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=PFL Objectives of This Week’s Lecture
To introduce:
< Analytical methods for assessing stability of
characteristic systems
< Potential Energy Method
< Dynamic Method

< lllustrative examples to examine structural stability
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=PrL Total Potential Energy
<> The total potential IT of an elastic conservative system is

defined as follows,
N=U+V,
< U : elastic strain energy of a conservative system. The
work performed by both the internal and the external forces
Is independent of the path traveled by these forces, and it
depends only on the initial and the final positions.

<V, . potential of the external forces, using the original
deflected position as a reference V, is the external work;

Vp = —We
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=PFL Computation of Total Potential Energy

< U is the internal work performed by the internal forces
(total strain energy); U = Wi

< The potential of the external forces is computed as,

b == [ Piay-da; o V== P da
[ i

< q; are the generalized coordinates (deflections or
rotations that define the deformed shape of a system)

< P, are the corresponding external loads
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EPFL Equilibrium Criterion

< A conservative system subjected to a static force P is in
equilibrium at a deformed configuration g, when the total
potential energy I1 has a local maximum or local minimum
(stationary value) compared to any other deformed

configuration near by.
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EPFL Mathematical Expression of Potential Energy

< For a system with one degree of freedom, g, which is
subjected to external loads P, the potential energy Il is a
single variable function,

(P, q)

< The equilibrium position, g, will be as follows,

o1(P, q)
=0
0q
d=qo
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ePFL Mathematical Expression of Potential Energy

+ Minimum of |1 d?I1 0 Ball in cup can be
. Stable o2 disturbed, but it will

e return to the
equilibrium center.

* Energy must be
added
to change

configuration.

* Maximum of [] d?T] Ball will roll down if
+ Unstable de? © disturbed.
equilibrium
* Energyis
released as
configuration is

changed.

« Transition from 0'2_H -0 @ Ball is free to roll.

minimum to d6?

maximum
* Neutral
equilibrium
+ There is no
change in energy.

Image Source: Galambos and Surovek 2008
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

Energy and Dynamic Methods of Equilibrium /




=PrL Stability/Instability Criterion

< The equilibrium point g, is stable if the potential energy II

has a local minimum at position q,, therefore,

04I1(P, q)

507 >0

d=do

- =

a, q

< The equilibrium point g, is unstable if the potential energy

[l has a local maximum at position q,, therefore,

04I1(P, q)

50 <0

d=do
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=PrL Stability/Instability Criterion

< If the second derivative of the potential energy II at the
equilibrium point g, is zero then we need to find the k — th

derivative that,
oXTI(P, q)

g * 0

d=dqo

< If kis an odd number, then the equilibrium is neutral

_e:

q, q

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
Energy and Dynamic Methods of Equilibrium




cPrL Stability/Instability Criterion

< If kis an even number, then I1 has a local maximum or
minimum.
< Alocal minimum implies that the equilibrium is stable and,

oX1I(P, q)
gk

> (

d=do

< A local maximum implies that the equilibrium is unstable

and, .
0°11(P, q)
k <0
0q
d=do
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=PrL Example 1: Fixed Rod with Vertical Load

L — L cos 6 —

Image Source: Galambos and Surovek 2008
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=PrL Example 1: Fixed Rod with Vertical Load

Total Internal Energy

U—1 k-0 9—1 L
2 2

Total External Energy

Vp:_zpi'Qi:_P'q
i
V, = =P - (L — Lcos(8))

Total Potential Energy
H=%-k-82—P-L(1—cos(9))
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=PFL Example 1: Linear Buckling Theory

Total Potential Energy
62

1 1
szkHZ—PL[l—COS(H)]EEkHZ—PL7

oIl
—=k-06—-—P:-L-06=6-(k—PL)
aq
I . _ oI1(P, 0)
Equilibrium point can be found if Y =0

9=90

Therefore, @ =00rpP = % =P..
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=PFL Example 1: - Linear Buckling Theory

P

Unstable Equilibrium T i /— Bifurcation point at P,

-——— Stable Equilibrium

6 =0

0
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£PFL Example 1: Evaluation of Stability
— Linear Theory

0°1I(P,6)

067

k — PL

Evaluation of stability of the main equilibrium path,

0°I1(P, 9)

0672

il | Structures Laboratory

t Steel

=k — PL - if <

k
P<P.,= 7 then stable

k
P > P.. =—,then unstable

b,‘

k
P.. = Z,then 77

P
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=PrL Example 1: Evaluation of Stability — Linear Theory

Evaluation of stability of the main equilibrium path,
1 0°
[1(0.9P.,.,0) = 5 k-0%2—09P.. L = 0.05-k - 6%

0 [rads]

-0.1 -0.05 0 0.05 0.1
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=PrL Example 1: Evaluation of Stability — Linear Theory

Evaluation of stability of the main equilibrium path,
1 0°
MN1.1~P..,0) = E-k 0% —-11-P..-L = —0.05- k- 6%

-0.0001 -

-0.0002 -

-0.0003 -

-0.0004 -

H/k -0.0005 -
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=PFL Example 1: - Nonlinear Theory
H:%-koHZ—P-L(l—COS(H))

on k-6 —P-L-sin(0
— =K+0 —FL-SIn
3 (9)
. . _ oIl(P, 0)
Equilibrium point can be found if
00
9=90
k 0
Therefore, 0 =00rP=—-——
L sinf
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=PFL Example 1: - Nonlinear Theory

15

cr
-

Normalized Load P/P

RESSLab

Resil

ilient Steel Structures Laboratory

Stable
P/P 6 post-buckling
- th
. / T 5ind \ — pa

Bifurcation point

-1 -0.5 0 0.5 1
Rotation Angle, ¢ [rads]
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=PFL Example 1: Evaluation of Stability
— Nonlinear Theory

d°I1(P, 6)
0672

= k — PLcos@

Evaluation of stability of the main equilibrium path,

d°T1(P, 6)

0072

RESSLab

0

0

=k — PL - if 5

( P < P.. then stable
P > P.. then unstable

Prof. Dr. Dimitrios G. Lignos
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cPrL Example 1: Evaluation of Stability
— Nonlinear Theory

Evaluation of stability of bifurcation point,

0°1(P,6) Dl o a311(P, 9) _ 0
goz W 903 -
0=0,P=P,,
oMIp.0) _ . 0'TI(P,6) e
gor TE -
0=0,P=P,,

Therefore the bifurcation point is stable
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£PFL Example 1: Evaluation of Stability
— Nonlinear Theory

Evaluation of stability of the bifurcation point,
1
[(P.,,0) = E-k 9% — k- (1—cos8)

0.000004 -
I/k
0.000003 -

0.000002 -

0.000001 -

L
! wur ! 1

-0.1 -0.05 0 0.05 0.1
0 [rads]
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=PFL Example 1: Evaluation of Stability
— Nonlinear Theory

Evaluation of stability for secondary equilibrium path,

0°I1(P, 0) ke — Pleost
392 = CoS
X ornpe) 8 .
p:_._i 002 sing *°
L sin6 ]

o°ne,e) o6 (8
002 B sinB COSY = tand
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=PFL Example 1: Evaluation of Stability
— Nonlinear Theory

Evaluation of stability for secondary equilibrium path,

k-1 O >0
tanf@ )

-0.1 -0.05 0 0.03 0.1
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=PFL Example 1: Evaluation of Stability
— Nonlinear Theory

Random position on the secondary equilibrium path,

(P = 1.00670k/L, 6=0.2rad)

1
[1(1.00670k/L,0) = =-k-0% —1.00670k - (1 — cosh)

0.00004 - /
0 [rads]
D I 1 s
0j1 0.15 02 0.25 0.2
-0.00008 -
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PrL Example 1: Evaluation of Stability
— Nonlinear Theory

Random position on the secondary equilibrium path,

I

RESSLab

Resilient Steel Structures Laboratory

| Total

/ potential
energy

Equilibrium
point to
be checked

Secondary
T equilibrium
path

0 [rads]

0 0.1 0.2 0.3
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=PFL Example 1: System with Imperfections

L — L cos 6 —

Image Source: Galambos and Surovek 2008
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=PrL Example 1: System with Imperfections

Total Internal Energy

1
U=5-k-(6-0,)

Total External Energy

]/p:ZPi.qiinit'_EPi.qifln':P-qQO_P.qe
l I

V, = P - L(cos6, — cosb)
Total Potential Energy

1
1= E-k (8 —-6,)>—P-L(cos8, — cosB)
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=PrL Example 1: System with Imperfections
-Nonlinear Theory

Total Potential Energy

1
M==-k-(0—6,)°—P-L(cosb, — cosh)

2
an—k(ﬁ 6,) — P - L-sin(6
g - 0 sin(6)
M o= p=k.0=%
0q L sin®
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cPrFL Example 1: System with Imperfections — Nonlinear Theory

1.5

Secondary equilibrium
path from linear analysis of
system with no imperfections

4/‘
-/‘

-

e g =

Equilibrium path from
nonllinear analysis of
system with imperfections

\

'|

: p/p. = (2
! [Fer = sin@

Initial imperfection,
/ 0, = 0.01rads

Normalized Load P/P or

o
(3)]
|

0 1 | 1
-1 -0.5 0 0.5 1
Rotation Angle, ¢ [rads]

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Example 1: System with Imperfections
-Nonlinear Theory

d°I1(P, 6)

592 =k — PLcos@

Evaluation of stability of the continuous equilibrium path,

0°I1(P, )
592 = k — PLcos0-
0°I1(P, 9) 06— 0,
— - =k|1-—
p:E.H % 0674 ( tan@)
L sin® |

0672

0°1(P,6) " tand — 0 + 0,
B tan6

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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EPFL Example 1

: System with Imperfections

-Nonlinear Theory

Random position o
(P =0.901502

n the secondary equilibrium path,
k/L,0=0.1rad), assume 8, = 0.01rads

[1(0.901502k/L, 0)

—1k(9 0
=5 _

0.0001

01)? — 0.901502 - k - (cos(0.01) — cosB)

\

6 [rads] /

F

[I/k o
-0.0001 f
-0.0002 ~
-0.0003

-0.0004 -

0.2

-0.0005 -

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PrL Example 1: System with Imperfections
-Nonlinear Theory

0.1

-0.05+

-0.1-

Resilient Steel Structures Laboratory

5 0.4

0 [rads] e i ok
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=PFL Multi-Degree of Freedom Systems
-Potential Energy Method for Estimating P.,.

Rigid bar

In

L e

Image Source: Galambos and Surovek 2008
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EPFL Multi-Degree of Freedom Systems

The energy method can be used for arriving at a solution. The
necessary geometric relationships are illustrated herein

Image Source: Galambos and Surovek 2008
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EPFL Multi-Degree of Freedom Systems

The energy method can be used for arriving at a solution. The
necessary geometric relationships are illustrated herein

L L
) T
= _— ___'__'7\_5_1'__'__"_____3_2\
N

LO%
€3 = L — LcosO zT

g, =&+ L[1 —cos(yp — )] = %(292 + 2% — 218)

2
81=€2+%=L(92+¢2—lp6’)

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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EPFL Multi-Degree of Freedom Systems

The strain energy equals
k kL?
U, = E(A% +A3) = 7(1/12 +6%)

The potential of the external forces equals

V, = —Pe; = —PL(6* +¢? —¢0)

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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EPFL Multi-Degree of Freedom Systems

For equilibrium, we take the derivatives with respect to the two
angular rotations:

ﬁH_O—kLZ (21) — 2PLy + PLO

gy 0= Y Y

AL 0= kL (20) — 2PL6O + PL

90~~~ 2 Y
RE§SLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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EPFL Multi-Degree of Freedom Systems

Rearranging we get

(kL? — 2PL) PL 9 (o
[ PL (kL? - ZPL)] {tp} B {o}

Setting the determinant of the coefficients equal to zero
results in the critical loads of the problem.

3 PY 4P+1—o
kL kL B

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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EPFL Multi-Degree of Freedom Systems

—_—
-
-

-
-

Image Source: Galambos and Surovek 2008
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=PFL Dynamic Approach for Structural Stability
-Flutter: Wind Vibrations

Source: Tacoma Narrows collapse

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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https://youtu.be/XggxeuFDaDU

=PFL Dynamic Approach for Structural Stability
-Other Applications of Dynamic Stability - Rocking

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PrL Dynamic Approach for Structural Stability
-Other Applications of Dynamic Stability — Rocking Objects

(a) (b)

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Dynamic Approach for Structural Stability
-Other Applications of Dynamic Stability — Rocking in Buildings

Post-tensioning

/ — Shear Fuse

: ﬂ : ! ;Rock'tng Base

Source: Sause and Ricles 2006

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

Energy and Dynamic Methods of Equilibrium A




EPFL Dynam| Approach for Structural Stablllty

SC-CBF Floor Displacements over Time
i - 18
3 - Floor 1
‘ ' —— Floor 2
= —Floor 3
e Wik - 10+ | =——Floor 4 |1
£ st
E
@
E
@
& 0
o
k]
O
8 5l
T =5t
16! i <
0 10 20 27

Time (sec)

TR o Ui o
e e | | — Ty ([ fi

i |
{l & |} 108
[ ‘ r ,.L{
{ el
| o g
45 L

South Base .

Source: Sause and Ricles 2006
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=PrL Dynamic Approach for Checking Stability

< Assume a structural system with n degrees-of-freedom
(DOF) that their generalized coordinates are defined as

follows:
q; = (i =1,2,3,4,5,..,n)

< Suppose that an equilibrium state is reached such that:

q; =q;,({=12345,..,n)

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Dynamic Approach for Checking Stability
-Phase Diagram

qi -
Equilibrium
position
./ qi
qi
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Dynamic Approach for Checking Stability

<> Select a coordinate system such that:

qg; =0,(=1234,5,..,n)

< Therefore the equilibrium point of the system becomes,
q; =0,(i =1234,5,..,n)

qi

Equilibrium
position

./ di

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Dynamic Approach for Checking Stability

< Subject the system to an initial small perturbation

0
(CIL)O( ) (i=12345,..,m)

<> Therefore,
0
0 an .
1@)°ll =n, || 5] || ==n( =1,2345,..,m)
dt
Initial qdi
small ]
perturbation
aFf---e
N o
qdi
=N
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=P~L Dynamic Approach for Checking Stability
-Stability Criterion

< An equilibrium position is stable, if the vibration that the
system is subjected to after the perturbation is bounded

dq;(t)

vn > 0,3 = e(n):|q;(t)| < € and ™

<e(i=1234,75,..,n)

<> Else the equilibrium position is unstable

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=p~L Dynamic Approach for Checking Stability
-Stability Criterion: Graphical Representation

q;(t) P
Unstable
""" A
ey Stable c
n| 9
Yoo t ¥
4 i
n
Y. c
.
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Dynamic Approach for Checking Stability

-Graphical Representation — Phase Diagram

qi
AN
Stable < { N, Unstable
i £
N 2071
Y I : Y ql
rli CID A
v £
Y
- ={ o
€ €

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

< Suppose you have a system with mass m and stiffness k,
its equation of motion is as follows:

d%q
m'w+k°q=0

< Assume that the solution will be: g = C - ef?

<> By substitution,

k
mCp?ePt + kCePt = 0 = (p2+g> C-ePt =0

<> Characteristic Equation, "

2 — =0
’0+m

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

<> Characteristic Equation,

k
2 —=0
p"'m

k . . "
< If — = w? >0 eigen frequencies are positive and real

q(t) = C; - sinwt + C, - coswt
q(t) = Ciw - coswt — C,w + sinwt
A0 =q=>C=d  q(0) == C, =
9o Initial displacement

do Initial velocity

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

<> Bounded vibration

q- 2
max(g(@) = |(@0)* + (3))

max{q(t)} = v (qow)? + (qy)?

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability” -
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

< Positive Eigen frequency (bounded vibration)

1.5 -

VA
=AY y

20

IJ

Beginning
. of motion

-20 -

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

<> Characteristic Equation,
k

2

qt) =C;+Cy -t
q(t) = C,

q(0) =qo = C1 =qo q(0) =g = C, = qo

9o Initial displacement

do Initial velocity

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

25 1
< Zero Eigen frequency unbounded .
vibration linearly increasing 20
amplitude 15 -
w=20 10 -
do = 1 5
1o = 10 =1 :
q[} - 0 .
0 0.5 1 1.5 2
12 qn 12 - ql:l
q, =10 10 +-»
3 - g | | Beginning
; 6] of motion
4 4 -
2 2 14
t :
D T T T 1 G : T T T T ql
o 0.5 1 1.5 2 0 5 10 15 20 25
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability” -
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£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

<> Characteristic Equation,

k
2
+ —=0
k " m
< If — = w? < 0 The eigen frequency of the system is imaginary, p=+w
m

q(t) = ¢ 'eplt‘l'cz . eP2t = Cy '€wt-|-C2 . g~ wt

g(t) = Ciw - e®t — Cow - 679t

q0) =qo=>C+C=q0 ¢(0)=¢y=C —C, =%
do Initial displacement . l<q +@> . 1(q _@>
do Initial velocity 22\ ) P2\ e
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

59

Energy and Dynamic Methods of Equilibrium



£PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Undamped Situation

40
Imaginary eigen frequency q
unbounded vibration exponentially 30 -
increasing amplitude
20 -
W=1-I
. 1 10 -
Qo =
. q':' =1 t
qD : 10 G T T T L
0 0.5 1 1.5 2
80 1 C 80 + -
qu ql]
60 - 60 -
40 - 40 -
20 - 20 - .
InNiN
1, =10 t K f . & g
0 | , , o 1L of motion | |
o 0.5 1 1.5 2 0 10 20 30 40
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PrL Influence of Initial Conditions for Single-Degree of
Freedom Systems
The magnitude of initial perturbation affects the amplitude of

vibration but not the type of response
1514 20 do

i -

q°=1, q°=10 fﬁ
q°=0.2, q°= 10

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PrL Influence of Initial Conditions for Single-Degree of
Freedom Systems

The magnitude of initial perturbation affects the amplitude of
vibration but not the type of response

23 1 12 4 -

q 9y
50 10
B -
15 1
6 -
10 4
4
% 1 2
t t
D L T T L D T T T 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2
12 - .
9o
10 -
‘o 8
q%=1, q°= 10 ..
4
_ 0__ 0
w=0] g’=19=2 Ny
°20.2, q°= 10 A a—
q £, Q= 0 5 10 15 20 25
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=PrL Influence of Initial Conditions for Single-Degree of
Freedom Systems
The magnitude of initial perturbation affects the amplitude of

vibration but not the type of response

30 - 80

q 19,
40 -
60 -
30 -
40 -
20 -
10 - 20
//,t
0 0 . , . .
0 0.5 1 1.5 2
80 - .
%
60
q°=1, q°=10
40
— 0 0
w=1-i q=1,qg=2 20 -
qﬂ=02 {;Iﬂ: 10 0 / | | | t_:l
! 0 10 20 30 40 50
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

< Suppose you have a damped SDF system with mass m
and stiffness k, its equation of motion is as follows:

0°q 0q
m - F-I_C a—+k q=0

<~ Assume that the solution willbe: g = A - ePt

<> By substitution,

C k
mAp?ePt + cApePt + kCePt = 0 = <p2 +—p +E)A cePt =0

< Characteristic Equation,

21 S Ko
£ mp m_
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

21 S o
P m’D m_

>If ¢>cHp =2mw
P12 = —(wt wy1—{?

< In which,

C C
= — = d t
{ o 2 (damping ratio)

wp = 01—

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

<> General solution,

q(t) = e,*“" (€1 - sinwpt + C; - coswpt)
q(t)
= —(we_zwt(Cl - Sinwpt + €, - coswpt)

+ e_zwt(a)DCl coswpt — wpCy * Sinwpt)

. . lo — QoS
Q(O)z(/IO:Cl:CIO CI(O)=CI0=>Cz=qO wqo
D

9o Initial displacement

do Initial velocity

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

<> Bounded vibration

: 2
max(q() = e |2 + (12250
\ Wp
. 2 2
max{q(t)} = e—Zth <CIO(UD + 0o +w§jw) qO) + (go)?

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

Energy and Dynamic Methods of Equilibrium 67




=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

. . 1.5 -
Positive eigen frequency d
Bounded vibration L
0.5 -
oo ANAW
. 0 . . .
o = 1 0 5 1 \/5 \/&
- -0.5 -
d, =10
-1 .
( =5%
1*5 . . .
1519 Beginning
10 ’ of motion
5
3 /\ AWAN2 :
5 0 D.E\/ 1 \/ 1.5 2 1.5 1.5
-10
=15
_21} _
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

k
SIf —=w?2=0
_c,
qt) =C;+C,-e m
c _c,

1(t) = —-C, -— -
q(t) zmem

gom . . —qom
q(0)=q0=>C1=q0+OT g(0) =qgo=>C; = :

9o Initial displacement

do Initial velocity
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration
Zero eigen frequency unbounded 35 -

q
vibration with linearly increasing .
amplitude
15 -
w=20
10 A
Qo = ‘|
d, = 10 , | | | t
C — 5{}/0 U] 0.5 1 1.5 2
12 4 qu 12 4 qn
10 "————_____________ 10 T
- i . . ___'————________
8 - s { | Beginning
6 - s | | of motion
4 - 4 - |
2 2 -
t d
0 . 0 T )
0 0.5 1 1.5 2 0 5 10 15 20 25
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=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

k
- If — = w2 < 0 The eigen frequency of the system is imaginary, p=+w
m
0%2qg ¢ 0q
—+——+(iw)?-qg=0
ot m o0t S

q(t) = Cle(_(w-l_wV €2+1)t +C, - e(_{w—w\/52+1)t

4(0) = €1 (~Sw + 0T+ 1) el Faralea):
—C, (+(a) + w\/{? + 1) NG RN

do Initial velocity o Initial displacement

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

Energy and Dynamic Methods of Equilibrium 71




=PFL Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems — Damped Vibration

Imaginary eigen frequency 0 4
unbounded vibration with 3
: : : . 30 -
exponentially increasing amplitude )
W=1-] 20 -
1 15 -
q[} o 10 -
. |
( = 5% 0 0.5 1 1.5 2
014 0714,
30 30 -
20 - 20 7
10 - 10 T4 .
' Beglnn-lng q
0 . : . 0+ of motion ' '
0 0.5 1 1.5 2 0 a 20 30 40
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=PrL Influence of Initial Conditions for Single-Degree of
Freedom Systems

The magnitude of initial perturbation affects the amplitude of

vibration but not the type of response
1.5 4 q

q°=0.2, q°= 10
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=PrL Influence of Initial Conditions for Single-Degree of
Freedom Systems

40 - =
q 40 d,
30 - 30 -
20 4 20
10 10 /
t t
'D T T T ] D T T T 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2
40 - A
%
20 -
0_4 0 _
q=1,9=10

(l):l' {:Iﬂz:l__‘r 610:2 10 /
q

q°=0.2, q°~10 °
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cPFL Dynamic Stability — RESSLab Applications
-Damped Free Vibration (Stable)

20,0

w4 ——1st floor

15,0
6,895 Top floor

10,0 5,57

1,9

o o
o o
]

Displacement [mm)]
o
o
=
™
w
NN
o
(o)}

-10,0 |
-15,0
-20,0

-25,0
Time [s]

Source: (Master Students Hugo Ribet, Yan Zhang, RESSLab 2017)
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ePFL Dynamic Stability — RESSLab Applications
-Damped Free Vibration (Stable) — Different Initial Conditions

—1st floor

4 4 Top floor

Displacement [mm]

o
\

||
|
|
|
|
|
|

Source: (Master Students Hugo Ribet, Yan Zhang, RESSLab 2017)
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EPFL Dynamic Stability — RESSLab Applications

-Damped Forced Vibration (Stable) — Zero Initial Conditions

Source: (Master Student, Gerard Guell, RESSLab 2017)
RESSLab




EPFL Dynamic Stability — RESSLab Applications

-Damped Forced Vibration (Stable) — Zero Initial Conditions

Based on Newton’s second law:

m |_>| u .
T fitfhh+ @) =p() =
h _/ mil + cu + f,(u,u) = —milg (t)
Initial Conditions:
h —— . .
% [ } l/t=l/t(0), u=u(0)
.. . 2 oo
ii+ 28w 1+ wyu=—ii, (1)
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EPFL Dynamic Stability — RESSLab Applications
-Damped Forced Vibration (Stable) — Zero Initial Conditions

« Newmark Method: constant or linear variation of
acceleration between time steps i and i+1 and solving
equation for time step i+1 (implicit method).

mi + cu + ku = p, where p, = —mii,

<~ Initial Calculations

Do — ClU, — ku,

gt T By

a= = +Zc and b——+At l—l c
B At B 2p 2p

<> Calculations for each time step

A . N _Ap;
Ap; = Ap; + au; + bii;, Au; = =

niy = =1 au =L+ ae (1 -2 Vi ady = oo MM
YopxAt Tt B 2,8 LR T Bt T BrAt 28
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EPFL Dynamic Stability — RESSLab Applications
-Damped Forced Vibration (Stable) — Zero Initial Conditions

< P-A effects are quantified using the stability coefficient, 6

< Stability coefficient is associated with rotation of original force-
deformation relationship.

.
: e Rt
’ .
(1-8)f) . K,
i _Bk -
LL LL f
" k .
5 5
#1-ak

Horce—daformation
without P—a Effects “-u...

u
¥

Deformation, u Deformation, u

(a) Monotonic response (b) hysteretic response

<> Integration in Newmark’s algorithm: k = (1 -6) - k + mc + ﬁ(Atz)

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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EPFL Dynamic Stability — RESSLab Applications

-Damped Forced Vibration (Stable) — Zero Initial Conditions

N
o

T.=0.2 sec, (=5%

Rel. Displ., u [mm]
o

N
]

| | |
15 20 25 30
Time, t [sec]

o
&)
-
o

Rsl. Vel., v [nm/ssc]

s & 4 2 0 2 4 6 8
Rel. Displ., u [mm]
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EPFL Dynamic Stability — RESSLab Applications

-Damped Forced Vibration (Unstable) — Zero Initial Conditions

Source: (Master Student, Gerard Guell, RESSLab 2017)
RESSLab




PFL Discussion
- Dynamic Response: Prediction— Stiffness Loss during excitation

< As frame deforms, magnetic components detach and stiffness decreases

Source: (Master Student, Gerard Guell, RESSLab 2017)
RESSLab




=PrL Discussion
- Dynamic Response: Prediction— Stiffness Loss during excitation

160

| K=131N/m
140 e _ &

- -~ ~,

£ 120 \ Te

z, ~

= 100 -~

z K=139 N/m S

2

o

=

[ ]

=

Ty

-

p ]

-~

=

0 0.003 0.01 0.015 0.02 0.025 0.03 0.035
Displacement (m)

Source: (Master Student, Gerard Guell, RESSLab 2017)
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EPFL Dynamic Stability — RESSLab Applications

-Damped Forced Vibration (Stable) — Zero Initial Conditions

U Based on Newton’s second law:

fit/fo+fs(wu) =p() =

mii + cu + fo(u, 1) = —miiy (t)

Nonlinear Model
fs(u,u) ¢

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Dynamic Stability — Collapse of Structures
-Damped Forced Vibration (Unstable) — Zero Initial Conditions

Source: E-Defense 2007, Lignos et al. (2013)
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=PrL Dynamic Stability — Collapse of Structures
-Damped Forced Vibration (Unstable) — Zero Initial Conditions

Prediction of 1% story
collapse mechanism

0.2 .
§ —Egperlment

£0.1 g - Simulaton =T =
2
< 0.1

5

~.0.05 |

2 o

5 0

~0:05 2 4 6

Time [sec]
(Source: Lignos et al. 2013%)
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EPFL Newton’s Second Law for Rotation

-Small Revision from Structural Mechanics
Frictionless tabletop

\
m

F

Circular path of radius r

Flr

Rotational moment of Inertia
2

[ =mr

Image Source: University Physics Volume 1

I F = d 20 ro d>0
=7 T mr’——s=sr —_—

dt? dt?
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=PFL Moving Bridge and its Mathematical Model

[ sin@

P P

L Rigid Bar

Undeformed System Deformed System

Newton’s second law  Equilibrium of moments
with respect to A

d-6 .
[—=M M = PLsin6 — k6
d t Image Source: Galambos and Surovek 2008
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=PFL Moving Bridge and its Mathematical Model

Equilibrium of moments

Newton’ dl
ewton’s second law with respect to base

d?o |
[—=M M = PLsin6 — k6
dt
Therefore,
d?6 . B
IF — (PLsin@ — kB) =0
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Example 1: Moving Bridge

For an equilibrium point @ (i.e., initial perturbation)

d*6, ,
| e R (PLsinfy, — kB,) =0 (1)
Applying a small perturbation 0~:
d*(6p+6") .
| 72 — |PLsin(0y+07) — k(6,+607)] =0

Taylor Series:  sin(6, + 0*) = sinf, + 0*cos6, + 0[0**]

1 d?(6,+6%)
dt?

— |PL(sinfy + 07 cosBy) — k(6,+07)] =0 ()

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Example 1: Moving Bridge

Subtracting Equations (1) from (2)
d-9*

dt?

We need to investigate the sign of the term:

| —0*(PLcosBy, — k) =0

k — PLcos0,
A =
I
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Example 1: Moving Bridge

On the main equilibrium path: g, =0

Therefore, A= k _IPL
k _ k
If. P = - then zero eigen frequency P., = T
_k k — PL
If: P < For = 7 then A = 7 > () = Stability (bounded vibration)
k — PL
If: P> Fy =+ then A = < 0 = instability (unbounded
L I vibration)
RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Example 1: Moving Bridge

k 6
On the secondary equilibrium path: p = ——

Lsin @,
Therefore, I 8,
A=— (1 — ) > 0

Stability (bounded vibration)

RESSLab Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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=PFL Example 1: - Nonlinear Theory

15

cr
-

Normalized Load P/P

RESSLab

Resil

ilient Steel Structures Laboratory

Stable
P/P 6 post-buckling
- th
. / T 5ind \ — pa

Bifurcation point

-1 -0.5 0 0.5 1
Rotation Angle, ¢ [rads]
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=PrL Example 1: Fixed Rod with Vertical Load
— Numerical Assessment

[ sin® Section: IPE300

F.'
l Length of rod: L = 3m

Spring stiffness, k = 300kNm/rad

Expected critical load
P.. =k/L = 100kN

Initial offset 0.05m from the top
Initial velocity 0m/sec

Damping ratio { = 1%
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=PrL Example 1: Fixed Rod with Vertical Load

Horizontal displacement at top [m]

E
Q.
o
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el

— Numerical Assessment
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cPrL Example 2: Stability of Braced Frame under Lateral Loading

F Ibeamzoo F lbeam:oo _Mb
No connection O_? b e /
g hl |/ e
N N Y s
: [8 e 5
Lb Lb
(a) Pt (b)
P_=EA/(cL)
! P=P./(c8)
5,
| &6 8
EEA/LE
fooeno P,=f,A
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cPrL Example 2: Stability of Braced Frame under Lateral Loading

Initial conditions, u, =1mm, u,=0mm/s

1.0
0.5 |- |
: A
0.0 _
g g
§ N—
-3
—05 .
—1.0 ‘ |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 -8 \ | |
Time (s) —-1.0 —-0.5 0.0 0.5 1.0
u (mm)
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cPrL Example 2: Stability of Braced Frame under Lateral Loading

Initial conditions, u, = 0mm, 1,=30mm/s

i} =
| g
E
7 -3
— | L |
0.0 0.5 1.0 1.5 2.0
Time (s)
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cPrL Example 2: Stability of Braced Frame under Lateral Loading

Initial conditions, u, = 0mm, 1,=40mm/s

0 50 :
—920 kb i 45
40 +
—40 -
/g 3 35
E 60 A g 30 |-
S =
—80 | — -3 25 —
20
~100 | 0
15 +
_120 | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 10 !
: —120-100—-80 —60 —40 —20 O
Time (s)
u (mm)
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