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Objectives of the lecture

• Motivation to study plate stability

• Introduce the theoretical background to estimate plate:
• Linear elastic buckling loads

• Post-buckling behavior

• Look into design applications:
• Section classification

• Stiffened plates

• Class 4 cross-section resistance

• Concentrated loading

• Post-critical web resistance

• Shear links in EBFs

• … 
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Motivation
Structural failures

4th Danube Bridge, Vienna, 1969. [Scheer, 2010]
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Motivation
Structural failures

Rhine Bridge, Koblenz, 1971. [Scheer, 2010]

failed joint. Welding deformations contributed significantly to the weakness of the joint cross
section with a slenderness ratio between 460/(0.289z11) = 145 for the plate member with
hinged supports and 145/2 = 72 for the plate member with fixed ends. Although the plan to
use an automatic welding machine was later abandoned, the joint configuration designed to
suit it was not changed. Tests carried out as part of the expert report into the collapse [48]
show how the joint cross section failed (Fig. 3.17). When construction of the bridge recom-
menced, the extreme cantilever portion of more than 100m was avoided by lifting the 600 t
middle section of the main span from the now much shorter cantilever arms (Fig. 3.18). The
course of the accident is described in [45] and also in [6, 27, 33].

The engineering world only heard many years later about the collapse of the Zeulenroda
road bridge over Weida valley in Thuringia, East Germany during its erection in 1973. This
was thanks to H. P. Ekardt, who provided a detailed report on this incident combined with

58 3 Failure during construction

a)

b)

Fig. 3.16 Rhine Bridge, Koblenz, construction in failure area. 1971, Case 3.53
a) Cross section
b) Erection joint in bottom plate

generally valid observations about the responsibility of engineers [11] (1998), after H. Elze
had dealt with the failure in a lecture in 1996 [49]. After completion of the bridge, the valley
was to be flooded to form a reservoir. The 6-span, 362m long bridge with 55m side spans
and 63m middle spans had a trapezoidal box girder 2.15m high with an upper width of 5.4m
and 4.0m lower width. The bridge deck with sidewalks was 11m wide and projected 3m at
each side. The bottom flange was stiffened with 5 125 x 20 flat steel longitudinal stiffeners

593.4 Failure of steel bridges with box girders

Fig. 3.17 Rhine Bridge, Koblenz, failure in
welding seam (experiment). 1971, Case 3.53

Fig. 3.18 Rhine Bridge, Koblenz, rebuilding with shorter cantilever 3.53

Rhine Bridge, Koblenz, 1971. Detailing experiment.
[Scheer, 2010]
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Motivation
Structural failures

Zeulenroda reservoir Bridge, 1973– after failure. [Scheer, 2010]

Zeulenroda reservoir Bridge, 1973-- before failure. [Scheer, 2010]
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Motivation
Structural failures

Werra Bridge,Hedemünden, 1991. [Scheer, 2010]

[Scheer, 2010]
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Plate buckling
Preliminary definitions

• A thin surface laminar element is characterized by:
1. A surface defined by a curvilinear reference system in, say, directions {𝑥, 𝑦};
2. A thickness 𝑡 much smaller than the length scale of the surface and 

perpendicular to the surface in, say, direction {𝑧}.

• Thin surface laminar elements can be divided in the following categories:
1. Plate – element with zero curvature in both surface directions-- (1/R! =

0 ∧ 1/𝑅" = 0), with 𝑅 the radius of curvature;
2. Cylindrical Shell – with one direction of non-zero curvature-- 0

1
1/R! = 0 ∧

1/𝑅" ≠ 0 ∨ (1/R! ≠ 0 ∧ 1/𝑅" = 0);
3. Shell – with non-zero curvature in both directions 1/R! ≠ 0 ∧ 1/𝑅" ≠ 0 .
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Plate buckling
Preliminary definitions

• Linear elastic buckling of plates:
1. Objective to calculate stresses that lead to loss of stability of plate(limit point);
2. Based on the first-order, small-displacement, deformed configuration of the surface;
3. Assumes a linear elastic material;
4. Typically does not take into account initial imperfections or residual stresses;

• Post-buckling of plates:
1. Objective is to describe equilibrium path after limit point is reached;
2. Based on the second-order(+), small- or large-displacement, deformed configuration;
3. Slender plate behavior is considerably stable after limit point is reached;

• Inelastic buckling of plates
1. Describes situations in which significant material nonlinearity takes place. This can

happen before or after linear elastic limit point;
2. Based on the second-order(+), small- or large-displacement, deformed configuration;
3. Plate ultimate loads depend significantly on initial imperfections, residual stresses, 

and material nonlinear model.
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Linear elastic buckling of plates
Introduction

[Bryan, 1890]
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Linear elastic buckling of plates
Introduction
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

𝑑𝑠# = 𝑑𝑥# + 𝑑𝑦# + 𝑑𝑤#

𝑑𝑤 =
𝜕𝑤
𝜕𝑥

𝑑𝑥 +
𝜕𝑤
𝜕𝑦

𝑑𝑦

𝑑𝑠# = 1 + $%
$!

#
𝑑𝑥# + 2 $%

$!
$%
$"
𝑑𝑥 𝑑𝑦 + 1 + $%

$"

#
𝑑𝑦# (1)

dydx

dw

ds

Consider an infinitesimal plate element, The length between two points in the 
deformed configuration can 
expressed by,

The displacement is a function of 
the position on the plate and so,

Substituting,
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

dx

dy

dx

dy

du

@u
@y

dx

dy

du
@u
@y dy

@u
@y

dx

dy

du
@u
@y (dy + dv)

dv

@u
@y

@v
@x

dx

dy

du
@u
@y (dy + dv)

dv
@
v

@
x
(d
x
+

du
)

@u
@y

@v
@x

dx

dy

du
@u
@y dy

dv
@
v

@
x
dx

@u
@y

@v
@x

dx

dy

@u
@xdx

@u
@y dy

@
v

@
y
dy

@
v

@
x
dx



17Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa  
Civil-369-“Structural Stability” : Plate Buckling

RESSLab
Resilient Steel Structures Laboratory

Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The length between two points in the deformed configuration can also be expressed 
by the stretch and distortion of the plate,

𝑑𝑠# = 𝑑𝑥 + 𝑑𝑢 # + 𝑑𝑦 + 𝑑𝑣 # =
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The length between two points in the deformed configuration can also be expressed 
by the stretch and distortion of the plate,
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The length between two points in the deformed configuration can also be expressed 
by the stretch and distortion of the plate,
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In this linearized analysis, the second-order terms of the strain are neglected
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

So finally, 

In which 𝜛 is the shear angle.
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates
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The work performed by the external forces acting on the plate can 
thus be expressed as,
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates
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with D, the plate bending stiffness, equal to

The internal work that the plate conducts in bending due to the displacement field 
𝑤(𝑥, 𝑦), can be expressed as

𝐷 =
𝐸𝑡+

12 1 − 𝜐#
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular  plates
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For a rectangular plate supported at its edges, the vertical displacement can be 
expressed by,

𝑤 𝑥, 𝑦 = J
,-(

.

J
/-(

.

𝐴,/ sin
𝑚𝜋
𝑎
𝑥 sin

𝑛𝜋
𝑏
𝑦 (5)

Assume for the moment that the shear stress are zero and the normal stresses are constant. 
Then, performing the corresponding derivatives of Eq. 5 and substituting in the expressions 
for internal and external work, it can be shown that

𝑉 = − 0
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𝑎𝑏𝜋#𝑡 ∑,-(. ∑/-(. 2!,"
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

Π = 𝑈 + 𝑉

From the previous lecture we saw that the total potential energy at an equilibrium 
point can be defined as,

with stability defined as,
𝜕Π
𝜕𝑤

> 0

Substituting in the stability definition our expression for the internal and external 
work yields the following condition, with respect to the amplitude of each vertical 
displacement,
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

From Eq.8 it can be seen that each buckling is independent of each other and, as 
such, the stability can be expressed for each mode as,

1
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And so,

With mode shape,
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

Consider now the case where the plate loaded uniaxially (𝜎" = 0),
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𝑡
𝜎$%,'𝑚!

𝑎!

𝑚"

𝑎" +
𝑛"
𝑏"

" ⟺ 𝜎$%,' =
𝜋!𝐷𝑎!

𝑡 𝑚!
𝑚#

𝑎#
+
𝑛#

𝑏#

#

The critical stress will be minimal when 𝑛 = 1, that is, when the buckling mode only
has one half-wave perpendicular to the load. 
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

When we re-work Eq. 11, we are left with one of the most important expressions in 
this lecture (Eq. 12),

with 𝑘, the plate factor or plate buckling coefficient, and 𝜎?, 
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Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates
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An energy approach to the buckling of rectangular plates
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An energy approach to the buckling of rectangular plates
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4.5.3.4          Dans le cas du dimensionnement de poutres caissons, l’approximation selon le chiffre 4.5.3.3 est trop
imprécise. Le facteur de réduction r doit être calculé selon le chiffre 5.6.4.3.

4.5.3.5          Le facteur de réduction r peut aussi être calculé selon SN EN 1993-1-1.

4.5.3.6          Pour les contraintes critiques de voilement élastique scr,P d’un élément plan sollicité par des contraintes
 normales, la théorie linéaire du voilement pour matériaux élastiques donne des formules suivantes:

                      scr,P = k sE                                                                                                                                                   (12)

                    où              sE =                               ª 0,9 E

4.5.3.7          Les coefficients de voilement k dépendent du rapport de la longueur a de l’élément plan et de sa largeur b,
a = a/b, des conditions d’appui sur les éléments adjacents et du mode de sollicitation. Pour déterminer la
largeur efficace beff, il faut toujours utiliser la plus petite des valeurs du coefficient de voilement kmin. Celles-
ci sont indiquées au tableau 9 pour différentes conditions de bord et sollicitations. Tant que des conditions
plus favorables ne sont pas prouvées, il faut admettre des bords simplement appuyés ou libres.

4.5.3.8          Si la résistance ultime d’une barre est atteinte à une contrainte de compression sK ou sD < fy (par ex. par
flambage ou déversement), on peut alors utiliser la valeur de la contrainte   fy sK ou    fy sD au lieu de la limite
d’élasticité fy pour déterminer la largeur efficace.

4.5.3.9          Les éléments plans, dont les bords parallèles à la direction des efforts sont libres, sont considérés comme
des barres comprimées.

                    Tableau 9: Sélection du coefficient de voilement kmin

SIA 263, Copyright © 2013 by SIA Zurich 31

     p2E           t   2

12 (1 – n 2)      b

                      t   2

                      b

                                                                                       Conditions de bord

y

                                1         4,00        6,97          5,41          5,41          1,28       1,28           0,426       0,426

                                0         7,81      13,54        11,73          9,54          5,91       1,608         1,702       0,567

                              –1       23,90      39,52        39,52        23,94                         2,134                         0,851

                                     kmin ª

                                     valable pour                et y ≥ –1,2

16

(1 + y)2 + 0,112 (1–y)2 + (1+y)

Linear elastic buckling of plates
Influence of boundary and loading conditions

Boundary conditions

SIA263, §4.5.3 - [SIA, 2013]
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Influence of boundary and loading conditions

Boundary 
conditions

Normal stresses Shear stresses
(approximate formulas)

TGC10, §12 - [Hirt et al., 2011]
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Linear elastic buckling of plates
Influence of boundary and loading conditions

TGC10 §12 also discusses ways to compute equivalent critical stresses for mixed 
loading (uniaxial compression and shear)

𝜎@<= =
𝜎!# + 3𝜏#

1 + 𝜓
4

𝜎!
𝜎<=,!

+ 3 − 𝜓
4

𝜎!
𝜎<=,!

#
+ 𝜏

𝜏<=

(15)

where,

𝜓 – is the ratio between the smallest and largest uniaxial stress (signs included)

𝜎! – is the largest uniaxial stress

𝜎<=,! – is the limit stress in taking into account only the uniaxial stresses
𝜏<= – is the limit stress in taking into account only the shear stresses
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Equilibrium paths

𝜎
𝜎<=

= 1 +
3
8
1 − 𝜈 #

𝐴00
𝑡

#
(15)

Post-buckling analysis leads us to analyzed the previous problem taking into account 
higher order terms in the linearization of the problem. Analytically this can be 
performed by:

1. An energy approach [Koiter, 1945]
2. Equilibrium in the deformed configuration [von Karman et. al, 1932]

Both approaches can be shown to yield the 
same result in the neighborhood of the 
linear elastic limit point for a simply 
supported square plate:

Note that for deflections on the order of the 
thickness of the plate, the post-buckling 
stress is around 35% larger than 𝜎<=°3 °2 °1 0 1 2 3
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Post buckling of plates
Equilibrium path

𝜎
𝜎!"

= 1 +
3
8 1 − 𝜈 # 0𝑤# + 30𝑤𝜀$

0𝑤
0𝑤 + 𝜀$

(16)

For a case with initial imperfections 𝜀( =
%$
A

,
Volmir [1967] reports, 

With, a𝑤 =
𝑤
𝑡

The key idea here is that there is a significant 
amount of reserve capacity, even in the 
presence of initial imperfections
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Post buckling of plates
Ultimate plate load
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Post buckling of plates
Stress distribution at edges

[Reis and Camotim, 2001]

For a rectangular plate (a=b), the stress 
distributions along its edges, in the post 
buckling phase, assumes the following 
form,

𝜎! 𝑦 = −𝜎 + 𝜎 − 𝜎<= cos
2𝜋𝑦
𝑏

𝜎" 𝑥 = 𝜎 − 𝜎<= cos
2𝜋𝑥
𝑏
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Post buckling of plates
Effective width

[Reis and Camotim, 2001]

Take the integral along the compressed 
edges,

@
B*/#

*/#

𝜎! 𝑦 𝑑𝑦 = d𝜎𝑏 = 𝜎,)!𝑏DEE

with, 𝜎,)! = 2d𝜎 − 𝜎<=
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Post buckling of plates
Effective width

[Hirt et al., 2011]

Take the integral along the compressed 
edges,

@
B*/#

*/#

𝜎! 𝑦 𝑑𝑦 = d𝜎𝑏 = 𝜎,)!𝑏DEE

with, 𝜎,)! = 2d𝜎 − 𝜎<=
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THÉORIE DE LA STABILITÉ

 

• Le domaine élastique, en-dessous de la charge critique, dans lequel la distribution des contraintes
peut être admise uniforme.

• Le domaine post-critique, au-delà de la charge critique, dans lequel on observe un dérobement
progressif de la plaque hors de son plan et où les contraintes n’ont plus une répartition uniforme
(fig. 12.16). Les fibres situées près des bords longitudinaux sont davantage sollicitées que les
fibres médianes. La raison de cette différence est due au fait que les fibres comprimées se
déplacent hors du plan. Près des appuis, la déformation spécifique des fibres est plus grande que
dans la zone médiane, car la déformation de la plaque est empêchée hors de son plan.

Pour le dimensionnement, on peut remplacer le diagramme des contraintes non uniforme par un dia-
gramme uniforme dont la contrainte est égale à la contrainte maximale agissant sur les bords
(fig. 12.16). Cette répartition uniforme des contraintes n’est cependant à considérer que sur une largeur
réduite 

 

b

 

eff

 

, appelée 

 

largeur efficace

 

, définie de telle sorte que:

(12.15)

Si l’on désire augmenter la résistance d’une plaque au moyen d’un raidisseur, ce dernier ne pourra pas
être dimensionné selon la théorie linéaire du voilement élastique décrite par le paragraphe 12.2.3. Le lec-
teur est renvoyé au TGC vol. 12 pour plus d’informations à propos du dimensionnement des raidisseurs. 

 

12.3.2  Largeur efficace et élancement limite

 

Le calcul de la largeur efficace 

 

b

 

eff

 

 a été abordé pour la première fois par von Karman [12.8]. Sa
théorie est basée sur l’hypothèse que la contrainte critique de voilement élastique 

 

σ

 

cr,P

 

 d’une plaque fic-
tive de largeur 

 

b

 

eff

 

 est au plus égale à 

 

σ

 

max

 

:

(12.16)

D’où l’on peut tirer la largeur efficace:

beff
σx y( ) yd∫

σmax
------------------------=

x

y

σmax

beff

2

beff

2σmax

a
b

− Répartition admise
des contraintes σx

Répartition effective
des contraintes σx

Conditions de bord et 
déformation de la plaque

−

−

Fig. 12.16  Largeur efficace beff d’une plaque comprimée.

σcr,P,eff k π2E
12 1 ν2–( )
------------------------- t

beff
-------- 

  2
k π2E
12 1 ν2–( )
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b
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  2 b
beff
-------- 

  2
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beff
-------- 
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σmax= = = =

 

13 ¥ Chap12  Page 430  Monday, January 17, 2011  11:21 AM

𝑏DEE
𝑏

=
d𝜎

2 d𝜎 − 𝜎<=
=

1

2 − 𝜎<=d𝜎
(17)
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𝑏DEE
𝑏

=
1

2 − 1
𝜆̅F#

(20)

Let’s consider a reduced plate slenderness  
defined as,

𝜆̅F =
𝑓"
𝜎<=

(18)

Post buckling theory suggests, from (17),

0.0 0.5 1.0 1.5 2.0 2.5 3.0

∏̄p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b e
f

f
/b

Limit Point Average

Post Buck. Theory

von Karman

Winter

SIA263

@
B*/#

*/#

𝜎! 𝑦 𝑑𝑦 = 𝜎<=𝑏 = 𝑓"𝑏DEE

Limit point average criterion,

𝑏DEE
𝑏

=
1
𝜆̅F#

(19)



41Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa  
Civil-369-“Structural Stability” : Plate Buckling

RESSLab
Resilient Steel Structures Laboratory

Post buckling of plates
Effective width – in practice

Empirically, a number of authors propose 
expressions for effective widths:

Let’s consider a reduced plate slenderness  
defined as,

𝜆̅F =
𝑓"
𝜎<=

(18)

• Winter [1947]:

𝑏DEE
𝑏

=
1
𝜆̅F

1 −
0.22
𝜆̅F

(22)

• von Karman et al. [1932] :

𝑏DEE
𝑏

=
1
𝜆̅F

(21)
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• SIA263-[SIA,2013] :

𝑏DEE
𝑏

=
0.9
𝜆̅F

(23)
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• SIA263-[SIA,2013] – the box section exception (§5.6.4.3)  :

𝑏DEE
𝑏

=
𝜆̅F − 0.055 3 + 𝜓

𝜆̅F#

𝑏DEE
𝑏

=
𝜆̅F − 0.188

𝜆̅F#

For panels simply supported at both ends (A),

For panels simply supported at one ends  (B),

 

  VOILEMENT
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respecter certaines conditions, qui dépendent du type de calcul effectué (§ 2.5.3). Les valeurs des élan-
cements ont été déterminés à partir des limites suivantes:

•  

 

≤

 

 0.9 pour un profilé de classe 3 (calcul EE)
•  

 

≤

 

 0.75 pour un profilé de classe 2 (calcul EP)
•  

 

≤

 

 0.6 pour un profilé de classe 1 (calcul PP). 
Les élancements limites définis pour les classes des profilés se calculent avec un changement dans la

définition de la largeur 

 

b

 

. Celle-ci correspond soit à la distance mesurée à partir des pieds des cordons de
soudure ou des congés, soit à la distance entre faces intérieures (voir SIA 263, tableau 5a et 5b).

L’Eurocode 3, partie 1-5 (§ 4.4) définit la largeur efficace d’une paroi comprimée sur une base simi-
laire.

Les principes utilisés pour les plaques comprimées peuvent être étendus aux 

 

plaques fléchies

 

. Pour
ces dernières, la norme SIA 263 propose la formule (12.24), ainsi que la formule suivante, reprise de
l’Eurocode 3, partie 1-5 (pour des plaques dont les deux côtés non chargés sont appuyés):

(12.26)

 

ψ

 

: rapport des contraintes, 

 

σ

 

inf

 

/

 

σ

 

sup

 

 avec leur signe, qui sollicitent la plaque

Notons que lorsque 

 

ψ

 

 = 1.0, la formule (12.26) devient identique à (12.23). Signalons aussi que
(12.23) et (12.26) se différencient de (12.24) par le fait qu’elles considèrent les imperfections géométri-
ques et les contraintes résiduelles [12.10].

En ce qui concerne les 

 

plaques cisaillées

 

, un comportement post-critique existe comme pour les pla-
ques comprimées et fléchies. Cependant, on utilise des modèles propres à ce type de sollicitation
(Basler, Cardiff) qui sont expliqués dans le TGC vol. 12.

 

Exemple 12.3  Largeur efficace d’une semelle comprimée

 

Calculer la largeur efficace 

 

b

 

eff

 

 de la semelle comprimée (FLB 600 · 8) d’une poutre en caisson rectan-
gulaire en acier S 355 sollicitée par un moment de flexion (fig. 12.18).

On peut étudier la semelle comme un panneau ayant une largeur 

 

b

 

 égale à la largeur entre les axes des
âmes du caisson et une longueur correspondant à la distance entre les cloques de voilement. En admettant
que les bords de la plaque sont articulés sur le bord des âmes, le coefficient de voilement vaut 

 

k

 

 = 4.0
(tab. 12.7). On peut ainsi déterminer, avec (12.8) et (12.7 b), la contrainte critique de voilement élastique:

λP
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beff
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------ 1 0.055 3 ψ+( )
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--------------------------------–=
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Conditions de bord 
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+

−

b 

FLB 600  8 ·

b  = 500 

Fig. 12.18  Poutre en caisson soumise à un moment de flexion.
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POST-BUCKLING STRENGTH OF PLATES IN COMPRESSION 
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3.3 Comparison with Experimental Results 
Schuman and Back (1930) conducted experiments on individual rectangular flat plates 
of four different metals, i.e. Duralumin, Stainless Iron, Monel Metal and Nickel. 
Equation (3.12) is compared to these tests in Figure 3.10. The figure also shows the 
elastic solution, cf. Equation (3.8), Winter’s solution cf. Equation (3.14) and the 
solution by Kármán et al. cf. Equation (3.15). From the figure it appears that all 
formulae, except the elastic solution, overestimate the post-buckling strength, in some 
cases considerably. However, it is generally accepted that these experiments are 
unreliable because of the dubious V-groove supports. Hence, these experiments are 
not treated further here. 
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Figure 3.10: be/b as a function of O, theories compared with tests by Schuman and Back 

 
In Figure 3.11, the theories are compared with more reliable experiments. 
The U-beams and I-beams tests made by Winter (1947) both consisted of specimens 
made by bolting or welding U-sections together. Winter also used the tests made by 
Sechler (Winter 1947) to verify his method. The specimens in these tests were single 
plates, unconnected to any adjacent elements. These tests have been shown in Figure 
3.11. Furthermore, newer tests by Moxham (1971) are included in the figure. He 
conducted three test series, denoted Welded, Unwelded and Short in the following. 
Also, in these tests, all specimens were separate plates. He developed a new test rig, 
where he could establish the simple support conditions in a reliable way. In the 
Welded series, the longitudinal edges were heat treated in order to induce residual 
stresses. The Short series was conducted on specimens where the loaded edges were 
slightly longer than the unloaded edges (length-to-width ratio: 0.875). The theoretical 
effective width of the short specimens is calculated by Equations (4.9) and (4.10) in 
PART IV. The specimens in the Welded and Unwelded series all had a length-to-width 
ratio of 4.0. 
The data for all experiments may be found in Appendix I. 

PART III 
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Figure 3.11: be/b as a function of O, theories and tests 
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Figure 3.12: Theory versus tests 

 
The agreement with all the tests seems to be very good. In Figure 3.12, the correlation 
between the present theory and tests is shown in a more illustrative way. For all tests, 
a mean value of 1.088 and a standard deviation of 16.9 % are obtained. For the 
separate test series, the following results are obtained: 

x Sechler: Mean 1.202, standard deviation 17.9 %. 
x Winter, U-beams: Mean 1.098, standard deviation 18.9 %. 
x Winter, I-beams: Mean 1.019, standard deviation 4.6 %. 
x Moxham, Welded: Mean 1.097, standard deviation 12.2 %. 
x Moxham, Unwelded: Mean 0.931, standard deviation 5.8 %. 
x Moxham, Short: Mean 0.946, standard deviation 6.4 %. 

It may be seen that the tests by Sechler deviate somewhat from the theory, especially 
for be/b close to unity. One explanation for this might be initial imperfections, see 
Chapter 5. Moreover, he may have applied the same doubtful V-groove supports as 
Schuman and Back (1930). Without Sechler’s tests, a mean value of 1.045 and a 
standard deviation of 14.4 % are obtained. 

[Hansen., 2006] [Hansen., 2006]
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𝜎<= = 𝑘 ]
𝜋#𝐸

12 1 − 𝜈# 𝑏
𝑡

# (12)

𝜆̅F =
𝑓"
𝜎<=

(18)

Let’s take our previous definitions,

And let’s put them as a function of b/t: 

𝑏
𝑡
=

𝜆̅F#

𝑓"
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

Section classification are typically made with 
respect to a reference material (S235), and so the 
above expression can be re-written as,

𝑏
𝑡
=

𝜆̅F#

235
235
𝑓"

] 𝑘 ]
𝜋#𝐸

12 1 − 𝜈#
=

=
235
𝑓"

𝜆̅F#

235
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

=

= 𝜀
𝜆̅F#

235
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

(24)

with, 𝜀 =
235
𝑓"
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𝑏
𝑡
= 𝜀

𝜆̅F#

235
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

(24)

Going from class 4 to class 3 cross-sections represents a threshold where you can 
consider the total plate area as being effective in carrying axial load.
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4.5.3.4          Dans le cas du dimensionnement de poutres caissons, l’approximation selon le chiffre 4.5.3.3 est trop
imprécise. Le facteur de réduction r doit être calculé selon le chiffre 5.6.4.3.

4.5.3.5          Le facteur de réduction r peut aussi être calculé selon SN EN 1993-1-1.

4.5.3.6          Pour les contraintes critiques de voilement élastique scr,P d’un élément plan sollicité par des contraintes
 normales, la théorie linéaire du voilement pour matériaux élastiques donne des formules suivantes:

                      scr,P = k sE                                                                                                                                                   (12)

                    où              sE =                               ª 0,9 E

4.5.3.7          Les coefficients de voilement k dépendent du rapport de la longueur a de l’élément plan et de sa largeur b,
a = a/b, des conditions d’appui sur les éléments adjacents et du mode de sollicitation. Pour déterminer la
largeur efficace beff, il faut toujours utiliser la plus petite des valeurs du coefficient de voilement kmin. Celles-
ci sont indiquées au tableau 9 pour différentes conditions de bord et sollicitations. Tant que des conditions
plus favorables ne sont pas prouvées, il faut admettre des bords simplement appuyés ou libres.

4.5.3.8          Si la résistance ultime d’une barre est atteinte à une contrainte de compression sK ou sD < fy (par ex. par
flambage ou déversement), on peut alors utiliser la valeur de la contrainte   fy sK ou    fy sD au lieu de la limite
d’élasticité fy pour déterminer la largeur efficace.

4.5.3.9          Les éléments plans, dont les bords parallèles à la direction des efforts sont libres, sont considérés comme
des barres comprimées.

                    Tableau 9: Sélection du coefficient de voilement kmin
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     p2E           t   2

12 (1 – n 2)      b

                      t   2

                      b

                                                                                       Conditions de bord

y

                                1         4,00        6,97          5,41          5,41          1,28       1,28           0,426       0,426

                                0         7,81      13,54        11,73          9,54          5,91       1,608         1,702       0,567

                              –1       23,90      39,52        39,52        23,94                         2,134                         0,851

                                     kmin ª

                                     valable pour                et y ≥ –1,2

16

(1 + y)2 + 0,112 (1–y)2 + (1+y)
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Tableau 5a: Critères d’élancement pour éléments plans appuyés aux deux bords

Tableau 5b: Critères d’élancement pour éléments plans en porte-à-faux

Panneau

  Géométrie               Mode de sollicitation                                             Elancement limite b/t maximal

                                                                                        Classe de section 1  Classe de section 2  Classe de section 3

                                  Compres-
                                                  33 e                            38 e                            42 e                                     sion

                                     Flexion
                                  simple                                                        

72 e                            83 e                           124 e

                                  
Compres-

                                                     
                                                                   

sion avec

                                  
flexion

                                  
y > –1

                                                     a 0 0,5                      a 0 0,5                             
                                  

(Comp. +)

                                  
Traction

                                                         
                                                                   

avec

                                  
flexion

                                  
y £ –1

                                                     a 9 0,5                      a 9 0,5                 62e (1–y) –y
                                  

(Comp. +)

  Cas particulier                            Flexion et/ou                     
9 50e2                9 70e2                  9 90e2

  Tubes                                          compression

  Géométrie               Sollicitation                                                            Elancement limite b/t maximal

                                                                                        
Classe de section 1 Classe de section 2  Classe de section 3

                                  Compres-
                                                    9e                                 10e                               14e                                  sion

                                  Compres-
                                  sion avec                                                                                                                         21e k1                                  flexion, 
                                  bord libre 
                                  comprimé                                            

                                  Compres-
                                  sion avec                                                                                                                         21e k2                                  flexion, 
                                  bord libre 
                                  tendu

  Coefficients de voilement k1 et k2:  k1 = 0,57–0,21y + 0,07y2   pour 1 0 y 0 –3
  (y : rapport des contraintes)            k2 = 0,578/(0,34 +y)           pour 1 0 y 0 0             (compression positive)
                                                          k2 = 1,7– 5y + 17,1y2         pour 0 0 y 0 –1

  Facteur de réduction pour les aciers à plus haute limite d’élasticité:    S 235: e = 1,0
                                                                                                                 S 275: e = 0,924
                                                  e =                                                          S 355: e = 0,814
                                                                                                                 S 460: e = 0,715

Panneau:

  235
    fy

bo
rd

 te
nu

bo
rd

lib
re

    396 e
  13a – 1

    456e
  13a – 1

     36e
       a

      9e
       a

     10e
       a

     10e
      a1,5

      9e
      a1,5

    41,5e
       a

 D
  t

 D
  t

 D
  t

        42 e
 0,67 + 0,33y

𝑓" = 235 𝑀𝑃𝑎
𝐸 = 210𝐺𝑃𝑎
𝜈 = 0.3
𝜆̅F = 0.75
𝑘 = 4.0

𝑏
𝑡
= 42.63

From Eq. 24,

SIA263 - [SIA, 2013]
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4.5.3.4          Dans le cas du dimensionnement de poutres caissons, l’approximation selon le chiffre 4.5.3.3 est trop
imprécise. Le facteur de réduction r doit être calculé selon le chiffre 5.6.4.3.

4.5.3.5          Le facteur de réduction r peut aussi être calculé selon SN EN 1993-1-1.

4.5.3.6          Pour les contraintes critiques de voilement élastique scr,P d’un élément plan sollicité par des contraintes
 normales, la théorie linéaire du voilement pour matériaux élastiques donne des formules suivantes:

                      scr,P = k sE                                                                                                                                                   (12)

                    où              sE =                               ª 0,9 E

4.5.3.7          Les coefficients de voilement k dépendent du rapport de la longueur a de l’élément plan et de sa largeur b,
a = a/b, des conditions d’appui sur les éléments adjacents et du mode de sollicitation. Pour déterminer la
largeur efficace beff, il faut toujours utiliser la plus petite des valeurs du coefficient de voilement kmin. Celles-
ci sont indiquées au tableau 9 pour différentes conditions de bord et sollicitations. Tant que des conditions
plus favorables ne sont pas prouvées, il faut admettre des bords simplement appuyés ou libres.

4.5.3.8          Si la résistance ultime d’une barre est atteinte à une contrainte de compression sK ou sD < fy (par ex. par
flambage ou déversement), on peut alors utiliser la valeur de la contrainte   fy sK ou    fy sD au lieu de la limite
d’élasticité fy pour déterminer la largeur efficace.

4.5.3.9          Les éléments plans, dont les bords parallèles à la direction des efforts sont libres, sont considérés comme
des barres comprimées.

                    Tableau 9: Sélection du coefficient de voilement kmin
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     p2E           t   2

12 (1 – n 2)      b

                      t   2

                      b

                                                                                       Conditions de bord

y

                                1         4,00        6,97          5,41          5,41          1,28       1,28           0,426       0,426

                                0         7,81      13,54        11,73          9,54          5,91       1,608         1,702       0,567

                              –1       23,90      39,52        39,52        23,94                         2,134                         0,851

                                     kmin ª

                                     valable pour                et y ≥ –1,2

16

(1 + y)2 + 0,112 (1–y)2 + (1+y)

𝑓" = 235 𝑀𝑃𝑎
𝐸 = 210𝐺𝑃𝑎
𝜈 = 0.3
𝜆̅F = 0.75
𝑘 = 0.426

𝑏
𝑡
= 13.9

From Eq. 24,

SIA263 - [SIA, 2013]
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Tableau 5a: Critères d’élancement pour éléments plans appuyés aux deux bords

Tableau 5b: Critères d’élancement pour éléments plans en porte-à-faux

Panneau

  Géométrie               Mode de sollicitation                                             Elancement limite b/t maximal

                                                                                        Classe de section 1  Classe de section 2  Classe de section 3

                                  Compres-
                                                  33 e                            38 e                            42 e                                     sion

                                     Flexion
                                  simple                                                        

72 e                            83 e                           124 e

                                  
Compres-

                                                     
                                                                   

sion avec

                                  
flexion

                                  
y > –1

                                                     a 0 0,5                      a 0 0,5                             
                                  

(Comp. +)

                                  
Traction

                                                         
                                                                   

avec

                                  
flexion

                                  
y £ –1

                                                     a 9 0,5                      a 9 0,5                 62e (1–y) –y
                                  

(Comp. +)

  Cas particulier                            Flexion et/ou                     
9 50e2                9 70e2                  9 90e2

  Tubes                                          compression

  Géométrie               Sollicitation                                                            Elancement limite b/t maximal

                                                                                        
Classe de section 1 Classe de section 2  Classe de section 3

                                  Compres-
                                                    9e                                 10e                               14e                                  sion

                                  Compres-
                                  sion avec                                                                                                                         21e k1                                  flexion, 
                                  bord libre 
                                  comprimé                                            

                                  Compres-
                                  sion avec                                                                                                                         21e k2                                  flexion, 
                                  bord libre 
                                  tendu

  Coefficients de voilement k1 et k2:  k1 = 0,57–0,21y + 0,07y2   pour 1 0 y 0 –3
  (y : rapport des contraintes)            k2 = 0,578/(0,34 +y)           pour 1 0 y 0 0             (compression positive)
                                                          k2 = 1,7– 5y + 17,1y2         pour 0 0 y 0 –1

  Facteur de réduction pour les aciers à plus haute limite d’élasticité:    S 235: e = 1,0
                                                                                                                 S 275: e = 0,924
                                                  e =                                                          S 355: e = 0,814
                                                                                                                 S 460: e = 0,715

Panneau:
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    456e
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       a
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4.5.3.4          Dans le cas du dimensionnement de poutres caissons, l’approximation selon le chiffre 4.5.3.3 est trop
imprécise. Le facteur de réduction r doit être calculé selon le chiffre 5.6.4.3.

4.5.3.5          Le facteur de réduction r peut aussi être calculé selon SN EN 1993-1-1.

4.5.3.6          Pour les contraintes critiques de voilement élastique scr,P d’un élément plan sollicité par des contraintes
 normales, la théorie linéaire du voilement pour matériaux élastiques donne des formules suivantes:

                      scr,P = k sE                                                                                                                                                   (12)

                    où              sE =                               ª 0,9 E

4.5.3.7          Les coefficients de voilement k dépendent du rapport de la longueur a de l’élément plan et de sa largeur b,
a = a/b, des conditions d’appui sur les éléments adjacents et du mode de sollicitation. Pour déterminer la
largeur efficace beff, il faut toujours utiliser la plus petite des valeurs du coefficient de voilement kmin. Celles-
ci sont indiquées au tableau 9 pour différentes conditions de bord et sollicitations. Tant que des conditions
plus favorables ne sont pas prouvées, il faut admettre des bords simplement appuyés ou libres.

4.5.3.8          Si la résistance ultime d’une barre est atteinte à une contrainte de compression sK ou sD < fy (par ex. par
flambage ou déversement), on peut alors utiliser la valeur de la contrainte   fy sK ou    fy sD au lieu de la limite
d’élasticité fy pour déterminer la largeur efficace.

4.5.3.9          Les éléments plans, dont les bords parallèles à la direction des efforts sont libres, sont considérés comme
des barres comprimées.

                    Tableau 9: Sélection du coefficient de voilement kmin
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     p2E           t   2

12 (1 – n 2)      b

                      t   2

                      b

                                                                                       Conditions de bord

y

                                1         4,00        6,97          5,41          5,41          1,28       1,28           0,426       0,426

                                0         7,81      13,54        11,73          9,54          5,91       1,608         1,702       0,567

                              –1       23,90      39,52        39,52        23,94                         2,134                         0,851

                                     kmin ª

                                     valable pour                et y ≥ –1,2

16

(1 + y)2 + 0,112 (1–y)2 + (1+y)

𝑓" = 235 𝑀𝑃𝑎
𝐸 = 210𝐺𝑃𝑎
𝜈 = 0.3
𝜆̅F = 0.75
𝑘 = 0.851

𝑏
𝑡
= 19.66

From Eq. 24,

SIA263 - [SIA, 2013]
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Tableau 5a: Critères d’élancement pour éléments plans appuyés aux deux bords

Tableau 5b: Critères d’élancement pour éléments plans en porte-à-faux

Panneau

  Géométrie               Mode de sollicitation                                             Elancement limite b/t maximal

                                                                                        Classe de section 1  Classe de section 2  Classe de section 3

                                  Compres-
                                                  33 e                            38 e                            42 e                                     sion

                                     Flexion
                                  simple                                                        

72 e                            83 e                           124 e

                                  
Compres-

                                                     
                                                                   

sion avec

                                  
flexion

                                  
y > –1

                                                     a 0 0,5                      a 0 0,5                             
                                  

(Comp. +)

                                  
Traction

                                                         
                                                                   

avec

                                  
flexion

                                  
y £ –1

                                                     a 9 0,5                      a 9 0,5                 62e (1–y) –y
                                  

(Comp. +)

  Cas particulier                            Flexion et/ou                     
9 50e2                9 70e2                  9 90e2

  Tubes                                          compression

  Géométrie               Sollicitation                                                            Elancement limite b/t maximal

                                                                                        
Classe de section 1 Classe de section 2  Classe de section 3

                                  Compres-
                                                    9e                                 10e                               14e                                  sion

                                  Compres-
                                  sion avec                                                                                                                         21e k1                                  flexion, 
                                  bord libre 
                                  comprimé                                            

                                  Compres-
                                  sion avec                                                                                                                         21e k2                                  flexion, 
                                  bord libre 
                                  tendu

  Coefficients de voilement k1 et k2:  k1 = 0,57–0,21y + 0,07y2   pour 1 0 y 0 –3
  (y : rapport des contraintes)            k2 = 0,578/(0,34 +y)           pour 1 0 y 0 0             (compression positive)
                                                          k2 = 1,7– 5y + 17,1y2         pour 0 0 y 0 –1

  Facteur de réduction pour les aciers à plus haute limite d’élasticité:    S 235: e = 1,0
                                                                                                                 S 275: e = 0,924
                                                  e =                                                          S 355: e = 0,814
                                                                                                                 S 460: e = 0,715

Panneau:
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21 ∗ 0.57 − 0.21 ∗ −1 + 0.07 $.& = 19.36
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𝑏
𝑡
= 𝜀

𝜆̅F#

235
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

(24)

Going from class 4 to class 3 cross-sections represents a threshold where you can 
consider the total plate area as being effective in carrying axial load.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

∏̄p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b e
f

f
/b

Limit Point Average

Post Buck. Theory

von Karman

Winter

SIA263

However, plate buckling is not the only 
criterion influencing section classification. 
Rotation capacity of members also play a 
role and so the 𝜆̅F = 0.75 is to be taken 
more as an indicative value rather than a 
hard limit for class 3 sections. 
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  VOILEMENT 423

Exemple 12.1  Influence d’un raidisseur sur la contrainte critique de voilement élastique
Soit une plaque articulée sur ses quatre bords, sollicitée dans une direction à la compression pure. Les

dimensions de la plaque sont a = 2400 mm, b = 1200 mm et t = 10 mm (fig. 12.9).
Déterminer la contrainte critique de voilement élastique de la plaque pour les trois cas suivants: plaque

non raidie, plaque raidie avec un raidisseur rigide, plaque raidie avec un raidisseur souple.

• Plaque non raidie (voilement en une seule demi-onde selon y)
La contrainte de référence selon Euler vaut, selon (12.7 b):

σE ≈ 0.9 · E  = 0.9 · 210 000 N/mm2  = 13 N/mm2

Pour une plaque articulée sur ses quatre bords et sollicitée en compression pure, le coefficient de voile-
ment vaut k = 4.0 (tab. 12.7). La contrainte critique de voilement élastique vaut ainsi (12.8):
σcr,P = k σE = 4.0 · 13 N/mm2 = 52 N/mm2

Raidisseur rigide

b
2

Coupe

Déformée

Raidisseur souple

b
2

x

y
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b σx

 Plaque non raidie

b

σx

t

Fig. 12.8  Influence d’un raidisseur sur le mode de voilement.
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  VOILEMENT 425

Afin de créer un appui linéaire, un raidisseur doit posséder une certaine rigidité. En supposant que
les raidisseurs sont disposés symétriquement par rapport au plan de la plaque (ils sont de ce fait soumis
à une compression centrée et à un moment de flexion dû à la déformation hors du plan de la plaque), leur
rigidité peut être calculée en ajoutant dans l’équation différentielle (12.1) des termes tenant compte de
l’effet du raidisseur [12.7]. L’intégration de cette nouvelle équation différentielle permet alors, en tenant
compte des conditions aux limites (déformation hors du plan nulle sur les bords et au droit du raidis-
seur), d’obtenir la valeur de la rigidité nécessaire du raidisseur pour créer un appui linéaire.

En définissant la rigidité relative χs d’un raidisseur comme étant le rapport des rigidités du raidisseur
et de la plaque (l’indice s provient de l’allemand Steife et de l’anglais Stiffener)

en général: (12.12a)

pour l’acier: (12.12 b)

Is : inertie du raidisseur par rapport au plan moyen de la plaque

on peut déterminer la variation du coefficient de voilement k en fonction de la rigidité relative χs
(fig. 12.11). Le raidisseur représente un appui fixe pour la plaque lorsque sa rigidité relative est égale ou
supérieure à la rigidité relative nécessaire χs,néc:

χs  ≥  χs,néc (12.13)

χs,néc : rigidité relative nécessaire d’un raidisseur pour qu’il constitue un appui fixe

Pour toutes les valeurs où la condition (12.13) n’est pas satisfaite (χs < χs,néc), le raidisseur ne crée
qu’un appui élastique, voire même aucun appui.

χs
EIs
Db
--------=

χs
10.92Is
bt3

------------------=

k

kmax

χs,néc

χs

Fig. 12.11  Variation du coefficient de voilement en fonction de la rigidité relative d’un raidisseur.

13 ¥ Chap12  Page 425  Wednesday, February 1, 2006  10:47 AM

req.

𝜒G =
𝐸𝐼G
𝐷𝑏

(25)

Let’s define the ratio between the 
stiffener and the plate bending 
stiffnesses as 𝜒G,

with,

𝐼G - the stiffener moment of 
inertia as measured from the 
plate’s middle plane

𝐷 – the plate’s bending 
stiffness as defined in slide 20
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  VOILEMENT 425

Afin de créer un appui linéaire, un raidisseur doit posséder une certaine rigidité. En supposant que
les raidisseurs sont disposés symétriquement par rapport au plan de la plaque (ils sont de ce fait soumis
à une compression centrée et à un moment de flexion dû à la déformation hors du plan de la plaque), leur
rigidité peut être calculée en ajoutant dans l’équation différentielle (12.1) des termes tenant compte de
l’effet du raidisseur [12.7]. L’intégration de cette nouvelle équation différentielle permet alors, en tenant
compte des conditions aux limites (déformation hors du plan nulle sur les bords et au droit du raidis-
seur), d’obtenir la valeur de la rigidité nécessaire du raidisseur pour créer un appui linéaire.

En définissant la rigidité relative χs d’un raidisseur comme étant le rapport des rigidités du raidisseur
et de la plaque (l’indice s provient de l’allemand Steife et de l’anglais Stiffener)

en général: (12.12a)

pour l’acier: (12.12 b)

Is : inertie du raidisseur par rapport au plan moyen de la plaque

on peut déterminer la variation du coefficient de voilement k en fonction de la rigidité relative χs
(fig. 12.11). Le raidisseur représente un appui fixe pour la plaque lorsque sa rigidité relative est égale ou
supérieure à la rigidité relative nécessaire χs,néc:

χs  ≥  χs,néc (12.13)

χs,néc : rigidité relative nécessaire d’un raidisseur pour qu’il constitue un appui fixe

Pour toutes les valeurs où la condition (12.13) n’est pas satisfaite (χs < χs,néc), le raidisseur ne crée
qu’un appui élastique, voire même aucun appui.

χs
EIs
Db
--------=

χs
10.92Is
bt3

------------------=

k

kmax

χs,néc

χs

Fig. 12.11  Variation du coefficient de voilement en fonction de la rigidité relative d’un raidisseur.
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req.

𝜒G ≥ 𝜒G,=DH (26)

Fixity is reached when 𝜒G is greater than
a a required threshold we call 𝜒G,=DH

Determining the required stiffness ratio 
depends on a number of variables, namely:

1. The plate length and width ratio 
𝑎/𝑏

2. The relative area of the stiffener 
and the plate - 𝛿G

𝛿G =
𝐴G
𝑏𝑡

(27)
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tables

  VOILEMENT 427

Tableau 12.13  Valeurs de la rigidité relative nécessaire χs,néc pour différents cas.
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THÉORIE DE LA STABILITÉ

 

• Plaque raidie avec un raidisseur rigide (voilement en deux demi-ondes selon 

 

y

 

)
De façon analogue au cas de la plaque non raidie, on obtient, avec 

 

b

 

 = 600 mm et 

 

k

 

 = 4.0:

 

σ

 

E

 

 

 

≈

 

 0.9 · E  = 189 000 N/mm

 

2

 

 = 52.5 N/mm

 

2

 

σ

 

cr,P

 

 = 

 

k

 

 

 

σ

 

E

 

 = 4.0 · 52.5 N/mm

 

2

 

 = 210 N/mm

 

2

 

• Plaque raidie avec un raidisseur souple
Selon la rigidité du raidisseur on aura:
52 N/mm

 

2

 

 

 

≤

 

 

 

σ

 

cr,P

 

 

 

≤

 

 210 N/mm

 

2

 

Cet exemple montre que le fait de créer un appui linéaire au moyen d’un raidisseur permet, suivant sa
rigidité, de quadrupler la valeur de la contrainte critique de voilement élastique.

 

Position optimale et rigidité nécessaire d’un raidisseur

 

Pour que l’efficacité du raidisseur soit maximale, celui-ci doit être placé au droit du sommet de la
cloque de la plaque non raidie, afin de créer une nouvelle ligne nodale de la déformée de la plaque
(ligne où la déformation de la plaque hors de son plan est nulle). Le voilement est ainsi forcé de se
faire en deux demi-ondes. Pour une plaque articulée simplement comprimée (fig. 12.8), le raidisseur
doit donc être placé à une distance 

 

b

 

/2 du bord de la plaque. Si l’on considère le voilement en trois
demi-ondes, on doit disposer deux raidisseurs positionnés au tiers de la largeur 

 

b

 

. La figure 12.10
montre la position optimale des raidisseurs pour trois cas de sollicitation d’une plaque simplement
appuyée sur ses quatre bords.

t
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Fig. 12.10  Position optimale des raidisseurs sur une plaque en fonction du type de sollicitation.
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POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs

Wc eff,
Ieff

hc e+
---------------=

hc e h f 2⁄≥+

λD 0.4≤

σD f y⋅

h

z

hc,1,eff
2

  σ max,1

hc,1,eff
2

hc,2,eff
2+

+

-
hc,2

hc,1 -

+
tw

  σmin,1

σmin,2
  σmax,2

hc,2,eff
2

(a) Section complète (b) Section réduite efficace

fy e

=
  σsup,eff

  σ inf,eff

b beff

Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.Gross section Effective section
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Steps in calculating moment resistance of longitudinally stiffened class 4 cross-sections:

1. Ensure that the stiffener is sufficient rigid so as to consider it a laterally restrained 
boundary;

2. Determine effective widths for each element in the cross section (slenderness 
checks);

3. Calculate effective geometric properties for the cross section as a whole;

4. Check if you need to re-compute external loading with respect to new neutral axis 
(i.e. eccentricity + axial load induces an additional moment in the cross-section);

5. Perform code verifications;
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POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs

Wc eff,
Ieff

hc e+
---------------=

hc e h f 2⁄≥+

λD 0.4≤

σD f y⋅

h

z

hc,1,eff
2

  σ max,1

hc,1,eff
2

hc,2,eff
2+

+

-
hc,2

hc,1 -

+
tw

  σmin,1

σmin,2
  σmax,2

hc,2,eff
2

(a) Section complète (b) Section réduite efficace

fy e

=
  σsup,eff

  σ inf,eff

b beff

Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.TGC 12 - [Lebet and Hirt, 2009]

The TGC 12 discusses two criteria to design longitudinal 
stiffeners,

1. Imposing a minimum required relative stiffness - 𝜒G
2. Design the stiffener as an equivalent column whose 

resistance is greater than that required by the 
moment action - 𝑀?&

In approach 1. for bridge sections it is recommended that,

𝜒G ≥ 𝑚 𝜒G,=DH (28)

With, 
𝑚 =5 for open-section stiffeners (no torsional stiffness)

𝑚 =3 for closed-section stiffeners (torsional stiffness)
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The TGC 12 discusses two criteria to design longitudinal 
stiffeners,

1. Imposing a minimum required relative stiffness - 𝜒G
2. Design the stiffener as an equivalent column whose 

resistance is greater than that required by the 
moment action - 𝑀?&

In approach 2.

𝑁?& = 𝜎G,?&𝐴G,DEE ≤ 𝑁I,J& =
𝜒I𝑓"𝐴G,DEE

𝛾)
(29)

𝐴G,DEE = 𝐴G +
ℎ<,0,DEE
2

𝑡% +
ℎ<,#,DEE
2

𝑡%

POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.
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𝑁?& = 𝜎G,?&𝐴G,DEE ≤ 𝑁I,J& =
𝜒I𝑓"𝐴G,DEE

𝛾)
(29)

𝐴G,DEE = 𝐴G +
ℎ<,0,DEE
2

𝑡% +
ℎ<,#,DEE
2

𝑡%

POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.

- Stiffener area
With,

- Equivalent column area

- Equivalent column buckling reduction factor          
(seen in previous lectures) with imperfection 
factors 𝛼I = 0.49 for closed-section stiffeners 
and 𝛼I = 0.64 for open-section stiffeners. 
Column length 𝑙I taken between rigid vertical 
stiffeners

𝐴G

𝐴G,DEE

𝜒I

- Stiffener stress𝜎G,?&
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POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.

TGC 12 - [Lebet and Hirt, 2009]

Before calculating the effective widths for longitudinally stiffened plates, it is important to 
mention when these situations arise. Such cases usually happen when the web thickness 
is small (webs are too slender). This is usually assessed by two criteria:

ℎE
𝑡%

≤ 0.40
𝐸
𝑓"
(30)

1 - Web Euler buckling: If Eq. 30 is not satisfied then add a stiffener such that,
ℎE
2 + ℎ<,#
𝑡%

≤ 0.40
𝐸
𝑓"
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avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Before calculating the effective widths for longitudinally stiffened plates, it is important to 
mention when these situations arise. Such cases usually happen when the web thickness 
is small (webs are too slender). This is usually assessed by two criteria:

ℎ<,0 + ℎ<,#
𝑡%

=
ℎ<
𝑡%

≤ 100 (31)

2 - Web breathing (fatigue): If Eq. 31 is not satisfied then add a stiffener such that,

ℎ<,0
𝑡%

≤ 100
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L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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𝑏
𝑡
=

𝜆̅F#

𝑓"
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

(24)

Let’s use for the effective width the SIA263 
criterion:

From Eq. (24),

𝑏DEE
𝑏

=
0.9
𝜆̅F

(23)

Combining both Equations,

𝑏DEE = 0.9 ]
1
𝑓"
] 𝑘 ]

𝜋#𝐸
12 1 − 𝜈#

] 𝑡 (32)
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avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Now let’s try to apply Eq. 32 to our web panel. Let’s at the top patch (1),

𝑏DEE = 0.9 ] 0
E#
] 𝑘 ] K"?

0# 0BL"
] 𝑡 (32) ⟹ ℎ<,0,DEE = 0.86 𝑘 ] ?

E#
] 𝑡%

With 𝑘 from SIA263’s table in slide 29,

𝑘 =
16

1 + 𝜓 # + 0.112 1 − 𝜓 # + 1 + 𝜓
and 𝜓 = 2%&',)

2%*!,)
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avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Now let’s try to apply Eq. 32 to our web panel. Let’s at the top patch (1),

𝑏DEE = 0.9 ] 0
E#
] 𝑘 ] K"?

0# 0BL"
] 𝑡 (32) ⟹ ℎ<,0,DEE = 0.86 𝑘 ] ?

E#
] 𝑡%

The effective width for patch 1 is then assigned to equally to each edge of the patch, that 
is, 

M+,),,--
#

next to the top flange and 
M+,),,--

#
on the upper side of the stiffener.
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avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.
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Let’s look now at the lower compressed patch (2). This patch has the particularity that it is 
not compressed throughout height of the panel it belongs to. In such cases, there is an 
important modification to Eq. (32), in which the effective width is calculated proportionally 
to the compressed portion of the total width (𝑏<), that is,

𝑏DEE =
*+
*
] 0.9 ] 0

E#
] 𝑘 ] K"?

0# 0BL"
] 𝑡 (33) ⟹ ℎ<,#,DEE =
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M+,"NM-/#
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(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.

TGC 12 - [Lebet and Hirt, 2009]

ℎ<,#,DEE =
ℎ<,#

ℎ<,# + ℎE/2
0.86 𝑘 ]

𝐸
𝑓"
] 𝑡%

Again with 𝑘 from SIA263’s table in slide 29,

𝑘 =
16

1 + 𝜓 # + 0.112 1 − 𝜓 # + 1 + 𝜓
and 𝜓 =
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avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.
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The effective width for patch 2 is then assigned to equally between the compressed edge 
of the panel and the point of zero uniaxial stress, that is, 

M+,",,--
#

next to stiffener and 
M+,",,--

#
on the upper side of the gross-section’s neutral axis.
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(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.

TGC 12 - [Lebet and Hirt, 2009]

The next effective width to calculate is that of the compressed top flange. This can be
done similarly to what but (i) with a cantilever model from the web (𝑏DEE/2) and (ii) 
corresponding plate buckling factor 𝑘. 

𝑏DEE = 0.9 ] 0
E#
] 𝑘 ] K"?

0# 0BL"
] 𝑡 (32) ⟹

*,--
#
= 0.86 𝑘 ] ?

E#
] 𝑡E,AOF

With 𝑘 from SIA263’s table in slide 29, 𝑘 = 0.426
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POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.

TGC 12 - [Lebet and Hirt, 2009]

Having calculated all the relevant effectives widths, the next step in cross-section 
verification involves in computing:

1. Effective area 𝐴DEE of the cross section (sum of all areas effective areas);
2. The position of  effective neutral axis and obtaining eccentricity 𝑒 (the 

difference in position between the gross and effective axes);
3. Effective moment of inertia 𝐼DEE (a systematic application of Steiner’s 

theorem);
4. Section modulus to the farthest fiber, e.g. 𝑊<,DEE =

P,--
M+ND
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POUTRES MÉTALLIQUES 311

avec

(12.33)

L’équation (12.32) est applicable pour calculer la résistance ultime en flexion uniquement si
, sinon, il faut calculer cette résistance avec le module de section élastique Wt,eff calculé

par rapport à la fibre moyenne de la semelle tendue de la section réduite. Lorsque le déversement n’est
pas déterminant ( ), fy remplace σD dans l’équation (12.32).

Lorsque la résistance à la flexion d’une poutre à âme pleine est limitée par le déversement (σD < fy),
on peut remplacer la limite d’élasticité fy par  dans le calcul des largeurs efficaces beff (12.9) et
hc,eff (12.28). Cette approche tient compte du fait qu’au moment du déversement, la contrainte moyenne
de flexion dans la semelle comprimée est inférieure à la limite d’élasticité de l’acier fy . Elle fournit des
largeurs efficaces moins conservatrices mais requiert une procédure de calcul itérative.

Influence des raidisseurs longitudinaux

D’une manière générale, il n’est pas intéressant, économiquement, de souder des raidisseurs longitudi-
naux sur une âme comprimée dans le but de faire participer la totalité de sa section à la résistance en
flexion. La différence entre la résistance à la flexion calculée avec Wc et avec Wc,eff  n’est souvent que de
quelques pourcents et ne justifie pas cet investissement. Par contre, la présence de raidisseurs longitudi-
naux soudés sur les semelles comprimées de caissons (sect. 12.8) est justifiée car ces semelles fournis-
sent une contribution majeure à la résistance à la flexion et il est important que leur section participe
totalement à cette résistance. 

Cependant, lorsqu’une poutre composée-soudée nécessite la présence d’un ou de plusieurs raidis-
seurs longitudinaux pour rigidifier la section de son âme afin de respecter des élancements limites (res-
piration de l’âme, § 12.7.3) ou que de tels raidisseurs sont nécessaires pour des raisons de montage de la
structure métallique, on peut en tenir compte pour la détermination de sa résistance ultime à la flexion.
La détermination de cette résistance se base sur le même concept de la largeur efficace, elle est alors cal-
culée pour chaque sous-panneau d’âme. Ces sous-panneaux d’âme comprimée (hc,1 et hc,2 dans la
fig. 12.6(a)) sont délimités par la semelle comprimée et le raidisseur longitudinal (ou même par deux
raidisseurs longitudinaux). Les panneaux sont admis articulés le long de leurs bords. Si les raidisseurs
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Fig. 12.6  Sections résistantes et répartition des contraintes pour une poutre-composée soudée raidie longitudinalement.

TGC 12 - [Lebet and Hirt, 2009]

If the load combination under analysis has axial load, then care must be taken to the fact 
the added eccentricity induces an extra moment in the cross,

Δ𝑀" = NQR ] 𝑒S
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INTRODUCTION AUX PONTS

 

ponts-route lorsque la poutre est constituée d’un caisson. Ces portées maximales sont réduites de moitié
environ si la section du pont est constituée de deux poutres à âme pleine en I. Les poutres à treillis per-
mettent de plus grandes portées – jusqu’à environ 500 m – grâce à une utilisation plus optimale de la
matière avec cependant une hauteur de poutre plus grande. Aujourd’hui, l’aspect de ces grandes poutres
à treillis est cependant souvent jugé peu esthétique, surtout en milieu urbain.

Parmi les 

 

ponts arcs

 

, on distingue encore, selon le système statique:

• les arcs à trois articulations,
• les arcs bi-encastrés, avec ou sans articulation en clé de voûte,
• les arcs à deux articulations, avec ou sans tirant.

Les arcs à trois articulations, bien qu’insensibles aux tassements d’appuis car isostatiques, sont peu
utilisés dans le domaine des ponts puisque la réalisation de rotules en clé de voûte est délicate et leur
entretien onéreux. Les arcs bi-encastrés demandent un excellent sol de fondation (roche), ce qui limite
souvent leur emploi aux régions montagneuses. L’arc à deux articulations est donc le plus fréquent. Il
permet d’atteindre des portées d’environ 200 m avec des arcs à âme pleine et de 550 m avec des arcs en
treillis.

Le principe statique de ces structures porteuses est de conduire les charges aux fondations par com-
pression des arcs. La reprise des poussées de l’arc sur les fondations exige un bon sol de fondation. Le
cas des ponts en arc avec tirant (fig. 2.3(a)) constitue une solution intéressante pour reprendre la poussée
horizontale de l’arc en cas de sol de fondation de qualité insuffisante. Le tirant est constitué générale-
ment du tablier placé en position inférieure. Les ponts arcs sont étudiés plus en détail dans le chapitre 18.

Le 

 

pont à béquilles

 

 (fig. 2.3(b)) relève à la fois du pont poutre et du pont arc, en ce sens qu’il conduit
les charges aux appuis par action combinée de la flexion et de la compression. En particulier, en plus de
la flexion, la partie centrale de l’ouvrage, ainsi que les béquilles, sont soumises à un effort de compres-
sion de manière semblable à un pont arc. Les fondations sont donc sollicitées par des forces horizontales
et verticales. Les deux travées de rive sont des poutres soumises uniquement à la flexion.

Les 

 

ponts à câbles porteurs

 

 comprennent:

• les ponts suspendus,
• les ponts haubanés.

Les 

 

ponts suspendus

 

 (fig. 2.4(a)) permettent le franchissement de très grandes portées (pont Akashi
Kaikyo au Japon, portée libre entre les pylônes de 1991 m). Le tablier est suspendu, à l’aide de câbles
verticaux, à un ou plusieurs câbles principaux ayant une forme parabolique. Les câbles principaux
s’appuient sur deux pylônes et sont ancrés, en général, dans des massifs d’ancrages situés aux culées ou,

(a) Pont arc avec tirant (b) Pont à béquilles
Fig. 2.3  Pont arc et pont à béquilles.
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parfois, ils sont ancrés dans le tablier du pont. L’acier est très bien adapté à la construction de ponts sus-
pendus car il permet d’alléger la structure porteuse. Les plus grands ponts suspendus possèdent ainsi
tous un tablier en acier (dalle orthotrope).

Les 

 

ponts haubanés

 

 (fig. 2.4(b)) se différencient encore selon l’arrangement des haubans: en harpe,
en semi-harpe ou en éventail (fig. 2.5). La composante horizontale de la force de traction dans les
haubans provoque de grands efforts de compression dans le tablier. Les portées principales entre les pylô-
nes peuvent atteindre près de 1100 m (pont Sutong en Chine, portée libre entre les pylônes de 1088 m).

L’étude des ponts à câbles porteurs sort du cadre de ce volume du TGC. Il existe plusieurs ouvrages
consacrés exclusivement à la conception et au dimensionnement des ponts à câbles, en particulier [2.1]
pour les ponts suspendus et [2.2] pour les ponts haubanés.

 

2.2.4 Type de dalle

 

On distingue principalement trois catégories de dalles:

• les dalles en béton liées à la structure porteuse,
• les dalles en béton non liées à la structure porteuse,
• les dalles orthotropes en acier.

(a) Pont suspendu

(b) Pont haubané
Fig. 2.4  Ponts à câbles porteurs.

En harpe En semi-harpe

En éventail
Fig. 2.5  Arrangement des haubans.
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TGC 12 –
[Lebet and Hirt, 2009]
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Cross section resistance in SIA 263 (§5.3.5) follows,
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+
MT,QRNNQR𝑒S

𝑊",DEE
+
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(34)

And stability checks in SIA 263 (§5.3.9)  follow,
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For open-sections, if the compressed flange is unrestrained, SIA 263 (§5.6.2) also asks to 
check its stability. This equivalent to checking for lateral torsional buckling with SIA’s 
method.   

𝜎?& =
MQR
𝑊<,DEE

≤
𝜎W
𝛾V0

(37)

The computation of critical stress 𝜎W was discussed in the lateral torsional buckling 
lecture and can also be found in Annex B of SIA263. For slender webs, the critical 
stress is more associated with the warping term and thus, 

𝜎W ≈ 𝜎W% =
𝜋#𝐸
𝜆X#

with, 𝜆I = 𝐿X/𝑖 and 𝑖 the radius of gyration with 
effective flange 𝑡E𝑏DEE, and 

effective web min 𝑡%
M+,,--
#

; 𝑡%
M+
+
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