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Exercise #10 –Potential Energy Method of Equilibrium 
 
Problem 1 
The structural system shown in Figure 1 consists of a rigid vertical member that is subjected 
to a compressive force 𝑃 and two horizontal beams of rigidities 𝐸𝐼 and 2𝐸𝐼. The vertical 
member should not rotate by a certain amount in order to prevent any geometric instability.  
 
Compute the following: 

1. The total internal energy 𝑈 of the system by considering no imperfections.  
2. Compute the total external energy 𝑉! of the system by considering no imperfections.  
3. Investigate the stability (or instability) of the system based on the total potential 

energy theorem by using linear and nonlinear theory. 

 
Figure 1. Planar structural system 

 
Note that a beam with length 𝐿 and end moments can be idealized as follows depending on its 
boundary conditions. 

 
 

Figure 2. Stiffness coefficients 
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Problem 2 
 
The steel bridge shown in Figure 3a can be represented by a set of two steel rods of infinite 
axial stiffness as shown in Figure 3b and a horizontal beam of rigidity EI that should not 
rotate by a certain amount in order to prevent any stability associated issues. Compute the 
following: 
 

1. The total internal energy U of the system by considering no imperfections.  
2. Compute the total external energy 𝑉! of the system by considering no imperfections.  
3. Investigate the stability (or instability) of the system based on the total potential 

energy theorem by using linear and nonlinear theory. 
 

 
Figure 3. Steel bridge deck and mathematical model idealization 

 
Note: a beam with end moments can be idealized as follows: 
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Solution 
 
Problem 1 
 
Part 1 
First step is the calculation of an equivalent spring stiffness at the bottom node of the 
infinitely rigid bar: 
 

𝑐"#𝜃 = +
4𝐸𝐼
𝐿 +

3 ∙ 2 ∙ 𝐸𝐼
3𝐿 0 𝜃 ⇒ 𝑐"# =

6𝐸𝐼
𝐿  

 
The internal energy then is: 
 

U =
1
2 𝑐"#𝜃

$ =
3𝐸𝐼
𝐿 𝜃$ 

 
Part 2 
The total potential energy is: 
 

V% = −𝑃𝐿(1 − 𝑐𝑜𝑠𝜃) 
 
Part 3 
Linear Theory: 
 
Express the total potential energy: 
 

Π = U + V% =	
3𝐸𝐼
𝐿 𝜃$ − 𝑃𝐿(1 − 𝑐𝑜𝑠𝜃) ≈

3𝐸𝐼
𝐿 𝜃$ − 𝑃𝐿

𝜃$

2 = +
6𝐸𝐼
𝐿 − 𝑃𝐿0

𝜃$

2  
 
Variations of potential energy with respect to the rotation are: 
 

𝜕𝛱
𝜕𝜃 = +

6𝐸𝐼
𝐿 − 𝑃𝐿0𝜃 

 
In the limit that small variations of 𝜃 will yield no change in the potential energy – i.e. &'

&(
=

0, then either 𝜃 = 0 or  
 

𝑃 =
6𝐸𝐼
𝐿$  

 
After this point, if the load is maintained, for any change in 𝜃 the total potential energy will 
stay constant. No increase in load is possible because it would be an unstable behavior. This 
can be seen with the second derivative of the potential energy: 
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𝜕$𝛱
𝜕𝜃$ =

6𝐸𝐼
𝐿 − 𝑃𝐿 ⇒

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑃 <

6𝐸𝐼
𝐿$ ⇒

𝜕$𝛱
𝜕𝜃$ > 0 − 𝑠𝑡𝑎𝑏𝑙𝑒

𝑃 =
6𝐸𝐼
𝐿$

⇒
𝜕$𝛱
𝜕𝜃$

= 0 − 𝑙𝑖𝑚𝑖𝑡

𝑃 >
6𝐸𝐼
𝐿$

⇒
𝜕$𝛱
𝜕𝜃$

< 0 − 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

 

 
Nonlinear Theory: 
 

Π = U + V% =	
3𝐸𝐼
𝐿 𝜃$ − 𝑃𝐿(1 − 𝑐𝑜𝑠𝜃) 

 
Again, taking the first derivative of the total potential energy, 
 

𝜕𝛱
𝜕𝜃 =

6𝐸𝐼
𝐿 𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃 

 
So, again, to have no change in the total potential energy as a function of the rotation 𝜃, i.e. 
&'
&(
= 0, yields 

 

𝑃 =
6𝐸𝐼
𝐿$

𝜃
𝑠𝑖𝑛𝜃 

 
For small rotations 𝑠𝑖𝑛𝜃 ≈ 𝜃, but as rotations increase the sine function will not increase at 
the same rate as 𝜃 and for sufficiently large rotations it will even decrease. As a consequence, 
the ratio (

)*+(
 is always greater than 1 and so the load will always increase after the 

bifurcation point at ,-.
/!

. In the limit the load can be ∞ when 𝜃 → 𝜋. This is a stable nonlinear 
behavior. 
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Problem 2 
Part 1: 

   
(a) (b) (c) 

Figure 5. Supporting figures for Exercise #10 – Problem 2. 

 
Instability in the system will lead to the vertical rigid bars rotating by a certain amount, 𝜃. 
Assuming symmetry of the system shown in Figure 5a, this can be idealized by a rigid 
column with a vertical load 𝑃 applied at the top, and a rotational spring at the bottom, as 
shown in Figure 5b. According to the information provided, the stiffness of this spring will be 
 
 𝑐 = 0

(
= $-.

/
 (1) 

 
Since the column is rigid, it does not contribute to the total strain energy. Assuming that the 
spring will behave in a linear elastic fashion as shown in Figure 5c, the total internal energy, 
U, will be as follows 
 
 𝑈 = 1

$
𝑐 ∙ 𝜃$ = $-.

/∗$
∙ 𝜃$ = -.

/
∙ 𝜃$ (2) 

 
Part 2: 
 
The total external potential energy will be the vertical displacement δ, multiplied by P. By 
trigonometry, 𝛿 = 𝐿 − 𝐿 ∗ cos 𝜃 , therefore 
 
 𝑉! = 𝑃 ∙ 𝐿(1 − cos 𝜃) (3) 
 
Part 3: 
 
In order the investigate the stability, the total potential energy, Π, is required. 
 
 Π = 𝑈 − 𝑉! =

-.
/
∙ 𝜃$ − 𝑃 ∙ 𝐿(1 − cos 𝜃) (4) 

 
First the critical load at which the secondary equilibrium path will be obtained must be 
calculated. This is done by taking the first derivative of the total potential energy of the 
system with respect to the displacement variable, 𝜃: 
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𝜕Π
𝜕𝜃

=
𝜕
𝜕𝜃
W
𝐸𝐼
𝐿
∙ 𝜃$ − 𝑃 ∙ 𝐿(1 − cos 𝜃)X

=
𝐸𝐼
𝐿 ∙ 2𝜃 − 𝑃 ∙ 𝐿(0 + sin 𝜃)

=
2𝐸𝐼
𝐿 𝜃 − 𝑃𝐿 sin 𝜃

(5) 

 
Now this is set equal to zero, and the limit as 𝜃 → 0 is taken 
 lim

(→4
^$-.
/
𝜃 − 𝑃𝐿 sin 𝜃 = 0_ (6) 

 
By L’Hopital’s Rule: lim

(→4
(𝜃/ sin 𝜃) = 1 

 𝑃56 =
$-.
/!

 (7) 
 
In order to determine if the secondary equilibrium is stable or unstable, the higher order 
derivatives of Π with respect to θ must be taken. If the term is less than zero, the system is 
unstable. The system is stable for terms greater than zero. 

 
&!7
&(!

= &
&(
^$-.
/
𝜃 − 𝑃𝐿 sin 𝜃_

= $-.
/
− 𝑃𝐿 cos 𝜃

 (8) 

 
Replacing 𝑃 with 𝑃56 and evaluating at 𝜃	 = 	0, 
 
 &!7

&(!
a
(84

= $-.
/
− $-.

/!
𝐿 cos 𝜃 = $-.

/
(1 − cos 0) = 0 (9) 

 
Since the second order term is equal to zero, the higher order terms must be explored. First, 
examining the third derivative, 
 

 
&"7
&("

= &
&(
^$-.
/
𝜃 − 𝑃𝐿 cos 𝜃_

= 0 + 𝑃𝐿 sin 𝜃
 (11) 

 
Replacing 𝑃 with 𝑃56 and evaluating at θ = 0, 
 
 &"7

&("
a
(84

= $-.
/
sin 0 = 0 (12) 

 
Again, another term must be explored, examining the fourth derivative: 

 
&#7
&(#

= &
&(
(𝑃𝐿 sin 𝜃)

= 𝑃𝐿 cos 𝜃
 (13) 

 
Replacing 𝑃 with 𝑃56 and evaluating at 𝜃	 = 	0, 
 &#7

&(#
a
(84

= $-.
/
cos 0 = $-.

/
> 0. (14) 

 
Since all the lower order terms are equal to zero, and the fourth order term is greater than 0, 
the system is stable. 


