_f1,
'z':b_w4/2.3}})

4.2 Effective properties
[38]: # Effective Area - Bending

A_eff bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
A_eff_bend+=plateChar['length_y'l*plateChar['length_z']

print('The effective (bending) area is equal to ',A_eff_bend, ' mm2')

Center of gravity

y_G_eff_bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
y_G_eff_bend+=plateChar['length_y']*plateChar['length_z']*plateChar['y']

y_G_eff_bend=y_G_eff_bend/A_eff_bend

z_G_eff bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
z_G_eff_bend+=plateChar['length_y']*plateChar['length_z']*plateChar['z']

z G_eff bend=z_G_eff bend/A_eff bend

print('The effective (bending) center of gravity is aty
y=',round(y_G_eff_bend,2), ' mm and at z= ',round(z_G_eff_bend,2),' mm')

Moments of Inertia
I z eff bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
I_z_eff_bend+=plateChar['length_y']#**3*plateChar['length_z']/12. +\

10

[39]:

[39]:

[40] :

[40] :

(]
~plateChar['length_y']l*plateChar['length_z']*(plateChar['y']-y_G_eff_bend)**2
~## Steiner

print('The effective (bending) moment of inertia about z is equal to ',
I z eff bend, ' mm4')

I_y_eff _bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
I_y_eff_bend+=plateChar['length_y']#*plateChar['length_z']**3/12. +\
(]
oplateChar['length_y']*plateChar['length_z']*(plateChar['z']-z_G_eff_bend) **2,
w## Steiner

print('The effective (bending) moment of inertia about y is equal to ',
»I_y_eff bend, ' mmé')

The effective (bending) area is equal to 27724.839322664797 mm2
The effective (bending) center of gravity is at y= 295.0 mm and at z= 212.58
mm

The effective (bending) moment of inertia about z is equal to
1527820187.9951823 mm4
The effective (bending) moment of inertia about y is equal to
1528044343.5652056 mm4

Let’s re-check if the webs with this new position are still class 3

psi= z_G_eff_bend/(z_G_eff_bend-b_w3)
psi

-0.5708124262133029

The slenderness limit from SIA263 is given by

42¢
— 9)
0.67 + 0.33¢Y

42%0.924/(0.67+0.33%psi)

80.57605829764569

58.5<80.7 —> Class 3 or smaller
The webs are still class 3, and so we can proceed with the code checks

For the code check we will need the section modulus about ‘y’ for compression from the incremental
bending moment (top fiber):

11

[41]: W_y_eff_bend=I_y_eff_bend/(b_w3-z_G_eff_bend)
W_y_eff_bend

[41]: 4103027.423379785

5 Code verification

[42] : N_Ed=5250e3#N

sigma_Ed=N_Ed/A_eff_comp+(N_Ed*e_z)/W_y_eff_bend
sigma_Ed

[42]: 255.4786175756846

[43]: gamma_M1=1.05
fy/gamma_M1

[43]: 261.90476190476187
[44]: sigma_Ed<fy/gamma_M1
[44]: True

The cross section passes in sectional resistance.

[]1:

12

	Introduction
	Gross section properties
	Uniform compression load scenario
	Section classification and effective width computations
	Plate 1
	Plate 2
	Plates 3 and 4

	Effective properties

	Pure bending load scenario
	Section classification and effective width computations
	Plate 1 - under pure compression (same as before)
	Plate 2 - under tension
	Plates 3 and 4 under pure bending

	Effective properties

	Code verification

