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Objectives of This Week’s Lecture
To introduce:

 Analytical methods for assessing stability of 

characteristic systems

 Potential Energy Method 

 Dynamic Method

 Illustrative examples to examine structural stability
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Total Potential Energy
 The total potential Π of an elastic conservative system is

defined as follows,
Π = 𝑈𝑈 + 𝑉𝑉𝑝𝑝

 U : elastic strain energy of a conservative system. The
work performed by both the internal and the external forces
is independent of the path traveled by these forces, and it
depends only on the initial and the final positions.

 𝑉𝑉𝑝𝑝 : potential of the external forces, using the original
deflected position as a reference 𝑉𝑉𝑝𝑝 is the external work;
𝑉𝑉𝑝𝑝 = −𝑊𝑊𝑊𝑊
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Computation of Total Potential Energy

 𝑈𝑈 is the internal work performed by the internal forces
(total strain energy); 𝑈𝑈 = 𝑊𝑊𝑊𝑊

 The potential of the external forces is computed as,

𝑉𝑉𝑝𝑝 = −�
𝑖𝑖

�𝑃𝑃𝑖𝑖(𝑞𝑞𝑖𝑖) � 𝑑𝑑𝑞𝑞𝑖𝑖 𝑉𝑉𝑝𝑝 = −�
𝑖𝑖

𝑃𝑃𝑖𝑖 � 𝑑𝑑𝑞𝑞𝑖𝑖or

 𝑞𝑞𝑖𝑖 are the generalized coordinates (deflections or
rotations that define the deformed shape of a system)

 𝑃𝑃𝑖𝑖 are the corresponding external loads
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Equilibrium Criterion

 A conservative system subjected to a static force 𝑃𝑃 is in
equilibrium at a deformed configuration q, when the total
potential energy Π has a local maximum or local minimum
(stationary value) compared to any other deformed
configuration near by.
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Mathematical Expression of Potential Energy

 For a system with one degree of freedom, 𝑞𝑞, which is
subjected to external loads 𝑃𝑃, the potential energy Π is a
single variable function,

Π(𝑃𝑃, 𝑞𝑞)

 The equilibrium position, 𝑞𝑞𝑜𝑜 will be as follows,

�
𝜕𝜕Π 𝑃𝑃, 𝑞𝑞

𝜕𝜕𝑞𝑞 𝑞𝑞=𝑞𝑞0

= 0
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Mathematical Expression of Potential Energy

Image Source: Galambos and Surovek 2008
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Stability/Instability Criterion

 The equilibrium point 𝑞𝑞𝑜𝑜 is stable if the potential energy Π
has a local minimum at position 𝑞𝑞𝑜𝑜, therefore,

�
𝜕𝜕2Π 𝑃𝑃, 𝑞𝑞

𝜕𝜕𝑞𝑞2
𝑞𝑞=𝑞𝑞0

> 0

 The equilibrium point 𝑞𝑞𝑜𝑜 is unstable if the potential energy
Π has a local maximum at position 𝑞𝑞𝑜𝑜, therefore,

�
𝜕𝜕2Π 𝑃𝑃, 𝑞𝑞

𝜕𝜕𝑞𝑞2
𝑞𝑞=𝑞𝑞0

< 0
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Stability/Instability Criterion
 If the second derivative of the potential energy Π at the

equilibrium point 𝑞𝑞𝑜𝑜 is zero then we need to find the 𝑘𝑘 − 𝑡𝑡𝑡
derivative that,

�
𝜕𝜕kΠ 𝑃𝑃, 𝑞𝑞

𝜕𝜕𝑞𝑞𝑘𝑘
𝑞𝑞=𝑞𝑞0

≠ 0

 If k is an odd number, then the equilibrium is neutral
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 If k is an even number, then Π has a local maximum or
minimum.

 A local minimum implies that the equilibrium is stable and,

�
𝜕𝜕kΠ 𝑃𝑃, 𝑞𝑞

𝜕𝜕𝑞𝑞𝑘𝑘
𝑞𝑞=𝑞𝑞0

> 0

 A local maximum implies that the equilibrium is unstable
and,

�
𝜕𝜕kΠ 𝑃𝑃, 𝑞𝑞

𝜕𝜕𝑞𝑞𝑘𝑘
𝑞𝑞=𝑞𝑞0

< 0

Stability/Instability Criterion
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Example 1: Fixed Rod with Vertical Load

Image Source: Galambos and Surovek 2008

𝑘𝑘𝜃𝜃
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Example 1: Fixed Rod with Vertical Load

Total Internal Energy

𝑈𝑈 =
1
2
� 𝑘𝑘 � 𝜃𝜃 � 𝜃𝜃 =

1
2
� 𝑘𝑘 � 𝜃𝜃2

Total External Energy

𝑉𝑉𝑝𝑝 = −�
𝑖𝑖

𝑃𝑃𝑖𝑖 � 𝑞𝑞𝑖𝑖 = −𝑃𝑃 � 𝑞𝑞

𝑉𝑉𝑝𝑝 = −𝑃𝑃 � (𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝜃𝜃 )

Total Potential Energy

Π = 1
2
� 𝑘𝑘 � 𝜃𝜃2 − 𝑃𝑃 � 𝐿𝐿(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 )
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Example 1: Linear Buckling Theory

Total Potential Energy

Π =
1
2
� 𝑘𝑘 � 𝜃𝜃2 − 𝑃𝑃 � 𝐿𝐿 1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 ≅

1
2
� 𝑘𝑘 � 𝜃𝜃2 − 𝑃𝑃 � 𝐿𝐿 �

𝜃𝜃2

2

𝜕𝜕Π
𝜕𝜕𝑞𝑞

= 𝑘𝑘 � 𝜃𝜃 − 𝑃𝑃 � 𝐿𝐿 � 𝜃𝜃 = 𝜃𝜃 � 𝑘𝑘 − 𝑃𝑃𝑃𝑃

Equilibrium point can be found if  �
𝜕𝜕Π 𝑃𝑃,𝜃𝜃

𝜕𝜕𝜃𝜃 𝜃𝜃=𝜃𝜃0

= 0

Therefore, 𝜃𝜃 = 0 𝑜𝑜𝑜𝑜 𝑃𝑃 =
𝑘𝑘
𝐿𝐿

= 𝑃𝑃𝑐𝑐𝑐𝑐
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Example 1: - Linear Buckling Theory

𝜃𝜃 = 0

𝑃𝑃𝑐𝑐𝑐𝑐 =
𝑘𝑘
𝐿𝐿
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Example 1: Evaluation of Stability 
– Linear Theory

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃

Evaluation of stability of the main equilibrium path,

�
𝜕𝜕2Π 𝑃𝑃,𝜃𝜃

𝜕𝜕𝜃𝜃2
𝜃𝜃=0

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃 → 𝑖𝑖𝑖𝑖

𝑃𝑃 < 𝑃𝑃𝑐𝑐𝑐𝑐 =
𝑘𝑘
𝐿𝐿

, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃 > 𝑃𝑃𝑐𝑐𝑐𝑐 =
𝑘𝑘
𝐿𝐿

, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑃𝑃 = 𝑃𝑃𝑐𝑐𝑐𝑐 =
𝑘𝑘
𝐿𝐿

, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ? ?
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Example 1: Evaluation of Stability – Linear Theory

Evaluation of stability of the main equilibrium path,

Π 0.9𝑃𝑃𝑐𝑐𝑐𝑐 ,𝜃𝜃 =
1
2
� 𝑘𝑘 � 𝜃𝜃2 − 0.9𝑃𝑃𝑐𝑐𝑐𝑐 � 𝐿𝐿 �

𝜃𝜃2

2
= 0.05 � 𝑘𝑘 � 𝜃𝜃2

Π/𝑘𝑘

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
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Evaluation of stability of the main equilibrium path,

Π 1.1𝑃𝑃𝑐𝑐𝑐𝑐 ,𝜃𝜃 =
1
2
� 𝑘𝑘 � 𝜃𝜃2 − 1.1 � 𝑃𝑃𝑐𝑐𝑐𝑐 � 𝐿𝐿 �

𝜃𝜃2

2
= −0.05 � 𝑘𝑘 � 𝜃𝜃2

Example 1: Evaluation of Stability – Linear Theory

Π/𝑘𝑘

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
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Π = 1
2
� 𝑘𝑘 � 𝜃𝜃2 − 𝑃𝑃 � 𝐿𝐿(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 )

𝜕𝜕Π
𝜕𝜕𝑞𝑞

= 𝑘𝑘 � 𝜃𝜃 − 𝑃𝑃 � 𝐿𝐿 � sin(𝜃𝜃)

Equilibrium point can be found if  �
𝜕𝜕Π 𝑃𝑃,𝜃𝜃

𝜕𝜕𝜃𝜃 𝜃𝜃=𝜃𝜃0

= 0

Therefore, 𝜃𝜃 = 0 𝑜𝑜𝑜𝑜 𝑃𝑃 =
𝑘𝑘
𝐿𝐿
�
𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Example 1: - Nonlinear Theory
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Example 1: - Nonlinear Theory

𝑃𝑃/𝑃𝑃𝑐𝑐𝑐𝑐 =
𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Bifurcation point

Stable 
post-buckling

path
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Example 1: Evaluation of Stability 
– Nonlinear Theory

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Evaluation of stability of the main equilibrium path,

�
𝜕𝜕2Π 𝑃𝑃,𝜃𝜃

𝜕𝜕𝜃𝜃2
𝜃𝜃=0

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃 → 𝑖𝑖𝑖𝑖 �
𝑃𝑃 < 𝑃𝑃𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃 > 𝑃𝑃𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑃𝑃 = 𝑃𝑃𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ? ?
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𝜕𝜕3Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃3

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⇒ �
𝜕𝜕3Π 𝑃𝑃,𝜃𝜃

𝜕𝜕𝜃𝜃3
𝜃𝜃=0,𝑃𝑃=𝑃𝑃𝑐𝑐𝑐𝑐

= 0

Evaluation of stability of bifurcation point,

𝜕𝜕4Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃4

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⇒ �
𝜕𝜕4Π 𝑃𝑃,𝜃𝜃

𝜕𝜕𝜃𝜃4
𝜃𝜃=0,𝑃𝑃=𝑃𝑃𝑐𝑐𝑐𝑐

= 𝑘𝑘 > 0

Therefore the bifurcation point is stable 

Example 1: Evaluation of Stability 
– Nonlinear Theory
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Evaluation of stability of the bifurcation point,

Π 𝑃𝑃𝑐𝑐𝑐𝑐 ,𝜃𝜃 =
1
2
� 𝑘𝑘 � 𝜃𝜃2 − 𝑘𝑘 � 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

Example 1: Evaluation of Stability 
– Nonlinear Theory

Π/𝑘𝑘

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]



23
Prof. Dr. Dimitrios G. Lignos:  “Structural Stability”

Energy and Dynamic Methods of Equilibrium

Evaluation of stability for secondary equilibrium path,

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃 =
𝑘𝑘
𝐿𝐿
�
𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑘𝑘 �
𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑘𝑘 �
𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘 � 1 −

𝜃𝜃
𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃

Example 1: Evaluation of Stability 
– Nonlinear Theory
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Evaluation of stability for secondary equilibrium path,

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 � 1 −
𝜃𝜃

𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
≥ 0

Example 1: Evaluation of Stability 
– Nonlinear Theory

1
−
𝜃𝜃/
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
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Random position on the secondary equilibrium path,

Π 1.00670𝑘𝑘/𝐿𝐿,𝜃𝜃 =
1
2
� 𝑘𝑘 � 𝜃𝜃2 − 1.00670𝑘𝑘 � 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

(𝑃𝑃 = 1.00670𝑘𝑘/𝐿𝐿,𝜃𝜃=0.2rad)

Example 1: Evaluation of Stability 
– Nonlinear Theory

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
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Energy and Dynamic Methods of Equilibrium

Random position on the secondary equilibrium path,

Total 
potential 
energy

Equilibrium 
point to

be checked

Secondary 
equilibrium 

path

Example 1: Evaluation of Stability 
– Nonlinear Theory

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]

Π
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Energy and Dynamic Methods of Equilibrium

Example 1: System with Imperfections

Image Source: Galambos and Surovek 2008
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Energy and Dynamic Methods of Equilibrium

Example 1: System with Imperfections
Total Internal Energy

𝑈𝑈 =
1
2
� 𝑘𝑘 � (𝜃𝜃 − 𝜃𝜃𝑜𝑜)2

Total External Energy

𝑉𝑉𝑝𝑝 = �
𝑖𝑖

𝑃𝑃𝑖𝑖 � 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. −�
𝑖𝑖

𝑃𝑃𝑖𝑖 � 𝑞𝑞𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓. = 𝑃𝑃 � 𝑞𝑞𝜃𝜃𝑜𝑜 − 𝑃𝑃 � 𝑞𝑞𝜃𝜃

𝑉𝑉𝑝𝑝 = 𝑃𝑃 � 𝐿𝐿(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑜𝑜 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)

Total Potential Energy

Π =
1
2
� 𝑘𝑘 � 𝜃𝜃 − 𝜃𝜃𝑜𝑜 2 − 𝑃𝑃 � 𝐿𝐿(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑜𝑜 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)
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Energy and Dynamic Methods of Equilibrium

Example 1: System with Imperfections
-Νonlinear Theory

Total Potential Energy

Π =
1
2
� 𝑘𝑘 � 𝜃𝜃 − 𝜃𝜃𝑜𝑜 2 − 𝑃𝑃 � 𝐿𝐿(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑜𝑜 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)

𝜕𝜕Π
𝜕𝜕𝑞𝑞

= 𝑘𝑘 � 𝜃𝜃 − 𝜃𝜃𝑜𝑜 − 𝑃𝑃 � 𝐿𝐿 � sin(𝜃𝜃)

𝜕𝜕Π
𝜕𝜕𝑞𝑞

= 0 ⟹ 𝑃𝑃 =
𝑘𝑘
𝐿𝐿
�
𝜃𝜃 − 𝜃𝜃𝑜𝑜

sinθ
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Energy and Dynamic Methods of Equilibrium

Example 1: System with Imperfections – Nonlinear Theory

𝑃𝑃/𝑃𝑃𝑐𝑐𝑐𝑐 =
𝜃𝜃 − 𝜃𝜃𝑜𝑜
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃

Equilibrium path from
nonllinear analysis of 

system with imperfections

Secondary equilibrium
path from linear analysis of 

system with no imperfections

Initial imperfection,
𝜃𝜃0 = 0.01𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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Energy and Dynamic Methods of Equilibrium

Example 1: System with Imperfections
-Νonlinear Theory

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Evaluation of stability of the continuous equilibrium path,

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃 =
𝑘𝑘
𝐿𝐿
�
𝜃𝜃 − 𝜃𝜃𝑜𝑜

sinθ

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘 1 −
𝜃𝜃 − 𝜃𝜃𝑜𝑜
𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃

𝜕𝜕2Π 𝑃𝑃,𝜃𝜃
𝜕𝜕𝜃𝜃2

= 𝑘𝑘
𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 − 𝜃𝜃 + 𝜃𝜃𝑜𝑜

𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
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Energy and Dynamic Methods of Equilibrium

Random position on the secondary equilibrium path,

Π 0.901502𝑘𝑘/𝐿𝐿,𝜃𝜃

=
1
2
� 𝑘𝑘 � 𝜃𝜃 − 0.01 2 − 0.901502 � 𝑘𝑘 � cos(0.01) − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

(𝑃𝑃 = 0.901502𝑘𝑘/𝐿𝐿,𝜃𝜃=0.1rad), assume 𝜃𝜃𝑜𝑜 = 0.01𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Example 1: System with Imperfections
-Νonlinear Theory

Π/𝑘𝑘
𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
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Energy and Dynamic Methods of Equilibrium

Equilibrium path

Total potential energy

Example 1: System with Imperfections
-Νonlinear Theory

Π/𝑘𝑘

𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]

𝑃𝑃/𝑃𝑃𝑐𝑐𝑐𝑐
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems
-Potential Energy Method for Estimating 𝑃𝑃𝑐𝑐𝑐𝑐

Image Source: Galambos and Surovek 2008
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems
The energy method can be used for arriving at a solution. The 
necessary geometric relationships are illustrated herein

Δ1 = 𝜓𝜓𝜓𝜓 Δ2 = 𝜃𝜃𝜃𝜃

Δ1 − Δ2
𝐿𝐿

= 𝛾𝛾 = 𝜓𝜓 − 𝜃𝜃

Image Source: Galambos and Surovek 2008
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems
The energy method can be used for arriving at a solution. The 
necessary geometric relationships are illustrated herein

𝜀𝜀3 = 𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≈
𝐿𝐿𝜃𝜃2

2
𝜀𝜀2 = 𝜀𝜀3 + 𝐿𝐿 1 − cos 𝜓𝜓 − 𝜃𝜃 =

𝐿𝐿
2

(2𝜃𝜃2 + 𝜓𝜓2 − 2𝜓𝜓𝜓𝜓)

𝜀𝜀1 = 𝜀𝜀2 +
𝐿𝐿𝜓𝜓2

2
= 𝐿𝐿(𝜃𝜃2 + 𝜓𝜓2 − 𝜓𝜓𝜓𝜓)
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems
The strain energy equals

𝑈𝑈𝑝𝑝 =
𝑘𝑘
2
∆12 + ∆22 =

𝑘𝑘𝐿𝐿2

2
𝜓𝜓2 + 𝜃𝜃2

The potential of the external forces equals

𝑉𝑉𝑝𝑝 = −𝑃𝑃𝜀𝜀1 = −𝑃𝑃𝑃𝑃(𝜃𝜃2 + 𝜓𝜓2 − 𝜓𝜓𝜓𝜓)
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems
For equilibrium, we take the derivatives with respect to the two 
angular rotations:

𝜗𝜗Π
𝜗𝜗𝜗𝜗

= 0 =
𝑘𝑘𝐿𝐿2

2
2𝜓𝜓 − 2𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃

𝜗𝜗Π
𝜗𝜗𝜗𝜗

= 0 =
𝑘𝑘𝐿𝐿2

2
2𝜃𝜃 − 2𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems

(𝑘𝑘𝐿𝐿2 − 2𝑃𝑃𝑃𝑃) 𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃 (𝑘𝑘𝐿𝐿2 − 2𝑃𝑃𝑃𝑃)

𝜃𝜃
𝜓𝜓 = 0

0

Rearranging we get

Setting the determinant of the coefficients equal to zero 
results in the critical loads of the problem.

3
𝑃𝑃
𝑘𝑘𝑘𝑘

2

−
4𝑃𝑃
𝑘𝑘𝑘𝑘

+ 1 = 0

𝑃𝑃𝑐𝑐𝑟𝑟1 = 𝑘𝑘𝑘𝑘 𝑃𝑃𝑐𝑐𝑟𝑟2 =
𝑘𝑘𝑘𝑘
3
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Energy and Dynamic Methods of Equilibrium

Multi-Degree of Freedom Systems

Image Source: Galambos and Surovek 2008
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Structural Stability
-Flutter: Wind Vibrations

Source: Tacoma Narrows collapse

https://youtu.be/XggxeuFDaDU
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Structural Stability
-Other Applications of Dynamic Stability - Rocking
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Structural Stability
-Other Applications of Dynamic Stability – Rocking Objects
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Energy and Dynamic Methods of Equilibrium

Source: Sause and Ricles 2006

Dynamic Approach for Structural Stability
-Other Applications of Dynamic Stability – Rocking in Buildings
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Structural Stability

Source: Sause and Ricles 2006
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
 Assume a structural system with 𝑛𝑛 degrees-of-freedom

(DOF) that their generalized coordinates are defined as
follows:

𝑞𝑞𝑖𝑖 = 𝑖𝑖 = 1,2,3,4,5, … ,𝑛𝑛

 Suppose that an equilibrium state is reached such that:

𝑞𝑞𝑖𝑖 = 𝑞𝑞𝑖𝑖∗, 𝑖𝑖 = 1,2,3,4,5, … ,𝑛𝑛
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
-Phase Diagram

Equilibrium 
position

̇𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖
𝑞𝑞𝑖𝑖∗
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
 Select a coordinate system such that:

𝑞𝑞𝑖𝑖∗ = 0, 𝑖𝑖 = 1,2,3,4,5, … ,𝑛𝑛

 Therefore the equilibrium point of the system becomes,

𝑞𝑞𝑖𝑖 = 0, 𝑖𝑖 = 1,2,3,4,5, … ,𝑛𝑛

Equilibrium 
position

̇𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
 Subject the system to an initial small perturbation

𝑞𝑞𝑖𝑖 0,
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑡𝑡

0

𝑖𝑖 = 1,2,3,4,5, … ,𝑚𝑚
 Therefore,

𝑞𝑞𝑖𝑖 0 ≤ n,
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑡𝑡

0

≤= n 𝑖𝑖 = 1,2,3,4,5, … ,𝑚𝑚

Initial 
small 

perturbation

̇𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
-Stability Criterion

 An equilibrium position is stable, if the vibration that the
system is subjected to after the perturbation is bounded

∀𝑛𝑛 > 0,∃𝜀𝜀 = 𝜀𝜀 𝑛𝑛 : 𝑞𝑞𝑖𝑖 𝑡𝑡 < 𝜀𝜀 𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝑞𝑞𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑡𝑡

< 𝜀𝜀 𝑖𝑖 = 1,2,3,4,5, … ,𝑛𝑛

 Else the equilibrium position is unstable
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
-Stability Criterion: Graphical Representation

Unstable

Stable

𝑞𝑞𝑖𝑖(𝑡𝑡)
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Energy and Dynamic Methods of Equilibrium

Dynamic Approach for Checking Stability
-Graphical Representation – Phase Diagram

UnstableStable

̇𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖
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Energy and Dynamic Methods of Equilibrium

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation

 Suppose you have a system with mass 𝑚𝑚 and stiffness 𝑘𝑘,
its equation of motion is as follows:

𝑚𝑚 �
𝜕𝜕2𝑞𝑞
𝜕𝜕𝑡𝑡2

+ 𝑘𝑘 � 𝑞𝑞 = 0

 Assume that the solution will be: 𝑞𝑞 = 𝐶𝐶 � e𝜌𝜌𝑡𝑡

 By substitution,

𝑚𝑚𝐶𝐶𝜌𝜌2e𝜌𝜌𝑡𝑡 + 𝑘𝑘𝑘𝑘e𝜌𝜌𝑡𝑡 = 0 ⟹ 𝜌𝜌2+
𝑘𝑘
𝑚𝑚

𝐶𝐶 � e𝜌𝜌𝑡𝑡 = 0

𝜌𝜌2+
𝑘𝑘
𝑚𝑚

= 0
 Characteristic Equation,
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Energy and Dynamic Methods of Equilibrium

𝜌𝜌2+
𝑘𝑘
𝑚𝑚

=0

 Characteristic Equation,

 If
𝑘𝑘
𝑚𝑚

= 𝜔𝜔2 > 0 eigen frequencies are positive and real

𝑞𝑞 𝑡𝑡 = 𝐶𝐶1 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶2 � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞𝑞 0 = 𝑞𝑞0 ⇒ 𝐶𝐶2 = 𝑞𝑞0 𝑞̇𝑞 0 = 𝑞̇𝑞0 ⇒ 𝐶𝐶1 =
𝑞̇𝑞0
ω

Initial displacement𝑞𝑞0

𝑞̇𝑞0 Initial velocity

𝑞̇𝑞 𝑡𝑡 = 𝐶𝐶1𝜔𝜔 � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐶𝐶2𝜔𝜔 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

 Bounded vibration

max 𝑞𝑞 𝑡𝑡 = 𝑞𝑞0 2 +
̇𝑞𝑞0
𝜔𝜔

2

max 𝑞̇𝑞 𝑡𝑡 = 𝑞𝑞0𝜔𝜔 2 + (𝑞̇𝑞0)2

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

 Positive Eigen frequency (bounded vibration)

Beginning 
of motion

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

𝜌𝜌2+
𝑘𝑘
𝑚𝑚

=0

 Characteristic Equation,

 If
𝑘𝑘
𝑚𝑚

= 𝜔𝜔2 = 0

𝑞𝑞 𝑡𝑡 = 𝐶𝐶1 + 𝐶𝐶2 � 𝑡𝑡

𝑞𝑞 0 = 𝑞𝑞0 ⇒ 𝐶𝐶1 = 𝑞𝑞0 𝑞̇𝑞 0 = 𝑞̇𝑞0 ⇒ 𝐶𝐶2 = 𝑞̇𝑞0

Initial displacement𝑞𝑞0

𝑞̇𝑞0 Initial velocity

𝑞̇𝑞 𝑡𝑡 = 𝐶𝐶2

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

 Zero Eigen frequency unbounded 
vibration linearly increasing 
amplitude

Beginning 
of motion

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

𝜌𝜌2+
𝑘𝑘
𝑚𝑚

=0

 Characteristic Equation,

 If
𝑘𝑘
𝑚𝑚

= 𝜔𝜔2 < 0 The eigen frequency of the system is imaginary, ρ=±𝜔𝜔

𝑞𝑞 𝑡𝑡 = 𝐶𝐶1 � 𝑒𝑒𝜌𝜌1𝑡𝑡 + 𝐶𝐶2 � 𝑒𝑒𝜌𝜌2𝑡𝑡 = 𝐶𝐶1 � 𝑒𝑒𝜔𝜔𝑡𝑡 + 𝐶𝐶2 � 𝑒𝑒−𝜔𝜔𝑡𝑡

𝑞𝑞 0 = 𝑞𝑞0 ⇒ 𝐶𝐶1 + 𝐶𝐶2 = 𝑞𝑞0 𝑞̇𝑞 0 = 𝑞̇𝑞0 ⇒ 𝐶𝐶1 − 𝐶𝐶2 =
𝑞̇𝑞0
𝜔𝜔

Initial displacement𝑞𝑞0

𝑞̇𝑞0 Initial velocity

𝑞̇𝑞 𝑡𝑡 = 𝐶𝐶1𝜔𝜔 � 𝑒𝑒𝜔𝜔𝑡𝑡 − 𝐶𝐶2𝜔𝜔 � 𝑒𝑒−𝜔𝜔𝑡𝑡

𝐶𝐶1 =
1
2

𝑞𝑞0 +
𝑞̇𝑞0
ω

𝐶𝐶2 =
1
2

𝑞𝑞0 −
𝑞̇𝑞0
ω

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

Imaginary eigen frequency 
unbounded vibration exponentially 
increasing amplitude

Beginning 
of motion

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Undamped Situation
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Energy and Dynamic Methods of Equilibrium

Influence of Initial Conditions for Single-Degree of 
Freedom Systems

The magnitude of initial perturbation affects the amplitude of 
vibration but not the type of response
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Energy and Dynamic Methods of Equilibrium

Influence of Initial Conditions for Single-Degree of 
Freedom Systems

The magnitude of initial perturbation affects the amplitude of 
vibration but not the type of response
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Energy and Dynamic Methods of Equilibrium

Influence of Initial Conditions for Single-Degree of 
Freedom Systems

The magnitude of initial perturbation affects the amplitude of 
vibration but not the type of response
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Energy and Dynamic Methods of Equilibrium

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration

 Suppose you have a damped SDF system with mass m
and stiffness 𝑘𝑘, its equation of motion is as follows:

𝑚𝑚 �
𝜕𝜕2𝑞𝑞
𝜕𝜕𝑡𝑡2

+ 𝑐𝑐 �
𝜕𝜕𝑞𝑞
𝜕𝜕𝑡𝑡

+ 𝑘𝑘 � 𝑞𝑞 = 0

 Assume that the solution will be: 𝑞𝑞 = 𝐴𝐴 � e𝜌𝜌𝑡𝑡

 By substitution,

𝑚𝑚𝐴𝐴𝜌𝜌2e𝜌𝜌𝑡𝑡 + 𝑐𝑐𝑐𝑐𝜌𝜌e𝜌𝜌𝑡𝑡 + 𝑘𝑘𝐶𝐶e𝜌𝜌𝑡𝑡 = 0 ⟹ 𝜌𝜌2 +
𝑐𝑐
𝑚𝑚
𝜌𝜌 +

𝑘𝑘
𝑚𝑚

A � e𝜌𝜌𝜌𝜌 = 0

𝜌𝜌2 +
𝑐𝑐
𝑚𝑚
𝜌𝜌 +

𝑘𝑘
𝑚𝑚

= 0

 Characteristic Equation,
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Energy and Dynamic Methods of Equilibrium

 If

𝜌𝜌1,2 = −𝜁𝜁𝜁𝜁 ± 𝜔𝜔 1 − 𝜁𝜁2

𝜌𝜌2 +
𝑐𝑐
𝑚𝑚
𝜌𝜌 +

𝑘𝑘
𝑚𝑚

= 0

 In which,

Δ =
𝑐𝑐
𝑚𝑚

2
− 4

𝑘𝑘
𝑚𝑚

=
𝑐𝑐
𝑚𝑚

2
− 4𝜔𝜔2

𝑐𝑐 > 𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑚𝑚𝜔𝜔

𝜁𝜁 =
𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐

=
𝑐𝑐

2𝑚𝑚𝜔𝜔
(damping ratio)

 Assume,
𝜔𝜔𝐷𝐷 = 𝜔𝜔 1 − 𝜁𝜁2

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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 General solution,

𝑞𝑞 𝑡𝑡 = 𝑒𝑒𝑛𝑛
−𝜁𝜁𝜁𝜁𝑡𝑡(𝐶𝐶1 � 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝐷𝐷𝑡𝑡 + 𝐶𝐶2 � 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝐷𝐷𝑡𝑡)

𝑞𝑞 0 = 𝑞𝑞0 ⇒ 𝐶𝐶1 = 𝑞𝑞0 𝑞̇𝑞 0 = 𝑞̇𝑞0 ⇒ 𝐶𝐶2 =
𝑞̇𝑞0 − 𝑞𝑞0𝜔𝜔𝜔𝜔

ωD

Initial displacement𝑞𝑞0

𝑞̇𝑞0 Initial velocity

𝑞̇𝑞 𝑡𝑡
= −𝜁𝜁𝜁𝜁𝑒𝑒𝑛𝑛

−𝜁𝜁𝜁𝜁𝑡𝑡(𝐶𝐶1 � 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝐷𝐷𝑡𝑡 + 𝐶𝐶2 � 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝐷𝐷𝑡𝑡)
+ 𝑒𝑒𝑛𝑛

−𝜁𝜁𝜁𝜁𝑡𝑡(𝜔𝜔𝐷𝐷𝐶𝐶1 � 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝐷𝐷𝑡𝑡 − 𝜔𝜔𝐷𝐷𝐶𝐶2 � 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝐷𝐷𝑡𝑡)

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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 Bounded vibration

max 𝑞𝑞 𝑡𝑡 = 𝑒𝑒−𝜁𝜁𝜁𝜁𝑡𝑡 𝑞𝑞0 2 +
𝑞̇𝑞0 + 𝜔𝜔𝜔𝜔𝑞𝑞0

𝜔𝜔𝐷𝐷

2

max 𝑞̇𝑞 𝑡𝑡 = 𝑒𝑒−𝜁𝜁𝜁𝜁𝑡𝑡 𝑞𝑞0𝜔𝜔𝐷𝐷 +
𝜁𝜁𝜁𝜁𝑞̇𝑞0 + 𝜁𝜁𝜁𝜁 2𝑞𝑞0

𝜔𝜔𝐷𝐷

2

+ (𝑞̇𝑞0)2

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration



68
Prof. Dr. Dimitrios G. Lignos:  “Structural Stability”
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Positive eigen frequency
Bounded vibration

Beginning 
of motion

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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 If
𝑘𝑘
𝑚𝑚

= 𝜔𝜔2 = 0

𝑞𝑞 𝑡𝑡 = 𝐶𝐶1 + 𝐶𝐶2 � 𝑒𝑒
− 𝑐𝑐𝑚𝑚𝑡𝑡

𝑞𝑞 0 = 𝑞𝑞0 ⇒ 𝐶𝐶1 = 𝑞𝑞0 +
̇𝑞𝑞0𝑚𝑚
𝑐𝑐

𝑞̇𝑞 0 = 𝑞̇𝑞0 ⇒ 𝐶𝐶2 =
−𝑞̇𝑞0𝑚𝑚
𝑐𝑐

Initial displacement𝑞𝑞0

𝑞̇𝑞0 Initial velocity

𝑞̇𝑞 𝑡𝑡 = −𝐶𝐶2 �
𝑐𝑐
𝑚𝑚
� 𝑒𝑒−

𝑐𝑐
𝑚𝑚𝑡𝑡

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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Energy and Dynamic Methods of Equilibrium

Zero eigen frequency unbounded 
vibration with linearly increasing 
amplitude

Beginning 
of motion

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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 If
𝑘𝑘
𝑚𝑚

= 𝜔𝜔2 < 0

𝑞𝑞 𝑡𝑡 = 𝐶𝐶1𝑒𝑒
−𝜁𝜁𝜁𝜁+𝜔𝜔 𝜁𝜁2+1 𝑡𝑡 + 𝐶𝐶2 � 𝑒𝑒

−𝜁𝜁𝜁𝜁−𝜔𝜔 𝜁𝜁2+1 𝑡𝑡

Initial displacement𝑞𝑞0𝑞̇𝑞0 Initial velocity

𝑞̇𝑞 𝑡𝑡 = 𝐶𝐶1 −𝜁𝜁𝜁𝜁 + 𝜔𝜔 𝜁𝜁2 + 1 𝑒𝑒 −𝜁𝜁𝜁𝜁+𝜔𝜔 𝜁𝜁2+1 𝑡𝑡

−𝐶𝐶2 +𝜁𝜁𝜁𝜁 + 𝜔𝜔 𝜁𝜁2 + 1 𝑒𝑒 −𝜁𝜁𝜁𝜁−𝜔𝜔 𝜁𝜁2+1 𝑡𝑡

The eigen frequency of the system is imaginary, ρ=±𝜔𝜔

𝜕𝜕2𝑞𝑞
𝜕𝜕𝑡𝑡2

+
𝑐𝑐
𝑚𝑚
�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑡𝑡

+ 𝑖𝑖𝜔𝜔 2 � 𝑞𝑞 = 0

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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Imaginary eigen frequency 
unbounded vibration with 
exponentially increasing amplitude

Beginning 
of motion

Mathematical Representation of Dynamic Approach
-Single Degree of Freedom Systems – Damped Vibration
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Energy and Dynamic Methods of Equilibrium

Influence of Initial Conditions for Single-Degree of 
Freedom Systems

The magnitude of initial perturbation affects the amplitude of 
vibration but not the type of response
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Energy and Dynamic Methods of Equilibrium

Influence of Initial Conditions for Single-Degree of 
Freedom Systems



75
Prof. Dr. Dimitrios G. Lignos:  “Structural Stability”

Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Free Vibration (Stable)

Source: (Master Students Hugo Ribet, Yan Zhang, RESSLab 2017)
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Free Vibration (Stable) – Different Initial Conditions

Source: (Master Students Hugo Ribet, Yan Zhang, RESSLab 2017)
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Stable) – Zero Initial Conditions

Source: (Master Student, Gerard Guell, RESSLab 2017)
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Stable) – Zero Initial Conditions

L

h

um Based on Newton’s second law:

Initial Conditions:

𝑓𝑓𝐼𝐼 + 𝑓𝑓𝐷𝐷 + 𝑓𝑓𝑠𝑠 𝑢𝑢, 𝑢̇𝑢 = 𝑝𝑝(𝑡𝑡) ⟹

𝑚𝑚𝑢̈𝑢 + 𝑐𝑐𝑢̇𝑢 + 𝑓𝑓𝑠𝑠 𝑢𝑢, 𝑢̇𝑢 = −𝑚𝑚𝑢̈𝑢𝑔𝑔(𝑡𝑡)
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Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Stable) – Zero Initial Conditions

• Newmark Method: constant or linear variation of
acceleration between time steps i and i+1 and solving
equation for time step i+1 (implicit method).

 Initial Calculations

𝑚𝑚ü + 𝑐𝑐𝑢̇𝑢 + 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑜𝑜 = −𝑚𝑚𝑢̈𝑢𝑔𝑔

ü0 =
𝑝𝑝𝑜𝑜 − 𝑐𝑐𝑢̇𝑢𝑜𝑜 − 𝑘𝑘𝑢𝑢𝑜𝑜

𝑚𝑚

�𝑘𝑘 = 𝑘𝑘 +
𝛾𝛾

𝛽𝛽 ∗ Δ𝑡𝑡 𝑐𝑐 +
𝑚𝑚

𝛽𝛽(Δ𝑡𝑡2)

𝑎𝑎 =
m

𝛽𝛽 ∗ Δ𝑡𝑡 +
𝛾𝛾
𝛽𝛽 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 =

𝑚𝑚
2𝛽𝛽 + Δ𝑡𝑡

𝛾𝛾
2𝛽𝛽 − 1 𝑐𝑐

 Calculations for each time step

Δ𝑝̂𝑝𝑖𝑖 = Δ𝑝𝑝𝑖𝑖 + 𝑎𝑎𝑢̇𝑢𝑖𝑖 + 𝑏𝑏𝑢̈𝑢𝑖𝑖 ,Δ𝑢𝑢𝑖𝑖 =
Δ𝑝̂𝑝𝑖𝑖
�𝑘𝑘

Δ𝑢̇𝑢𝑖𝑖 =
𝛾𝛾

𝛽𝛽 ∗ Δ𝑡𝑡 Δ𝑢𝑢𝑖𝑖 −
𝛾𝛾
𝛽𝛽 𝑢̇𝑢𝑖𝑖 + Δ𝑡𝑡 1 −

𝛾𝛾
2𝛽𝛽 𝑢̈𝑢𝑖𝑖 ,Δ𝑢̈𝑢𝑖𝑖 =

Δ𝑢𝑢𝑖𝑖
𝛽𝛽(Δ𝑡𝑡2)−

𝑢̇𝑢𝑖𝑖
𝛽𝛽 ∗ Δ𝑡𝑡 −

𝑢̈𝑢𝑖𝑖
2𝛽𝛽
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Stable) – Zero Initial Conditions

 P-∆ effects are quantified using the stability coefficient, 𝜃𝜃

 Stability coefficient is associated with rotation of original force-
deformation relationship.

 Integration in Newmark’s algorithm: �𝑘𝑘 = (1 − 𝜃𝜃) � 𝑘𝑘 + 𝛾𝛾
𝛽𝛽∗Δ𝑡𝑡

𝑐𝑐 + 𝑚𝑚
𝛽𝛽(Δ𝑡𝑡2)
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Stable) – Zero Initial Conditions

Tn=0.2 sec, ζ=5%
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Unstable) – Zero Initial Conditions

Source: (Master Student, Gerard Guell, RESSLab 2017)
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Energy and Dynamic Methods of Equilibrium 83

Discussion
- Dynamic Response: Prediction– Stiffness Loss during excitation

 As frame deforms, magnetic components detach and stiffness decreases

Source: (Master Student, Gerard Guell, RESSLab 2017)
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Energy and Dynamic Methods of Equilibrium 84

Discussion
- Dynamic Response: Prediction– Stiffness Loss during excitation

Source: (Master Student, Gerard Guell, RESSLab 2017)
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – RESSLab Applications
-Damped Forced Vibration (Stable) – Zero Initial Conditions

L

h

um Based on Newton’s second law:

𝑓𝑓𝐼𝐼 + 𝑓𝑓𝐷𝐷 + 𝑓𝑓𝑠𝑠 𝑢𝑢, 𝑢̇𝑢 = 𝑝𝑝(𝑡𝑡) ⟹

𝑢𝑢

𝑓𝑓𝑠𝑠 𝑢𝑢, 𝑢̇𝑢

𝑚𝑚𝑢̈𝑢 + 𝑐𝑐𝑢̇𝑢 + 𝑓𝑓𝑠𝑠 𝑢𝑢, 𝑢̇𝑢 = −𝑚𝑚𝑢̈𝑢𝑔𝑔(𝑡𝑡)

Nonlinear Model
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Energy and Dynamic Methods of Equilibrium

Dynamic Stability – Collapse of Structures
-Damped Forced Vibration (Unstable) – Zero Initial Conditions

Source: E-Defense 2007, Lignos et al. (2013)



87
Prof. Dr. Dimitrios G. Lignos:  “Structural Stability”

Energy and Dynamic Methods of Equilibrium

Dynamic Stability – Collapse of Structures
-Damped Forced Vibration (Unstable) – Zero Initial Conditions

(Source: Lignos et al. 2013*)

Prediction of  1st story 
collapse mechanism

θ
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Image Source: University Physics Volume 1

𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑟𝑟2
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

⟹ 𝑟𝑟𝑟𝑟 = 𝐼𝐼
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

𝑀𝑀 = 𝑟𝑟𝑟𝑟

Newton’s Second Law for Rotation
-Small Revision from Structural Mechanics

𝐼𝐼 = 𝑚𝑚𝑟𝑟2
Rotational moment of Inertia
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Energy and Dynamic Methods of Equilibrium

Image Source: Galambos and Surovek 2008

Newton’s second law

𝐼𝐼
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= 𝑀𝑀

Equilibrium of moments 
with respect to A
𝑀𝑀 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜃𝜃 − 𝑘𝑘𝜃𝜃

Moving Bridge and its Mathematical Model
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Energy and Dynamic Methods of Equilibrium

Newton’s second law

𝐼𝐼
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= 𝑀𝑀

Equilibrium of moments 
with respect to base

𝑀𝑀 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜃𝜃 − 𝑘𝑘𝜃𝜃

Therefore,

𝐼𝐼
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

− 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜃𝜃 − 𝑘𝑘𝜃𝜃 = 0

Moving Bridge and its Mathematical Model
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Example 1: Moving Bridge
For an equilibrium point 𝜽𝜽𝒐𝒐 (i.e., initial perturbation)

Applying a small perturbation 𝜽𝜽∗:

Taylor Series: 

𝐼𝐼
𝑑𝑑2𝜃𝜃0
𝑑𝑑𝑡𝑡2

− 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜃𝜃0 − 𝑘𝑘𝜃𝜃0 = 0

𝐼𝐼
𝑑𝑑2(𝜃𝜃0+𝜃𝜃∗)

𝑑𝑑𝑡𝑡2
− [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃0+𝜃𝜃∗) − 𝑘𝑘(𝜃𝜃0+𝜃𝜃∗)] = 0

sin 𝜃𝜃0 + 𝜃𝜃∗ = 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝜃𝜃∗𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + Ο[𝜃𝜃∗2]

𝐼𝐼
𝑑𝑑2(𝜃𝜃0+𝜃𝜃∗)

𝑑𝑑𝑡𝑡2
− [𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝜃𝜃∗𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0) − 𝑘𝑘(𝜃𝜃0+𝜃𝜃∗)] = 0

(1)

(2)
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Energy and Dynamic Methods of Equilibrium

Subtracting Equations (1) from (2)

We need to investigate the sign of the term:

𝐼𝐼
𝑑𝑑2𝜃𝜃∗

𝑑𝑑𝑡𝑡2
− 𝜃𝜃∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜃𝜃0 − 𝑘𝑘 = 0

𝐴𝐴 =
𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜃𝜃0

𝛪𝛪

Example 1: Moving Bridge
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On the main equilibrium path:

Therefore,

𝜃𝜃0 = 0

𝐴𝐴 =
𝑘𝑘 − 𝑃𝑃𝑃𝑃

𝛪𝛪

If: 𝑃𝑃 =
𝑘𝑘
𝐿𝐿

then zero eigen frequency 𝑃𝑃𝑐𝑐𝑟𝑟 =
𝑘𝑘
𝐿𝐿

If: 𝑃𝑃 < 𝑃𝑃𝑐𝑐𝑐𝑐 =
𝑘𝑘
𝐿𝐿 then 𝐴𝐴 =

𝑘𝑘 − 𝑃𝑃𝑃𝑃
𝛪𝛪

> 0 ⟹ Stability (bounded vibration)

If: then 𝐴𝐴 =
𝑘𝑘 − 𝑃𝑃𝑃𝑃

𝛪𝛪
< 0 ⟹ instability (unbounded 

vibration)
𝑃𝑃 > 𝑃𝑃𝑐𝑐𝑐𝑐 =

𝑘𝑘
𝐿𝐿

Example 1: Moving Bridge
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On the secondary equilibrium path:

Therefore,

𝑃𝑃 =
𝑘𝑘
𝐿𝐿

𝜃𝜃0
sin𝜃𝜃0

𝐴𝐴 =
𝑘𝑘
𝐼𝐼

1 −
𝜃𝜃0

𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃0
> 0

Stability (bounded vibration)

Example 1: Moving Bridge
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Example 1: - Nonlinear Theory

𝑃𝑃/𝑃𝑃𝑐𝑐𝑐𝑐 =
𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Bifurcation point

Stable 
post-buckling

path
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Example 1: Fixed Rod with Vertical Load
– Numerical Assessment

Section: IPE300
Length of rod: 𝐿𝐿 = 3𝑚𝑚
Spring stiffness, 𝑘𝑘 = 300𝑘𝑘𝑘𝑘𝑘𝑘/𝑟𝑟𝑟𝑟𝑟𝑟

Expected critical load
𝑃𝑃𝑐𝑐𝑐𝑐 = 𝑘𝑘/𝐿𝐿 = 100𝑘𝑘𝑘𝑘

Initial offset 0.05𝑚𝑚 from the top
Initial velocity 0𝑚𝑚/sec
Damping ratio 𝜁𝜁 = 1%
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Example 1: Fixed Rod with Vertical Load
– Numerical Assessment
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Example 2: Stability of Braced Frame under Lateral Loading
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Initial conditions, 𝑢𝑢𝑜𝑜 =1mm, 𝑢̇𝑢𝑜𝑜=0mm/s

Example 2: Stability of Braced Frame under Lateral Loading
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Initial conditions, 𝑢𝑢𝑜𝑜 = 0mm, 𝑢̇𝑢𝑜𝑜=30mm/s

Example 2: Stability of Braced Frame under Lateral Loading
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Initial conditions, 𝑢𝑢𝑜𝑜 = 0mm, 𝑢̇𝑢𝑜𝑜=40mm/s

Example 2: Stability of Braced Frame under Lateral Loading
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