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=PFL Objectives of Today’s Lecture

To introduce:

<> Need for lateral stability of members

< Famous failures due to lateral torsional buckling

< Torsion, warping

< Fundamental equations for lateral torsional buckling

< Effects of end restraints

<> Effects of loading conditions and point of load
application

< Singly symmetric cross-sections



=PrL Lateral Stability
-Lateral Torsional Beam Buckling due to Fire
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=prL Lateral Stability
-Steel Columns: Lateral Torsional Buckling

(Elkady and Lignos, 2015)
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=prL Lateral Stability
-Steel Columns: Lateral Torsional Buckling

(Images courtesy of Prof. Tremblay)
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=p=L Lateral Stability
-Lateral Torsional Beam Buckling — Bridge Girders
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=prL Lateral Stability
-Lateral Torsional Beam Buckling — Bridge Girders
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=PFL Lateral Torsional Buckling

Transverse
Loading
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=PFL Lateral Torsional Buckling
-lllustration

Viewport: 1 ODE: UsMithout Lateral Bracin...W24x55! 5 S Viewport: 2 ODB: UWithout Lateral Bracin... W2 124x55_SYM_20.0db
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=PFL Lateral Torsional Buckling
-Dependence on Torsional and Warping Properties

Saint-Venant Torsion Warping
\ \H
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Total torsion T is in part taken by Saint-Venant Torsion and Warping \ -\
T — Tt + Tw
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=PFL Lateral Torsional Buckling
-Stress Distribution due to Torsion and Warping
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=PFL Properties Critical For Torsion and Warping

Uniform torsion — definitions
Consider x the longitudinal axis of the member and ¢ the cross-section rotation.

Uniform torsion is defined by being proportional to the
change in cross-section rotation along its length, that is,

T —GKa; = GK¢' [N.m]
- — .m
t 0x

[adapted from Kollbrunner & Basler, 1969]

where G[N.m™?2]is the shear modulus and K[m*]is a proportionality constant,
also known as the torsion constant.

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

3/20/22 Lateral Torsional Buckling of Open-Sections

12



=PFL Properties Critical For Torsion and Warping

Warping constant — general definition

Consider w[m]the displacement along x and
v[m]the displacement along arc s. Then,

v do ,
I dx p =@ hp

Assuming negligible distortion, y = 0, then,
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Making w(s)[m], equal to

w(s) = —go’j hy(s)ds + wy

[adapted from Kollbrunner & Basler, 1969]
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=PFL Properties Critical For Torsion and Warping

Warping constant — general definition

Consider ()[m?]as the non-normalized sectorial
coordinate:

dQ(dw) = hy, ds = Q(s) =f hy,(s)

and also consider that

dw
O'x=E€x=EE

which yields,

g, =—¢"' Q0+ Ew,

[adapted from Kollbrunner & Basler, 1969]
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=PFL Properties Critical For Torsion and Warping

Warping constant — general definition

Given that for an applied torque there should
be no axial force in our cross-section,

t| o,ds=0=

—E¢" QdA+EW(')j dA = 0

which allows us to express the integration
constant as,

Jaaa

Wy = @ Y |

[adapted from Kollbrunner & Basler, 1969]
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=PFL Properties Critical For Torsion and Warping

Warping constant — general definition

Making the axial stress along the arc,

. [QdA
o, =—E@" [ Q—T——
A A
Defining the normalized sectorial coordinate w , "y-‘t@y
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The axial stress is simply, Ay
\\
e \/
- I ;
oy = —E¢ w ol
ax =
b
[adapted from Kollbrunner & Basler, 1969]
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=PFL Properties Critical For Torsion and Warping

Warping constant — general definition

Lastly, the torsion due to warping about point P
can be quantified as,

Ty =1t] T -hyds =[q-hyds =
=fqda)

integrating by parts,

- >
3
: 0 W S
—_ —_— (,()dS i _“B e &S pa
P // %] o s /! /
O 5 A3 <t - !/
— ’/ - h ’ 3

which from equilibrium of the infinitesimal square,

-

2X =
ox

f — twds

[adapted from Kollbrunner & Basler, 1969]
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=PFL Properties Critical For Torsion and Warping

Warping constant — general definition
From slide 16,

do
X
_—E(p w=>— —Ega”'a)
dx
and so,
T, =—[ Ep" w?tds =
_— 77 2 — /:L}(L = 8 s //v,/‘/
pu— E¢ f a) dA /‘// b ///“k /l///’ / ///,
- B ol ( N P/
The warping constant is then defined as, ¢ } \\ -
0.5 o degyy
e \\J

I, = j w(s)2dA

A

[adapted from Kollbrunner & Basler, 1969]
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=PFL Properties Critical For Torsion and Warping

Warping constant Moment of inertia
I, = j w(s)2dA  [m°] I, = f y2dA [m*]
A A
Bi-moment Bending moment

A A
Warping moment Shear
oM ' . aMy — 7 N
Ty = ax‘“ = —El,¢ woml| Q=== —ElLyv [N]

Analogy

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”

3/20/22 Lateral Torsional Buckling of Open-Sections

19



=PFL Geometric Properties Critical For Torsion and
Warping - Singly Symmetric cross-sections

'T by # / Flange in compression
- = & —
i . %
S — ZC-—;:C ‘ A= C : Shear Centre
STl T Y T G : Centre of Gravity
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=PrL Cross-Sectional Properties for Torsion/Warping

Sectorial Characteristic of Cross-Section
(8=0 for doubly symmetric cross-sections)
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ePFL Lateral Torsional Buckling

-Reference Case: Simple Supported Beam Subjected
to Uniform Bending

supports 7

—
— —

o e

dv
dx
Mn M,
LT
'l‘ *)

3/20/22

PLAN

—— Bottom flange

Top flange

Pin J

Initial Position

Position after _‘._J,

lateral torsional
buckling

SECTION

M, = Mycosp = M,

M; = Mysing = My, ¢
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ePFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

Equilibrium requires that these moments are equal to the internal moments,
resulting in the following differential equation for bending about y axis,

M El d*w
y = y dx2 Initial Position

Flexure due to bending with respect to the { axis,

d?*v
M{ — _Elzw

M; = Mysing = M,, ¢

Position after ,‘._J,
d2v lateral torsional 1z
Myga + Elz_z =0 buckling
dx SECTION
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ePFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

| -~ Bottom flange
‘{ " Top flange

dv PLAN

,,I TL). Additional equation from the torsional component T

dv) y dv
dx Y dx

T=M sm(
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=PFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

The internal moment of torsion consists of a warping and a uniform torsion
component. G is the shear modulus, /, is the warping constant, and Kis
the St. Venant’s torsion constant.

El, ¢" — GK¢' + M, — = 0

The two differential equations involving the lateral-torsional displacements
vand ¢ are then equal to,

d*v
M, + Elzw =0
r ! dv
El,o" —GK@ + Mya =0
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=PFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

Therefore, ﬁ _ Mygo
dx? EIl,

Differentiation of the second equation with respect to x and substitution
results in the following equation,

d*e d>p Mg
El,—— GK - =0
@ dx* dx? EI,
d*¢ GK d*¢ Mje 0
dx* EI,dx? E2I11,
GK IW2 d4 d2
M= —dy = =2 LA el Ay S
EIa) E IzIa) dx“‘ dx2
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ePFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending
Boundary conditions,

The lateral deflection and the angle of twist equals zero at each end,
v(0) =v(l) = ¢(0) =¢(L) =0

There is no moment about the z-axis at both ends and they are free to warp,

v"'(0) =v"(L) = ¢"(0) = 9" (L) =0
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ePFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

d*¢ d*¢

dx* & dx?

Roots of the differential equation are,

_2,2§0=0

p[r*—1r4—2,]=0

Where,
r = [al, —aq, iaz, _iaz]T
Where,
A+ A% + 42, A + /22 + 44,
a, = a, =
\ 2 \ 2
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ePFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

The expression for the angle of twist can be written as follows,
d = AeM* + Ao~ NX  Ajeld2X 4 A, e7%RY ([ =+/—1)
or
¢ = Cicoshaix + Crsinha;x + C3sina,x + C4C0S arx

A, A,, A3, Ay and Cq, C,, C3, C4: Constants of integration
(depend on the boundary conditions of the beam)
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ePFL Lateral Torsional Buckling
-Reference Case: Beams Subjected to Uniform Bending

Buckling determinant (after applying the boundary conditions of the problem)

3/20/22

1

of

cosho L

0 0 1
0 0 —a3
sinh o1 L sin o L cos oL

2 2

afcoshoyL o?sinha;l —ojsinapl —ajcosan

(a? + a3)sinha L - sinayL = 0

\ J
|

Cannot be zero

Therefore, sina,L = 0
a, L =nm,n =123, ...
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ePFL Lateral Torsional Buckling
-Reference Case: Beam Subjected to Uniform Bending

a, L =nm,n=1,2,3, ...

A + /22 + 44,

A, =
\ 2
, n4m? ) n4m* h GK A = M2
2= (Mt VT EL " TR
[ m?El,
M, = Z./EIZ(;KV 14—
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ePFL Lateral Torsional Buckling
Effect of Loading and Boundary Conditions

The special case of a simple supported beam is practically never found
in reality. There is often bending at beam ends and torsion is often

restrained. The external loads are not just uniform and the section may
be asymmetrical.

CAS FONDAMENTAL

CAS GENERAL
(section bisymétrique)

(section monosymétrique)
Conditions d'appui :

Conditions d'appui :

w=0, w'=0

(=R

v
' (P"

gauchissement

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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ePFL Lateral Torsional Buckling
-Effect of Boundary Conditions: Warping Prevention

The beam ends are prevented from freely warping by a thick end plate

or by a channel stiffener.

_.__\/’\__ -
|l:|: L :_ _ _‘Channel stiffeners (\L U(O) — U(L) — U”(O) — U”(L) — 0
=i " 9(0) = p(L) = ¢'(0) = ¢'(L) = 0
VAR !
Section AA
_.__/'\\/__ -

(Source: Ojalvo and Chambers 1977)
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=PFL Lateral Torsional Buckling
-Effect of Boundary Conditions: Warping Prevention

In this case the buckling determinant is as follows,

1 0 0 1

0 a1 (0 5] 0 —0
cosha L sinh o1 L sin oy L cos apL
5] sinh x; o cosh (l]L 0 COS (X2L —0Q) sin azL

az

2a1a2

2
coshaqL - cosha,L — 1 + < 1) sinhaL - sina,L =0

The solution to this problem is not easy even though a closed-form
analytical solution can be obtained. Therefore, Newton-Raphson iteration
(or bisection method) is typically used. For most other boundary conditions
obtaining a closed-form solution is either difficult or impossible. In design
we use an approach similar to the effective length method (classical
buckling).
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=PFL Lateral Torsional Buckling
-Effect of Boundary Conditions — “Effective Length
Factors”

- m?EK
Gl (kyL?)

VIA
My o = k—L\/EIZGIw
v \

[, - is the second moment of area about the minor axis z-z
|, - is the torsional constant of the cross-section

K - is the warping constant of the cross-section

L - is the beam length between lateral restraint points
k, — effective length factor of end rotation on plane

k, - effective length factor for member end warping



ePFL Lateral Torsional Buckling
-Effect of Boundary Conditions on M,

Schémas des appuis Conditions aux limites | k, etkgp Remarques
W= W =0 Raidisseurs ou appuis latéraux au niveau de la
v = 00 v =0 k membrure comprimée nécessaires afin
: 0 . 0 k" -1 d'empécher la rotation de la poutre aux appuis.
¢ = ¢ = o= wq : déplacement vertical de 1'appui.
T7
i w=0 w"=0 Liaison articulée dans laquelle les cornieres
b v =0 v'=0 k, = 1.0 | doivent &tre suffisantes pour empécher la
! =0 @' =0 ko= 1.0 rotation de la poutre aux appuis.
A1
T
i w = w'=0 Liaison semi-rigide peu résistante en flexion
s v = v' =0 k, = 1.0 | etavec gauchissement non empéché des ailes.
! =0 9" =0 ko= 1.0 | On néglige la rigidit€ a la torsion du poteau.
A1
TI =0 f— Liaison semi-rigide résistante en flexion et avec
| b = :’ B 00 b = 1.0 gauchissement empéché des ailes (k, < 1.0).
| B 0 . 0 k" : |0 | On néglige larigidité 2 la torsion du poteau.
11 ? v ? = 7| @,: inclinaison du poteau.
Ts T 7 - W o= 0 Encastrement parfait de la poutre 2 la torsion,
_ . 0 o gauchissement empéché par les raidisseurs.
v =0 v' =0 k, = 1.0 L. e .
‘ =0 ¢ =0 ko= 0.5 On néglige la rigidité a la torsion du poteau.
| 11 ?7 7| @y: inclinaison du poteau.
el A w=0 w =0 Encastrement parfait de la poutre 2 la flexion
: =1 j I I b =0 v =0 k=05 | ¢ a la torsion, gauchissement empéché par
e— _ . V. "7 | l'appui que l'on considére comme étant rigide
I L.—-d ¢=0 ¢ =0 kp=0.5| 3 1a torsion.
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ePFL Lateral Torsional Buckling

-Effect of Boundary Conditions on M,

Effect of Boundary Conditions
F,=345MPa, IPE300

\, \\ \~\‘\ )
\\ ’\_\.‘ .

K~=1.0, K,=1.0
K~=1.0, K,=0.5
K,=0.5, K,=0.5
K,=0.5, K,=1.0

Analytical solution
torsionally fixed end

Very conservative

3/20/22

50 100 150 200 250 300

L/,
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£PFL Lateral Torsional Buckling
-Effect of Loading Conditions on M,,

CAS FONDAMENTAL CAS GENERAL
(section bisymétrique) (section monosymétrique)

Conditions d'appui : Conditions d'appui :
w=0, w'=0 w=0, w=#0
v=0, v'=0 ,

Q= 0, (p" =0

gauchissement

Salvadori (1955) proposed the use of a C, multiplier for design
code applications

- m?EK
Gly,(k,L?)

Prof. Dr. Dimitrios G. Lignos: “Structural Stability”
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ePFL Lateral Torsional Buckling
-Effect of Loading Conditions on M,,

CM KM ‘>
2 w2
<z =
2 En
(M x=-1. C; =1.00 M >
<M k=0; Cl = 1.75

<M c=1: €3 =23 M>

Salvadori (1955) formula, C; = 1.75 + 1.05x + 0.3k* < 2.3
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ePFL Lateral Torsional Buckling
-Effect of the Location of the Load

Without Lateral Torsional Buckling With Lateral Torsional Buckling
Compressed flange
~ & Q
h h
Za=*3 za=0 Za=—73
h C Q C
J ; )
Q
—
Secondary moment No secondary Secondary moment
(helps stabilization) moment (prevents stabilization)
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=PFL Lateral Torsional Buckling of Singly
Symmetric Cross-Sections

Crane design Bridge Design

2(385 x 24 x 7100) + 475 x 34 x 15800

|t = 14 mm

UPE270@6000mm 1089 mm

\[/2(620 X 24 x 7100) + 720 x 34 x 15800

| S =4000mm
The cross-section of Bridge 1530
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ePFL  Geometric Properties Critical For Pure
Torsion and Warping

Flange in compression

J[ j_/_; —
I N
| he =
b ZC-—;:C ' G C : Shear Centre
v M Y N G : Centre of Gravity
,N’ E=
%a =\
tra f sz & =\
=0
(S
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=PFL Cross-Sectional Properties for Torsion/Warping

Sectorial Characteristic of Cross-Section
(8=0 for doubly symmetric cross-sections)

3 3 3
ﬂ = 2C + —— |: (—Q + b2 ¢ ) h2 h t ) hC(M <4 bl t 1 2 hc tw):|
21,1\ 12 / 4 12 f1 e+ =

Location of Shear Center

_ b} h, tfl_bg h,ts)
Zg =

bty —b3 ts

Warping Constant
_ (h,.+h,)? b} te b3 teo

© 0 12[b] 1y + b3 1]

Torsional Moment of Inertia
1
K = §[b1 t}l +b, t}z o (hc+h,)t§,]
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=PFL Lateral Torsional Buckling of Singly
Symmetric Cross-Sections

The two differential equations involving the lateral-torsional displacements

u and ¢ are equal to, @ _ M, ¢
dx? EIl,
d>p
Elwﬁ_ (GK + Myﬂ)QD + Myv =0

Additional twisting moment caused by the normal stresses on each of the
two differently warped surfaces on the differential elements dz along the z-

axis of the beam
d4g0 GK + My,B dzgo Mf,qb

dx*  EI, dx? EZ2LI,
=0
. _G1<+Myﬁ/1 M LA+ VA 44,
YT TR, TR, T 2
Prof. Dr. Dimitrios G. Lignos: “Structural Stability” 44
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=PFL Lateral Torsional Buckling of Singly
Symmetric Cross-Sections

The equations for a, and A, are identical to the previous equations for the
doubly symmetric wide-flange cross-section; only A1 is different, since it
includes the extra term Mg,

1
asL? = m? = E(—Al + \/Ai + 4/12>

E2[,1, 12

T algebraic equation)

M32/ _ m* GK"'My,B T (Second order
El, L2

w2EL,p I, [ GKI?
M, .. = 1 1
ver = |TT L (anlw * )
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ePFL Lateral Torsional Buckling

Effect of Boundary conditions, Loading & Loading Application, Cross-
Section Shape
Clark and Hill proposed the following expression to take all issues into
account:

M. = Cyzg + C3P)% +
cr kvk(pL% [ ( 2Zq 3,8) I,

I, (GKK2L2
( 72E] + 1)+ (Cz, + C3P)

z, — is the distance between the point of load application and the shear center
[, - is the second moment of area about the minor axis z-z

l,, - is the warping constant of the cross-section

K - is the torsional constant of the cross-section

L, -isthe beam length between lateral restraint points

k, — effective length factor of end rotation in plane of loading (see slide 32)

k, - effective length factor for member end warping (see slide 32)

C,, C, and Cj; - coefficients depending on the loading and end restraint conditions
B — Sectorial characteristic of a cross-section (=0 for double-symmetric sections)
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=PFL Lateral Torsional Buckling
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Mode de chargement k, = 1.0 ky, = 0.5 ky, = 2.0
Cih | C | 3 C | Cr | C3C | C| C3
m( g — )% |100| @ [1.00]1.00| ® |1.14
m( z s )2 | 132 @ |099|151| @ |227
m( s 2 188 | @ |094 215 @ |[215
m( 3 )M2 270 | © |0683.09 @ | 155
m( z s )M [275| @ [000[315| @ |0.00
(I 9 113 | 046 | 053 1 0.97 | 0.30 | 0.98
A [o}
(T OOy g
1.28 | 1.56 | 0.75 | 0.71 | 0.65 | 1.07
lo 136 | 0.55 | 1.73 | 1.07 | 0.43 | 3.06
A O
lo 1.56 | 1.27 | 2.64 | 0.94 | 0.71 | 4.80
/ /
A TGN ] S 1.05 | 043 | 1.12 | 1.01 | 0.41 | 1.89
A O
l
——al—+, 128 1043 | @
L a
T [T 9
%IHHIIIH T I 205 | 0.83 @
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=PFL Steel Beam Design for Lateral Torsional Buckling
-Lateral Torsional Buckling Resistance, Class 1 & 2 |-shape Members

General Condition: Mgq <1
My ra

Class 1 & 2 Cross-Sections: Resistance in Lateral Torsional Buckling:

cWor
Mb,Rd = ALT pLy fy (yM1 = 105)

Ym1

Reduction factor for lateral torsional buckling:

1
XIT = <1.0 T \/Wpl,y 'fy
b+ \/CD%T — Afr

ECS CDLT - 05 . 1 + * (/T'LT - 02) + /T.%T

SIA 263: G =05- :1 ' (/TLT - 0-4) + /T'%T:

— |mperfection factor
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EPFL Lateral Torsional Buckling
-Effect of Imperfections on Lateral Torsional Buckling Curves

Residual stress distribution
in the steel cross-section

+o,

: il e
1.0 o, ~-o .
’.' 0 ] 7
: Elastic buckling
B d/b, <12:0,=050,
S M<MC7 g 5 < d/b, >12:06,=030,
~
E Initial I . X
= $ deformation3 . T
g § increasing %
g s
Q3 First yield of initially deformed beams at
§ i M<M., (no residual stress)
o
Q. 1 1
S< 00 1.0 2.0
Z
- : M
Modified Slenderness Ratio A7 = |2
cr
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EPFL Lateral Torsional Buckling
-Effect of Imperfections on Lateral Torsional Buckling Curve (M)

Cross-
Section

Limits EN 1993-1-1 SIA 263

Rolledl-or h/b <2 a 0.21 a 0.21
H-sections h/b > 2 b 0.34 '
Welded I-or h/b <2 C 0.49 c 0.49
H-sections h/b > 2 d 0.76 '
Other i g 0.76 c 0.49
sections




=PrL  QOther Aspects for Lateral Torsional Buckling

< Stability of bridge girders - Lateral torsional buckling by

example (LTBeam software)

https://www.cticm.com/content/ltbeam-loqgiciel-calcul-moment-critique-deversement

< Critical stress due to lateral torsional buckling according
to SIA 263 Design Guide
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https://www.cticm.com/content/ltbeam-logiciel-calcul-moment-critique-deversement

PFL Stability of Bridge Girder — Example with LTBeam

Detail A

355mm

HEB300 W




£PFL Critical Stress Computations According to SIA 263

It is possible to use a simplified calculation method to
determine the stress at which lateral torsional buckling may
occur without having to consider the k,, k;, C; C, Cj
factors provided that we are dealing with a simple supported
beam, the section is doubly symmetric (B=0) and the loads

act in the plane of symmetry (z,=0)

v _ |m*GKEl, m*El.EL
yJCT_V LZ + L4'




£PFL Critical Stress Computations According to SIA 263

Critical stress for lateral torsional buckling, o, p

2
2
M T w?E | 1.1
y,cr w*Z
Ocr,p = = w/Gl’(EI) +

. Wy el (Wy,elL i L? \ erl

\ Y / \ ' J
Stress due to uniform Stress due to warping

torsion only

_ |2 2
Ocr,D = \/O-Dv + Opy
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£PFL Critical Stress Computations According to SIA 263

Critical stress for lateral torsional buckling, o, p

Torsion uniforme Torsion mixte Torsion non uniforme
Opw << Opy Opy << Opw
— 2 2 -
OcrD = OpDy OcrD = \/G[) v+ Opy OcrD = ODw
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£PFL Critical Stress Computations According to SIA 263

Critical stress for lateral torsional buckling due to pure

torsion, o,

nrt
Opp = JGKEIL,
STV

Modified Salvadori (1955) formula,
n=C; =175-1.05yp +0.3yp? <23 (-05<y <1.0)

Y = Mmin/Mmax
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EPFL Critical Stress Computations According to SIA 263

Critical stress for lateral torsional buckling due to pure

torsion, o,

2.35 AT
-~
mm -0.5 ( o) paN )
+1
+2.0
1.75 M,in M
A4 max
[[[II[[[H 0
+1 1.30 1 1
‘ . ]
IH[[ +0.5 () 1
+1 ’ 1.00 ‘ l M
Y max
M....:
+1 +1 F. mi MmHH;m M
- = Mmin
=0
-0.5 0 +0.5 + 1.0 max
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EPFL Critical Stress Computations According to SIA 263
Critical stress for lateral torsional buckling due to pure

warping, O, cr,w

m2E |11, E,j;m
O-DW =n LZ W2 T"‘ Tw____i_; B
N e .
For an I-shape section, | <t {
h? figp
I, =1,-~
4
= 2bt hr) Ft b3 (A ey )hf
= b)) Ty = \Artg 2
] 1 hf Ar = bt
W, =—>= (A +=A ) =
y,e h/z f 6 h AW — thW
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PFL Critical Stress Computations According to SIA 263

Critical stress for lateral torsional buckling due to pure

warping, o,

%E I,h ] m?E
Opw =N =N -
(Ar +2Aw) 20| (/D)

Radius of gyration, i, of compressed flange and 1/6 of web

core (directly given in SZS C4.1 for sections with h/h, = 1),

Ih

(47 + 2 Aw) 2k




=prL Calculation of Critical Moment for Lateral Torsional
Buckling According to SIA 263

Critical Moment, Wy, eif, (for Class 3 or 4) >

D = XpMR ( R {Wy,pl'fy (for Class 1 or 2)

Reduction factor for lateral torsional buckling: ( ,
1 Wpl,y fy
W.
— < 1.0 _ Ocr,0Wy.el
XD 3 - = Ap =+
Op + |P5 — L) fy
O-CT,D

Coefficient considering imperfections of the cross-section (residual
stresses, variations on f,, initial deformations)

®, =05 [1+ap-(Ap =)+ pA3]

ap: imperfection factor (see table next slide)

f = 1 for bent beams of constant cross — section
(= 0.2 when 3 = 1.0, else, = 0.4 when § = 0.75
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cPrL Lateral Torsional Buckling — According to SIA 263
-Effect of Imperfections on Lateral Torsional Buckling Curve (Mp)

Cross-

! Limits EN 1993-1-1 SIA 263
Section
Rolledl-or h/b <2 a 0.21 a 0.21
H-sections h/b > 2 b 0.34 '
Welded I-or h/b <2 C 0.49 c 0.49
H-sections h/b > 2 d 0.76 '
Other i g 0.76 c 0.49
sections




=PrL Lateral Torsional Buckling — According to SIA 263

If one wants to consider the beneficial influence of a non-constant
distribution of moments between lateral bracing, a modified value of xp
may be used:
_ o
XD mod f

f=1-051-k)[1-2(1,-08)"] <1

k. depends on the moment diagram (see next page)
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EPFL Lateral Torsional Buckling — According to SIA 263

-Moment Shape Effect on Reduction Factor

Distribution des moments ke
IR 1.0
y=1
T —— :
| 133-033y
-l=sy=l
W 0.94
I et 0.90
/(frﬂ 0.91
L=
W 0.86
mm,WAﬂl 0.77
W
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cPrL Lateral Torsional Buckling — According to SIA 263

A o/f; \
1 \\
1.0
'_'\\ OcrD
| Op \\
\
0.5 S
AD
0 x —
0 1.0 2.0
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