
Solution to Exercise 12 – Plate Buckling - Part 1 - Effective widths
and Class 4 cross section resistance

May 26, 2022

1 Introduction
[1]: import numpy as np

import pandas as pd

Class 4 cross-sections must ensure the following cross-section check, according to SIA263-§5.3.5:

𝜎𝐸𝑑 = 𝑁𝐸𝑑
𝐴𝑒𝑓𝑓

+ 𝑀𝑦,𝐸𝑑 + 𝑁𝐸𝑑𝑒𝑧
𝑊𝑦,𝑒𝑓𝑓

+ 𝑀𝑦,𝐸𝑑 + 𝑁𝐸𝑑𝑒𝑧
𝑊𝑦,𝑒𝑓𝑓

≤ 𝑓𝑦
𝛾𝑀1

(1)

In this exercise we are asked to verify cross-setion resistance solely to axial load, meaning that the
above equation, worst-case scenario, will look like this:

𝜎𝐸𝑑 = 𝑁𝐸𝑑
𝐴𝑒𝑓𝑓

+ 𝑁𝐸𝑑𝑒𝑧
𝑊𝑦,𝑒𝑓𝑓

≤ 𝑓𝑦
𝛾𝑀1

(2)

Now, each effective geometric property in the above expression corresponds to different load con-
ditions (pure compression and ppure bending), meaning that each of their effective properties need
to be computed separately.

Before we continue let’s define our geometric variables:

• The top flange will be called plate 1, with 𝑡𝑓1 = 10mm and gross width 𝑏𝑓1 = 590mm;
• The bottom flange will be called plate 2, with 𝑡𝑓2 = 10mm and gross width 𝑏𝑓2 = 590mm;
• The left plate will be called plate 3, with 𝑡𝑤3 = 10mm and gross width 𝑏𝑤3 = 585mm;
• The right plate will be called plate 4, with 𝑡𝑤4 = 10mm and gross width 𝑏𝑤5 = 585mm;

[2]: t_f1=10.
b_f1=590.

t_f2=20.
b_f2=590.

t_w3=10.
b_w3=585.

t_w4=10.

1

b_w4=585.

2 Gross section properties
Let’s pick as reference point the lower left corner of the intersecting mid-lines of our box-section

[3]: grossSectionPlates={1:{'length_y':b_f1,
'length_z':t_f1,
'y':b_f1/2.,
'z':b_w3},

2:{'length_y':b_f2,
'length_z':t_f2,
'y':b_f1/2.,
'z':0.0},

3:{'length_y':t_w3,
'length_z':b_w3,
'y':0,
'z':b_w3/2.},

4:{'length_y':t_w4,
'length_z':b_w4,
'y':b_f1,
'z':b_w4/2.}}

Cross-section Area

A_gross=0.0
for plateNo, plateChar in grossSectionPlates.items():

A_gross+=plateChar['length_y']*plateChar['length_z']

print('The gross section area is equal to ',A_gross, ' mm2')

Center of gravity
y_G=0.0
for plateNo, plateChar in grossSectionPlates.items():

y_G+=plateChar['length_y']*plateChar['length_z']*plateChar['y']

y_G=y_G/A_gross

z_G=0.0
for plateNo, plateChar in grossSectionPlates.items():

z_G+=plateChar['length_y']*plateChar['length_z']*plateChar['z']

z_G=z_G/A_gross

print('The gross section center of gravity is at y=',round(y_G,2), ' mm and at␣
↪z= ',round(z_G,2),' mm')

2

Moments of Inertia

I_z_gross=0.0

for plateNo, plateChar in grossSectionPlates.items():
I_z_gross+=plateChar['length_y']**3*plateChar['length_z']/12. +\

␣
↪plateChar['length_y']*plateChar['length_z']*(plateChar['y']-y_G)**2 ##␣
↪Steiner

print('The gross section moment of inertia about z is equal to ', I_z_gross, '␣
↪mm4')

I_y_gross=0.0

for plateNo, plateChar in grossSectionPlates.items():
I_y_gross+=plateChar['length_y']*plateChar['length_z']**3/12. +\

␣
↪plateChar['length_y']*plateChar['length_z']*(plateChar['z']-z_G)**2 ##␣
↪Steiner

print('The gross section moment of inertia about y is equal to ', I_y_gross, '␣
↪mm4')

The gross section area is equal to 29400.0 mm2
The gross section center of gravity is at y= 295.0 mm and at z= 233.8 mm
The gross section moment of inertia about z is equal to 1531737500.0 mm4
The gross section moment of inertia about y is equal to 1747157735.9693878 mm4

Because we will be using this over and over let’s create a function for the critical load (Eq. 12 in
Part 1 of plate lecture series):

𝜎𝑐𝑟 = 𝑘 𝜋2𝐸
12(1 − 𝜈2)(𝑏/𝑡)2) (3)

[4]: def sigma_cr(k,E,nu,b,t):
return k*np.pi**2*E/(12*(1-nu**2)*(b/t)**2)

3 Uniform compression load scenario

[5]: compressionEffectivePlates={}

3.1 Section classification and effective width computations
A plate under pure compression has a slenderness limit for class 3 section of 42𝜀

The steel type requires us to use 𝜀 = √235
𝑓𝑦 = √235

275 = 0.924

3

[6]: fy=275
epsilon=(235/275.)**0.5
epsilon

[6]: 0.9244162777371754

Meaning that the slenderness limit is

[7]: 42*0.924

[7]: 38.808

3.1.1 Plate 1

[8]: b_f1/t_f1

[8]: 59.0

59.0>38.8 —-> Class 4

From slide 42, and SIA §5.6.4.3 we have that

𝑏𝑒𝑓𝑓 = 𝜆̄𝑝 − 0.055(3 + 𝜓)
𝜆̄2𝑝

𝑏 (4)

also from Eq. 18 in Part 1 of plate lecture series,

𝜆̄𝑝 = √ 𝑓𝑦
𝜎𝑐𝑟

(5)

[9]: k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_f1,t_f1)
lambda_p=(fy/sig_cr)**0.5
psi=1.0 #uniform compression

b_f1_eff=(lambda_p-0.055*(3+psi))/lambda_p**2*b_f1
b_f1_eff

[9]: 422.48393226647954

[10]: compressionEffectivePlates.update({'1_left':{'length_y':b_f1_eff/2.,
'length_z':t_f1,
'y':b_f1_eff/4.,
'z':b_w3}})

[11]: compressionEffectivePlates.update({'1_right':{'length_y':b_f1_eff/2.,
'length_z':t_f1,
'y':b_f1-b_f1_eff/4.,

4

'z':b_w3}})

3.1.2 Plate 2

[12]: b_f2/t_f2

[12]: 29.5

29.5<38.8 —-> Class 3 or smaller

[13]: compressionEffectivePlates.update({2:{'length_y':b_f2,
'length_z':t_f2,
'y':b_f1/2.,
'z':0.0}})

3.1.3 Plates 3 and 4

[14]: b_w3/t_w3

[14]: 58.5

[15]: b_w4/t_w4

[15]: 58.5

58.0>38.8 —-> Class 4

[16]: k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_w3,t_w3)
lambda_p=(fy/sig_cr)**0.5
psi=1.0 #uniform compression

b_w3_eff=(lambda_p-0.055*(3+psi))/lambda_p**2*b_w3
b_w3_eff

[16]: 421.60408253326756

[17]: compressionEffectivePlates.update({'3_bottom':{'length_y':t_w3,
'length_z':b_w3_eff/2.,
'y':0.,
'z':b_w3_eff/4.}})

[18]: compressionEffectivePlates.update({'3_top':{'length_y':t_w3,
'length_z':b_w3_eff/2.,
'y':0.,
'z':b_w3-b_w3_eff/4.}})

[19]: k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_w4,t_w4)

5

lambda_p=(fy/sig_cr)**0.5
psi=1.0 #uniform compression

b_w4_eff=(lambda_p-0.055*(3+psi))/lambda_p**2*b_w4
b_w4_eff

[19]: 421.60408253326756

[20]: compressionEffectivePlates.update({'4_bottom':{'length_y':t_w4,
'length_z':b_w4_eff/2.,
'y':b_f1,
'z':b_w4_eff/4.}})

[21]: compressionEffectivePlates.update({'4_top':{'length_y':t_w4,
'length_z':b_w4_eff/2.,
'y':b_f1,
'z':b_w4-b_w4_eff/4.}})

3.2 Effective properties

[22]: # Effective Area - Compression

A_eff_comp=0.0
for plateNo, plateChar in compressionEffectivePlates.items():

A_eff_comp+=plateChar['length_y']*plateChar['length_z']

print('The effective (compression) area is equal to ',A_eff_comp, ' mm2')

Center of gravity
y_G_eff_comp=0.0
for plateNo, plateChar in compressionEffectivePlates.items():

y_G_eff_comp+=plateChar['length_y']*plateChar['length_z']*plateChar['y']

y_G_eff_comp=y_G_eff_comp/A_eff_comp

z_G_eff_comp=0.0
for plateNo, plateChar in compressionEffectivePlates.items():

z_G_eff_comp+=plateChar['length_y']*plateChar['length_z']*plateChar['z']

z_G_eff_comp=z_G_eff_comp/A_eff_comp

print('The effective (compression) center of gravity is at␣
↪y=',round(y_G_eff_comp,2), ' mm and at z= ',round(z_G_eff_comp,2),' mm')

Moments of Inertia

6

I_z_eff_comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
I_z_eff_comp+=plateChar['length_y']**3*plateChar['length_z']/12. +\

␣
↪plateChar['length_y']*plateChar['length_z']*(plateChar['y']-y_G_eff_comp)**2␣
↪## Steiner

print('The effective (compression) moment of inertia about z is equal to ',␣
↪I_z_eff_comp, ' mm4')

I_y_eff_comp=0.0

for plateNo, plateChar in compressionEffectivePlates.items():
I_y_eff_comp+=plateChar['length_y']*plateChar['length_z']**3/12. +\

␣
↪plateChar['length_y']*plateChar['length_z']*(plateChar['z']-z_G_eff_comp)**2␣
↪## Steiner

print('The effective (compression) moment of inertia about y is equal to ',␣
↪I_y_eff_comp, ' mm4')

The effective (compression) area is equal to 24456.920973330147 mm2
The effective (compression) center of gravity is at y= 295.0 mm and at z=
201.9 mm
The effective (compression) moment of inertia about z is equal to
1243402360.9914234 mm4
The effective (compression) moment of inertia about y is equal to
1497112560.0709546 mm4

Then the eccentricity is,

[23]: e_z=z_G-z_G_eff_comp
e_z

[23]: 31.898463174436557

4 Pure bending load scenario

[24]: bendingEffectivePlates={}

4.1 Section classification and effective width computations
A plate under pure compression has a slenderness limit for class 3 section of 42𝜀

The steel type requires us to use 𝜀 = √235
𝑓𝑦 = √235

275 = 0.924

7

[25]: fy=275
epsilon=(235/275.)**0.5
epsilon

[25]: 0.9244162777371754

Meaning that the slenderness limit is

[26]: 42*0.924

[26]: 38.808

4.1.1 Plate 1 - under pure compression (same as before)

[27]: b_f1/t_f1

[27]: 59.0

59.0>38.8 —-> Class 4

From slide 42, and SIA §5.6.4.3 we have that

𝑏𝑒𝑓𝑓 = 𝜆̄𝑝 − 0.055(3 + 𝜓)
𝜆̄2𝑝

𝑏 (6)

also from Eq. 18 in Part 1 of plate lecture series,

𝜆̄𝑝 = √ 𝑓𝑦
𝜎𝑐𝑟

(7)

[28]: k=4.0 #<--- uniform compression
sig_cr=sigma_cr(k,210e3,0.3,b_f1,t_f1)
lambda_p=(fy/sig_cr)**0.5
psi=1.0 #uniform compression

b_f1_eff=(lambda_p-0.055*(3+psi))/lambda_p**2*b_f1
b_f1_eff

[28]: 422.48393226647954

[29]: bendingEffectivePlates.update({'1_left':{'length_y':b_f1_eff/2.,
'length_z':t_f1,
'y':b_f1_eff/4.,
'z':b_w3}})

[30]: bendingEffectivePlates.update({'1_right':{'length_y':b_f1_eff/2.,
'length_z':t_f1,
'y':b_f1-b_f1_eff/4.,

8

'z':b_w3}})

4.1.2 Plate 2 - under tension

[31]: b_f2/t_f2

[31]: 29.5

29.5<38.8 —-> Class 3 or smaller

[32]: bendingEffectivePlates.update({2:{'length_y':b_f2,
'length_z':t_f2,
'y':b_f1/2.,
'z':0.0}})

4.1.3 Plates 3 and 4 under pure bending

[33]: b_w3/t_w3

[33]: 58.5

[34]: b_w4/t_w4

[34]: 58.5

The slenderness limits here are somewhat a chicken and the egg situation: the classification depends
on the uniaxial stress distribution that depends on effective center of gravity, but the effective center
of gravity can only be computed if we know the section classification and its effective width.

The solution for this is to iterate. First, we need to arbitrate a stress distribution. Then we
calculate the effective properties. After the effective properties are calculated, we re-do the effective
properties with that stress distribution. And so on until we converge.

As a first guess I’ll use a stress distrbution in the web for the gross section.

[35]: psi= z_G/(z_G-b_w3)
psi

[35]: -0.6657223796033994

The slenderness limit from SIA263 is given by

42𝜀
0.67 + 0.33𝜓 (8)

[36]: 42*0.924/(0.67+0.33*psi)

[36]: 86.18032209360845

58.5<86.18 —-> Class 3 or smaller

9

And so, in this case, we don’t even have to compute effective widths and can just add the webs to
our cross-section

[37]: bendingEffectivePlates.update({3:{'length_y':t_w3,
'length_z':b_w3,
'y':0,
'z':b_w3/2.},

4:{'length_y':t_w4,
'length_z':b_w4,
'y':b_f1,
'z':b_w4/2.}})

4.2 Effective properties

[38]: # Effective Area - Bending

A_eff_bend=0.0
for plateNo, plateChar in bendingEffectivePlates.items():

A_eff_bend+=plateChar['length_y']*plateChar['length_z']

print('The effective (bending) area is equal to ',A_eff_bend, ' mm2')

Center of gravity
y_G_eff_bend=0.0
for plateNo, plateChar in bendingEffectivePlates.items():

y_G_eff_bend+=plateChar['length_y']*plateChar['length_z']*plateChar['y']

y_G_eff_bend=y_G_eff_bend/A_eff_bend

z_G_eff_bend=0.0
for plateNo, plateChar in bendingEffectivePlates.items():

z_G_eff_bend+=plateChar['length_y']*plateChar['length_z']*plateChar['z']

z_G_eff_bend=z_G_eff_bend/A_eff_bend

print('The effective (bending) center of gravity is at␣
↪y=',round(y_G_eff_bend,2), ' mm and at z= ',round(z_G_eff_bend,2),' mm')

Moments of Inertia

I_z_eff_bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
I_z_eff_bend+=plateChar['length_y']**3*plateChar['length_z']/12. +\

10

␣
↪plateChar['length_y']*plateChar['length_z']*(plateChar['y']-y_G_eff_bend)**2␣
↪## Steiner

print('The effective (bending) moment of inertia about z is equal to ',␣
↪I_z_eff_bend, ' mm4')

I_y_eff_bend=0.0

for plateNo, plateChar in bendingEffectivePlates.items():
I_y_eff_bend+=plateChar['length_y']*plateChar['length_z']**3/12. +\

␣
↪plateChar['length_y']*plateChar['length_z']*(plateChar['z']-z_G_eff_bend)**2␣
↪## Steiner

print('The effective (bending) moment of inertia about y is equal to ',␣
↪I_y_eff_bend, ' mm4')

The effective (bending) area is equal to 27724.839322664797 mm2
The effective (bending) center of gravity is at y= 295.0 mm and at z= 212.58
mm
The effective (bending) moment of inertia about z is equal to
1527820187.9951823 mm4
The effective (bending) moment of inertia about y is equal to
1528044343.5652056 mm4

Let’s re-check if the webs with this new position are still class 3

[39]: psi= z_G_eff_bend/(z_G_eff_bend-b_w3)
psi

[39]: -0.5708124262133029

The slenderness limit from SIA263 is given by

42𝜀
0.67 + 0.33𝜓 (9)

[40]: 42*0.924/(0.67+0.33*psi)

[40]: 80.57605829764569

58.5<80.7 —-> Class 3 or smaller

The webs are still class 3, and so we can proceed with the code checks

For the code check we will need the section modulus about ‘y’ for compression from the incremental
bending moment (top fiber):

11

[41]: W_y_eff_bend=I_y_eff_bend/(b_w3-z_G_eff_bend)
W_y_eff_bend

[41]: 4103027.423379785

5 Code verification
[42]: N_Ed=5250e3#N

sigma_Ed=N_Ed/A_eff_comp+(N_Ed*e_z)/W_y_eff_bend
sigma_Ed

[42]: 255.4786175756846

[43]: gamma_M1=1.05
fy/gamma_M1

[43]: 261.90476190476187

[44]: sigma_Ed<fy/gamma_M1

[44]: True

The cross section passes in sectional resistance.

[]:

12

	Introduction
	Gross section properties
	Uniform compression load scenario
	Section classification and effective width computations
	Plate 1
	Plate 2
	Plates 3 and 4

	Effective properties

	Pure bending load scenario
	Section classification and effective width computations
	Plate 1 - under pure compression (same as before)
	Plate 2 - under tension
	Plates 3 and 4 under pure bending

	Effective properties

	Code verification

