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ePFL Objectives of the lecture

* Motivation to study plate stability

* Introduce the theoretical background to estimate plate:
« Linear elastic buckling loads

« Post-buckling behavior

* Look into design applications:
« Section classification « Shear links in EBFs
« Stiffened plates .
« Class 4 cross-section resistance
« Concentrated loading

 Post-critical web resistance
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EPFL Motivation
Structural failures

4th Danube Bridge, Vienna, 1969. [Scheer, 2010]
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EPFL Motivation
Structural failures

Zeulenroda reservoir Bridge, 1973-- before failure. [Scheer, 2010]
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Zeulenroda reservoir Bridge, 1973— after failure. [Scheer, 2010]
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EPFL Motivation
Structural failures
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[Scheer, 2010]

Werra Bridge,Hedemiinden, 1991. [Scheer, 2010]
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=PFL Plate buckling
Preliminary definitions

* A thin surface laminar element is characterized by:
1. Asurface defined by a curvilinear reference system in, say, directions {x, y};

2. A thickness t much smaller than the length scale of the surface and
perpendicular to the surface in, say, direction {z}.

* Thin surface laminar elements can be divided in the following categories:

1. Plate — element with zero curvature in both surface directions-- (1/R, =
0A 1/Ry = 0), with R the radius of curvature;

2. Cylindrical Shell — with one direction of non-zero curvature-- (1/Rx =0A
1/R, #0)V (1/Ry # 0A1/R, = 0);
3. Shell = with non-zero curvature in both directions (1/Rx +0A1/Ry, # O).
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=PFL Plate buckling
Preliminary definitions

* Linear elastic buckling of plates:
1. Objective to calculate stresses that lead to loss of stability of plate(limit point);
2. Based on the first-order, small-displacement, deformed configuration of the surface;
3. Assumes a linear elastic material;
4. Typically does not take into account initial imperfections or residual stresses;

e Post-buckling of plates:
1. Objective is to describe equilibrium path after limit point is reached;
2. Based on the second-order(+), small- or large-displacement, deformed configuration;
3. Slender plate behavior is considerably stable after limit point is reached;

* Inelastic buckling of plates

1. Describes situations in which significant material nonlinearity takes place. This can
happen before or after linear elastic limit point;

2. Based on the second-order(+), small- or large-displacement, deformed configuration;

Plate ultimate loads depend significantly on initial imperfections, residual stresses,
and material nonlinear model.
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PFL Linear elastic buckling of plates

Introduction

RESSLa

Resilient Steel Structures L. aboratory

On the Stalility of a Plane Plute under Thrusts in its own Plane,
with Applications to the * Buckling > of the Sides of a Ship.

DBy G. H. DBryan,
[ Read Dee. 11th, 1890.)

Iutrodnction.

1. The problems discussed in this paper are the analogues for n
planc rectangular or circular plato of the well-known investigations
of the stability of a thin wiro or shaft, due in tho first placo to
Euler, and sinco developed by Greenhill. I have employed the
energy criterion of stability, the uso of which I have already illus-
trated in this connexion in two papers published in the Proceedings
of the Cambridge Philosophical Socicty.®

[Bryan, 1890]
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PFL Linear elastic buckling of plates
Introduction
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

Consider an infinitesimal plate element, The length between two points in the
deformed configuration can
expressed by,

/ \ ds? = dx? + dy2 + dw?

The displacement is a function of
the position on the plate and so,

mp

ds ow ow

dw :adx-l-a—ydy

Substituting,

2 _ W\ g2 4 9 2w AW ow\*] 4.2
ds —[1+(ax)]dx +26xaydxdy+[1+(6y)]dy (1)
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

)

+ du

(e

ov
v, 3

v
od
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L dz ¥ odtt” ¥ 99 /Ij lllfl v)
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The length between two points in the deformed configuration can also be expressed
by the stretch and distortion of the plate,

ds? = (dx + du)? + (dy + dv)? =
2

3 —(d+ad+ad)2+(d+ad+ad)
A _xaxxayy Y T or® Tox ™t
S (PULT PR PR PORCLON
= X ay y y Ox X
) = _1+au2d 2+2(1+au)aud d +(au)2d 2
B T x/) dy xay dy Y
" = e B _1+av_2d 2+2(1+av)avd d +(6”)2d 2
1 g 7 1 _ ay_ y y Ox xay 9% X
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The length between two points in the deformed configuration can also be expressed
by the stretch and distortion of the plate,

Resilient Steel Structures Laboratory

du

1+2—+

ax
v

1+2—+

| dy

ds? = (dx + du)? + (dy + dv)? =

&)

&)

Ju

dx2+2(

dy * dx dy

v

dy2+2(

0x * dy 0x

)d d +(au)2d 2 4
xdy +(g;) @y

)d d +(av)2d 2 =
xay dx T
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The length between two points in the deformed configuration can also be expressed
by the stretch and distortion of the plate,

ds? = (dx + du)? + (dy + dv)? =

—_1+20u+ -d2+2(au+ )dd + dy? +

] Ox | * dy Xy Y
+_1+20v+ _d2+2(av+ )dd + dx? =
_ dy _ Y ax XAy =

In this linearized analysis, the second-order terms of the strain are

19
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

So finally,
=T du
BE ds? = [1 + 2—] dx? +
L dx
+2mdx dy + |1+ 22| dy? (2)
y dy y
In which @ is the shear angle.
. . dzx ¥ Grde ¥ byl 4 o = % _|_a_v
dy 0x

For small strains, the squared term of the strains is neglected, and so comparing Eq. (1)

2

with (2) yields,
dv B 1 (GW)

2 ow dw
dy

du 1 (GW)
dx 2\ox dx 0y y
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The work performed by the external forces acting on the plate can
thus be expressed as,
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

The internal work that the plate conducts in bending due to the displacement field
w(x,y), can be expressed as

b

U—lDJaJ 02W+02W ? 201 — ) 90w 9%w 22w\’ I

2 0x?  0dy? Y\ ox2 dy? dx0dy xdy (1)
00

with D, the plate bending stiffness, equal to

B Et3
12(1 —v?)

D

22
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rL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

For a rectangular plate supported at its edges, the vertical displacement can be
expressed by,

nn 4"::“”“”“"“'”'“"""‘""""“"‘ '"“““””“”“'a'”;” Boae
W(x y) - Amn Sln_ X Sln_y (5) -
b \ |

m=0n=

Assume for the moment that the shear stress are zero and the normal stresses are constant.
Then, performing the corresponding derivatives of Eq. 5 and substituting in the expressions
for internal and external work, it can be shown that

1 . w [0ym?%  oyn?
V= _gabnthmzoz:n:O( a2 + Jl;z )A72nn (6)

—abn Z Z (ﬁ +ﬁ> A2 (7)
m=0n=0
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rL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

From the previous lecture we saw that the total potential energy at an equilibrium
point can be defined as,

oIl
[M=U+V with stability defined as, Ew >0
w

Substituting in the stability definition our expression for the internal and external
work yields the following condition, with respect to the amplitude of each vertical
displacement,

oA (‘“b” D i i <§ + b2> A2y ——abn t Z Z <0x 2>A,2,,m> > 0(8)

m=0n=0 m=0n=
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

From Eq.8 it can be seen that each buckling is independent of each other and, as
such, the stability can be expressed for each mode as,

25

2
1, (m* n? 1, (om* oyn?
Zabn D ? +ﬁ Amn >§ab7'[ t a2 + b2 Amn (9)
And so,
2  gyn?
, t“’ﬁl’;1 +t 2’2
<D — (10)
m2 n?2
(?“Lﬁ)
With mode shape,
mm nn
w(x,y) = Ay Sin—x sin—y
a b
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

Consider now the case where the plate loaded uniaxially (g, = 0),

2
Ocr,xM
t 12 m2Da? (mz n2>

2

mD = S Ocrx = +

(m_z n_z)z a’  b?
a? ' b?

The critical stress will be minimal when n = 1, that is, when the buckling mode only
has one half-wave perpendicular to the load.

m2Da? (m? 1\
Ocrx = tm2 \ g2 + b2 (11)

26
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£PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

When we re-work Eg. 11, we are left with one of the most important expressions in
this lecture (Eq. 12),

2 Da? (m? N 1\* 72D (mb N a )2
= = e
Ocrx tm2 \a? b2 th2\a mb

m%E

12(1 — v2) (%)

Ocrx =K zzk'GE (12)

with k, the plate factor or plate buckling coefficient, and o,

27

2 2 2
mb a mE t
k= ( =r mb) (13) o = 3~ 0.9E (—b) (14)
12(1 — v2) (?)
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=PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates
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PFL Linear elastic buckling of plates

An energy approach to the buckling of rectangular plates
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=PFL Linear elastic buckling of plates
An energy approach to the buckling of rectangular plates

5.5
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=PFL Linear elastic buckling of plates
Influence of boundary and loading conditions

s Boundary conditions
b YiA— 1 [ i— | ar i

-o[[III]]-° | 1 4,00 6,97 5,41 5,41 128 | 1,28 0,426 | 0,426
=0 e 0 7,81 | 1354 | 11,73 9,54 591 | 1,608 1,702 | 0,567
-0 Dﬁm +o |-1| 2390 | 39,52 | 39,52 | 23,94 2,134 0,851

. 16
-0 D —Yo min =

Y1+ y)? + 0,112(1-y)% + (1+ )
valable pour H——" et y>-1,2

SIA263, §4.5.3 - [SIA, 2013]
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=PFL Linear elastic buckling of plates
Influence of boundary and loading conditions

Shear stresses

Normal stresses
Bour.l(‘.lary (approximate formulas)
conditions p pn pn > —
REANAE
lO’ 0 lo- o 4_’___" b
2 2 a
— o1 -be 2
bl 400 | 532 | 781 | 1340 | 239 |¥Z1ik=534+(300/05
. o<1 :k=4.00+(5.34/02)
ST pe 2
697 | 927 | 1354 | 245 | 3050 |®#Z17k=900+3.30/a5
as<1:k=7.00+ (530/c?)
>21:k=17. x 2
5.41 11.73 30.50 |¥2 1 k=750+(4.00/0%
a<1:k=6.50+ (5.00/02)
5.41 9.54 23.94
1.28 591
1.28 1.608 2.134
ml
} 0.426 1.702
|
|
! 0.426 0.567 0.851
| |
TGC10, §12 - [Hirt et al., 2011]
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=PFL Linear elastic buckling of plates
Influence of boundary and loading conditions

TGC10 §12 also discusses ways to compute equivalent critical stresses for mixed
loading (uniaxial compression and shear)

JoZ + 312
Oger = (15)
14+9y o, (3—1/) 0, )2 T
+ + (—
4 Ocr x 4 Ocr x (Tcr)

where,
1 —is the ratio between the smallest and largest uniaxial stress (signs included)
o, — is the largest uniaxial stress
Ocrx — IS the limit stress in taking into account only the uniaxial stresses
T — IS the limit stress in taking into account only the shear stresses
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ePFL Post buckling of plates

Equilibrium paths

Post-buckling analysis leads us to analyzed the previous problem taking into account
higher order terms in the linearization of the problem. Analytically this can be
performed by:

3.0

2.5

2.0

O'/Ucr
—
ot

1.0

0.5 1

Resilient Steel Structures Laboratory

1. An energy approach [Koiter, 1945]

2. Equilibrium in the deformed configuration [von Karman et. al, 1932]
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Both approaches can be shown to yield the
same result in the neighborhood of the
linear elastic limit point for a simply
supported square plate:

o 3 A112
S — 2 [ =2
o= 1tgv )( t) (15)

Note that for deflections on the order of the

thickness of the plate, the post-buckling
stress is around 35% larger than o,
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ePFL Post buckling of plates
Equilibrium path

2.5

2.0 A

1.5

a/oer

1.0 A

0.5

00 T T T T

RESSLLbab

Resilient Steel Structures Laboratory
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L e e ) s . Wy
For a case with initial imperfections &g =—,

Volmir [1967] reports,

T 43—y + B — (16
Cor 8 VoW W80W+30( )
. . w
With, WZ?

The key idea here is that there is a significant
amount of reserve capacity, even in the
presence of initial imperfections
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ePFL Post buckling of plates
Ultimate plate load

2.5

o/oer
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ePFL Post buckling of plates
Stress distribution at edges

For a rectangular plate (a=b), the stress
distributions along its edges, in the post

Resilient Steel Structures Laboratory

_\[\J\W/l/r buckling phase, assumes the following
form,
a,(y)
......._.px e = Tp
i 21Ty
by 0,(y) = -0+ (0 —0,) cos— =
( ) ~(-20+0,)
—*(0-0,
e A N
21X
L-O,(x) L__.(a"_o) O-y (x) = (O- _ O-CT') COS b

[Reis and Camotim, 2001]
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ePFL Post buckling of plates
Effective width

Take the integral along the compressed

W/l/r edges,
a(y)
b/2
"""-’“x — =
i J o, (y)dy = ob = O-maxbeff
’ —b/2
-.(-2U+0c,)
"""’(0-0“)
e 0 I
LU,(X) L_‘(a" "0') A With, O-max - 25 - O-CT
[Reis and Camotim, 2001]
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ePFL Post buckling of plates
Effective width

Take the integral along the compressed
edges,

b/2

j Ux()’)dy =0b = O-maxbeff
_b/2

with, 0,0y = 20 — 0,

beff _ o _ 1
- — - o (17)
b 20 — 0¢y — —£r
[Hirt et al., 2011] o
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ePFL Post buckling of plates
Effective width — in practice

Let’s consider a reduced plate slenderness Limit point average criterion,
defined as,
I b/2
A, = |Z= (18)
Ocr ox(y)dy = ocrb = fybeff
1.2 ~b/2
\ -- Limit Point Average
\.\ “\\ —— Post Buck. Theory
\ \ ---- von Karman
1.0 \'\ \ —— Winter beff 1
AN — SIA263 == (19)
\, \ \\\\ b A
0.8 - p
206- Post buckling theory suggests, from (17),
0.4 -
- (20)
0.2 - b 1
. —=
AP
00 T T T T T
00 05 1.0 15 20 25 30
Ap
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ePFL Post buckling of plates
Effective width — in practice

Let’s consider a reduced plate slenderness Empirically, a number of authors propose
defined as, expressions for effective widths:
_ fy
Ap = o (18) e von Karman et al. [1932] :
cr
b 1
12 “\‘ ---- Limit Point Average eff —- = (2 1)
\, i —— Post Buck. Theory b
\'\ \‘ ---- von Karman p
1.0 \'\‘ \ —— Winter .
\,' — SI1A263  Winter [1947]:
0.8 RN
b 1 0.22
EXTE eljf:_ (1_—— (22)
3 Ay Ay
0.4
* SIA263-[SIA,2013]:
0.2
~~~~~~ 9
eff _ 2 (23)
0.0 ‘ ‘ ‘ ‘ ‘ b )Lp
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ap
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ePFL Post buckling of plates
Effective width — in practice

* SIA263-[SIA,2013] — the box section exception (§5.6.4.3) :

For panels simply supported at both ends (A),
besr  Ap—0.055(3 + 1)
- 72
b A5
For panels simply supported at one ends (B),
berr Ap,—0.188
= 2
b A5
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ePFL Post buckling of plates

b /b
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=PFL Applications
Section classification

Let’s take our previous definitions, Section classification are typically made with
respect to a reference material (5235), and so the
P above expression can be re-written as,
Ay = / Y (18)
b |45 235 . TE
2F t |235 fy 12(1 —v?)
O =k - 2 (12)
12(1 — v2) (9) )
t _[235 [ 4 " m2E B
| £y 235 12(1 —v2)

And let’s put them as a function of b/t:

2 b TE o
2 = —_— .
b_ % . mE € 1235 1z vy BY
;o 12(1—v?)

44

t
| 235
with, € = |—(/—
fy
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=PFL Applications
Section classification

Going from class 4 to class 3 cross-sections represents a threshold where you can
consider the total plate area as being effective in carrying axial load.

1.2 T
\ -- Limit Point Average
\\ \\‘ — Post Buck. Theory
\ \ ---- von Karman
1.0 '\_\ \ —— Winter
O\ — SIA263

0.8

b A5 " m?E (24) <

—_— 8 — G ° “: N

235 12(1 — v?) =
0.4
0.2
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ap
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EPFL Applications
Section classification

Conditions de bord

b W— | i— |4 ar 1
—o[[[I[1]-c | 1 4,00 6,97 5,41 5,41 1,28 | 1,28 0,426 | 0,426
-0 D]]:‘l 0 7,81 13,54 11,73 9,54 591 1,608 1,702 0,567
-C Dﬁ*(ﬂ to |1 23,90 39,52 39,52 23,94 2,134 0,851

P 16
-0 T —yo min =
V(1 +p2 +0112(1-y + (1+y)
valable pour +—¢ ety>-12
Géomeétrie Mode de sollicitation Elancement limite b/t maximal
H% Classe de section 1 | Classe de section 8 Classe de section 3
- f, f,
[}j‘t:ﬂ Compres ot 33¢ 38e 42¢
b sion b
t ﬂ fy
Flexion [ Z ]
[_ X 72¢ 83¢ 124 ¢
1,5t 1,5t simple p fy
[ vz
t Compres- [ D |f
b sion avec £z ab g 396 ¢ 456 ¢
: flexion d 13a-1 13a-1
——] v>—1 f, 42¢
n (Comp. +)| VH[7Z a>05 %205 0,67 + 0,33y
t Traction 36 415
%A avec ; n fy 78 [’Z €
‘ Panneau ‘ flexion Lz
. B D 1,
| y<-1 £ 2
(Comp. )| z v <05 <05 62¢(1-y){—y
Cas particulier Flexion et/ou D D D
t = 2 = 2 = 2
Tubes @ID compression t <50¢ t <70e t <90¢
RESSLab Prof.

Resilient Steel Structures Laboratory

Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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From Eq. 24,

f, = 235 MPa
E = 210GPa
0.3
0.75
4.0

14
AP

= 42.63

SIA263 - [SIA, 2013]
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EPFL Applications
Section classification

a Conditions de bord
b VA — — —— [7— | ar; 1
From Eq. 24,
—o[[[[II]-c | 1 4,00 6,97 5,41 5,41 1,28 | 1,28 0,426
=0 TP 0 7,81 13,54 11,73 9,54 5,91 1,608 1,702 0,567 _
f, = 235 MPa
-0 Dj*(ﬂ too -1 23,90 | 39,52 39,52 23,94 2,134 0,851 _
E =210GPa
P 16
-0 nn! —y-o min = —
YA +y2+0,112(1—y2 + (1+ ) VvV = 03
valable pour +—¢ ety>-12 A— O 7 5
Géomeétrie Sollicitation g Elancement limite b/t maximal p )
E EE Classe de section 1| Classe de section 2| Classe de section 3 k o O 4 2 6
§— .
j;rx:b e 9e 106 14e ’
‘ t
Jﬁj.:, Compres-
t sion avec 9¢ 10e
i flexion, o« o 21efky
” t bord libre b
b comprimé
Panneau: Compres- 9e 10e ? I 1 3 " 9
b | sion avec ot OF 2161k,
flexion, 2
bord libre
tendu

(y: rapport de:

s contraintes)

Coefficients de voilement k, et k,: k; = 0,57—0,21y+ 0,07 y?
k, =0,578/(0,34 +y)

k, = 1,7-5y +17,1y?

pour 1> y>-3

pour 1> y=>0

pour 0> y2>-1

(compression positive)

=

Facteur de réduction pour les aciers a plus haute limite d’élasticité:

235

§

$235:£=1,0

S275:£=0,924
S$355:£=0,814
S$460: £=0,715

SIA263 - [SIA, 2013]
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EPFL Applications
Section classification

al Conditions de bord
Vid— —— '— i— |4 ar 7

From Eq. 24,

-0 1 4,00 6,97 5,41 5,41 1,28 1,28 0,426 | 0,426

bb )
(10
-0 e o| 781 | 1354 | 11,73 | 954 | 591 | 1,608 | 1702 | 0,567 fy = 235 MPa

to |1 23,90 | 39,52 39,562 23,94 2,134 E _ 2 1 OGPa

16
~o M -ve| - fon” v=20.3

V(1 + 2 +0,112(1-yP + (1+y)

valable pour 4——4 et y>-12 —
A, = 0.75

Géomeétrie Sollicitation 2 Elancement limite b/t maximal
o
T =
3 82 Classe de section 1| Classe de section 2| Classe de section 3 k —_— O 8 5 1
* .
Compres-
b sion 9 10¢ 14¢
‘ t
. Compres-
7 .
‘ sion avec 9e 10¢ 21evk,
! flexion, o o
1 t bord libre b
b comprimé
Panneau: ? - 1 9 " 6 6
——— Compres- 9¢ 10e
b i o5 o5
b | sion avec a 2121k,
flexion,
bord libre
tendu
Coefficients de voilement k; et ky: k; = 0,57-0,21y+0,07y? pour 1> y>-3 0.5 _
(y: rapport des contraintes) k, =0,578/(0,34 +y) pour1>y>0 (compression positive) 2 1 * (O- 5 7 - 0. 2 1 * — 1 + 0. O 7) —_ 1 9 . 3 6
k, = 1,7-5y +17,1y? pour 0 > y> -1
Facteur de réduction pour les aciers a plus haute limite d’élasticité: S235: e=1,0
F S275: £=0,924
e=q/— S$355: £=0,814 _
; So5s - 0614 SIA263 - [SIA, 2013]
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=PFL Applications
Section classification

Going from class 4 to class 3 cross-sections represents a threshold where you can

consider the total plate area as being effective in carrying axial load.

1.2 -
\ - Limit Point Average
\\ \ — Post Buck. Theory
b Az T[ZE 10 \.\‘ \ ---- VOTl Karman
14 \ \ —— Winter
—= |— . k- 24 O\ — SIA263
t 235 12(1 — v2) (24)
0.8 - ‘
)
~
. . < 0.6
However, plate buckling is not the only <8
criterion influencing section classification. 04
Rotation capacity of members also play a
role and so the 4, = 0.75 is to be taken 02
more as an indicative value rather thana | 7=
hard limit for class 3 sections. 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ap
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ePFL Applications
Stiffened plates — relative stiffness and optimal positions

DN

P o b | 5| b T o] Elevation
f d
—1 T e
b

TGC 10 - [Hirt et al., 2011]

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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EPFL Applications
Stiffened plates — relative stiffness and optimal positions

Let’s define the ratio between the
kA stiffener and the plate bending
stiffnesses as yg,

kmax

El
Xs =5, (25)
with,
| I - the stiffener moment of
inertia as measured from the
plate’s middle plane
| XS
> , :
Xs req. D —the plate’s bending
. stiffness as defined in slide 20
TGC 10 - [Hirt et al., 2011]
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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EPFL Applications
Stiffened plates — relative stiffness and optimal positions

Fixity is reached when y. is greater than
kA a a required threshold we call xg g

kmax

Xs = Xsreq (26)

Determining the required stiffness ratio
depends on a number of variables, namely:

| 1. The plate length and width ratio

a/b
‘ X 2. The relative area of the stiffener
| -
Zsrea. and the plate - d;
TGC 10 - [Hirt et al., 2011] Ag
0, = — (27)
bt
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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ePFL Applications
Stiffened plates — relative stiffness and optimal positions

y a:% Rigidité relative nécessaire X 4.
Compression pure b \/7 1 4 2 1
P(T=O)P 5 a<\8(1+28)-1 5ot +[8(1+28)-1]1a°+ 8+ 5
%l : a2 \8(1+258)-1 %[8(1+285)—1]2+53+%
Il
Y b %
| %’et%b a<A18(1+33)-1 —%a4+%[18(1+365)—1]a2+5s+%
M o2 \181+38)-1 %[18(1+35S)—1]2+5S+%
g =05 15
%’ 05 < a<1.6+85 “11o*+(35+17.668) a%+0.7
o> 1.6+88 3.4 +27.7 8,+70.4 52
Flexion pure g 05 < a<~3.06+1748 |-1210%+(741+4258) a?+1
(r=0)
X o 2 ~[3.06+17.4 6, 123 + 130 &, + 370 62
j 4 b 1 g 05< a < \,/5.14+25.2 & | -1.54 a*+(15.82+77.6 &) a?+3.55
l a l o > +[5.14+2526; 43.4 + 381 &+ 1080 62
%’ et % 207 (3.33 +16.67 8) (- 0.1)
mais X psc < 26 05+ 3
get% 205 (7+50 8 +27 82) a— (1.6 + 14.5 &, + 13.5 62)
mais Xy pge < 8+ 70 & +200 52
g 07 < o<1l 210 (- 0.4)* +7,5
L1 <a<35 18 (4.1 — ) (= 2.1)% + 108 (= 2.1) + 220
% 07<a<16 (10-2.38 o) a*
16 < o < 3.0 90.6 — [35 / (0t — 0.9)]
o ]43 05<a<15 416 0% +5 (00— 1) (@-0.7)
Cisaillement pur
A_(Gj_o)__ 15< a<40 40-[5.1/(o—1.2)]
{— } b 3
1 Y1 | 3 05<a<13 19.5 (¢—0.53+0.5
i 13<a<25 35-17 (2.5 - )?
get% 05< a< 10 5003 +10
10 < a<22 3(550 & -370)
22<a<3s 370-41 35 - )® TGC 10 - [Hirt et al., 2011],
bl lor<ascas 344019 From KIdppel and Scheer[1960]
25< @ <40 66 o — 98 tables
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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EPFL Applications

Stiffened plates — relative stiffness and optimal positions

Optimal stiffener positions

Pure compression

Resilient Steel Structures Laboratory

:

Pure bending

Pure shear

it

s
1

One stiffener Two stiffeners
777777 = Hkb — 407%
‘ ‘ 2 | } —e )
| R - e
| | b | |4 3
‘ 777777 J —lkz L 77777 — —qu

b 0.123 b

’7 77777 —’ 4"75 r 77777 — ——¢- FO.275b
| |
| |
— —— —f—— T b
| | | | |2
| | | R
I | ] )
| a a a a

2 2 2 2

TGC 10 - [Hirt et al., 2011]
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=PFL Applications
Class 4 cross-sections

b beﬁ‘
O max,1 o het Osup,eff
— :T:t C, ,€ﬁ
fie,1 - E _Omin,1 = = " 2 "
Omax,2 c,l.eff N c.2.eff
he,2 % o hy 2 2
min,2 h
Yu-— ¢ —— ——— weﬁ — ceff —-—
- 2 ,,,,,,,,,,, -
wol,
| v | Oinfeff
| |
Z
Gross section Effective section
TGC 12 - [Lebet and Hirt, 2009]
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — moment resistance — the big picture

Steps in calculating moment resistance of longitudinally stiffened class 4 cross-sections:

1. Ensure that the stiffener is sufficient rigid so as to consider it a laterally restrained
boundary;

2. Determine effective widths for each element in the cross section (slenderness
checks);

3. Calculate effective geometric properties for the cross section as a whole;

4. Check if you need to re-compute external loading with respect to new neutral axis
(i.e. eccentricity + axial load induces an additional moment in the cross-section);

5. Perform code verifications;

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — longitudinal stiffener design

The TGC 12 discusses two criteria to design longitudinal
stiffeners,

Defr

1. Imposing a minimum required relative stiffness - y

— jhc’;eﬁ 2. Design the stiffener as an equivalent column whose
- heleff +hc,2,eﬁ resistance is greater than that required by the
2 2 moment action - Mg,
eﬁ heleff —-—
. In approach 1. for bridge sections it is recommended that,

A Xs 2 M Xsreq (28)

With,

m =5 for open-section stiffeners (no torsional stiffness)
TGC 12 - [Lebet and Hirt, 2009]

m =3 for closed-section stiffeners (torsional stiffness)

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa 57
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=PFL Applications
Class 4 cross-sections — longitudinal stiffener design

The TGC 12 discusses two criteria to design longitudinal
stiffeners,

Defr

1. Imposing a minimum required relative stiffness - y
jhc’;eﬁ 2. Design the stiffener as an equivalent column whose

- hedeff  hedeff resistance is greater than that required by the

2 T2 moment action - Mg,
eﬁ hepeff —-—
. In approach 2.

XKfyAs,eff

T ——— Ngq = O0sgaAseff < Nk ra = " (29)

hc,l,eff tw n hc,2,eff tw
2 2

As,eff = As +
TGC 12 - [Lebet and Hirt, 2009]

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa cg
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EPFL Applications

Class 4 cross-sections — longitudinal stiffener design

Xk fyAseff
Ngq = OsgaAserf < Nk ra = yy =22 (29)
a

- hc,l,eﬁ hC,l,eff hC,Z,eff
;t 2 As,eff - AS + 2 tW + 2 tW
= hc,l,eﬁ hc,2,eﬂ ]
) With,
eﬁ hcée A - Stiffener area Osgd - Stiffener stress
Agerr - Equivalent column area
- 1

TGC 12 - [Lebet and Hirt, 2009]

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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Xk - Equivalent column buckling reduction factor

(seen in previous lectures) with imperfection
factors ax = 0.49 for closed-section stiffeners
and ag = 0.64 for open-section stiffeners.
Column length [ taken between rigid vertical
stiffeners

59



=PFL Applications
Class 4 cross-sections — effective widths

b beff
1 T -

Omax,1 h "
h —@—— — ( 1 ‘:t C’lz’eﬁ
NN & omin1 = — I
Omax,2 _ ¢ leff N c2.eff
he2 E o I 4 2 2
y-— ¢ — -+ — mm,2fe¢ hepeff —-—
- 2 777777777777 -
T > >
T — EEm— ——
! ! Oinf,eff
2 TGC 12 - [Lebet and Hirt, 2009]

Before calculating the effective widths for longitudinally stiffened plates, it is important to
mention when these situations arise. Such cases usually happen when the web thickness
is small (webs are too slender). This is usually assessed by two criteria:

1 - Web Euler buckling: If Eg. 30 is not satisfied then add a stiffener such that,
hy
hy E >t hep E
— < 0.40 —(30) =< 040 —

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

b beff
1 T -

Omax,1 h "
h —@—— — ( 1 ‘:t C’lz’eﬁ
NN & omin1 = — I
Omax,2 _ ¢ leff N c2.eff
he2 E o I 4 2 2
y-— ¢ — -+ — mm,2fe¢ hepeff —-—
- 2 777777777777 -
T > >
T — EEm— ——
! ! Oinf,eff
2 TGC 12 - [Lebet and Hirt, 2009]

Before calculating the effective widths for longitudinally stiffened plates, it is important to
mention when these situations arise. Such cases usually happen when the web thickness
is small (webs are too slender). This is usually assessed by two criteria:

2 - Web breathing (fatigue): If Eq. 31 is not satisfied then add a stiffener such that,
he1+he, he hC'l <100
’ — = < 100 (31) =
Ly tw W

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

b beff
T T -

b ——— O'max,1 | | hc,l,eﬂ'
he,1 E Ominl = I S‘F 2
S r 7Gma);,2 = he,1eff +hC,2,€ﬁ
he,2 E o s Iy — 5 2
ye—eo —F— - L L S A — 4——- hc,Z,eﬁ‘ —-—
| N ol —thar o %
_‘_ g _‘_ Oinf,eff
é TGC 12 - [Lebet and Hirt, 2009]
Let’s use for the effective width the SIA263 Combining both Equations,
criterion:
b 0.9
Y =1 @3 borr =09+ |k —E (32
Ay eoff =57 f, T 121 —v2)
From Eq. (24),
b 7_L229 " m2E (24)
t  Jfy 121 —v?)
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

Omax,1 h ” Osup,eff
h —@—— — ( 1 ‘:t C’;’eﬁ |
C’L,i - E Omin 1= I h h
Omax,2 ¢ leff N c2.eff
he,2 E o . — 2 2
y-—-eo - —F+-————- mm,2fe¢ hepeff —-—
J— 2 777777777777 [
T 2 3
I — ]
! ! Oinf,eff
é TGC 12 - [Lebet and Hirt, 2009]

Now let’s try to apply Eq. 32 to our web panel. Let’s at the top patch (1),

bopr =09 |+ k- —2t hy o = k- E
erf = 0.9 |7 ka1 (32) = heery = 086 k-7 -ty

With k from SIA263’s table in slide 29,

16 O
k — and l/) — O-mm,l
\/(1 + l/))z + 0112(1 — l/})z + 1+ l/) max,1
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

b beﬁ
. o —— O'max,1 | Ijhc’lz’eﬁ Gsup,eﬁ
CL.i . E 7Gmln’1 — f‘kh h
Omax,2 ¢ leff N c2.eff
he,2 E o . — 2 2
yo—-¢—-—-}F-—-——-—- mm,2fe¢ hc,2,eﬁ‘ —_—
- 2 ,,,,,,,,,,,, -
T % >
I — ]
! ! Oinf,eff
2 TGC 12 - [Lebet and Hirt, 2009]

Now let’s try to apply Eq. 32 to our web panel. Let’s at the top patch (1),

borr =09 |= k- -—2% h = k. L
eff—O- ’ f_y ‘m't(32)=> c,1,eff_0'86 -7y-tw

The effective width for patch 1 is then assigned to equally to each edge of the patch, that
hc,l,eff

eff

h
is, next to the top flange and % on the upper side of the stiffener.

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

b beff
T T -

Omax,1 h "
h —@—— — ( 1 ‘:t C’lz’eﬁ
NN & omin1 = — I
Omax,2 ¢ leff N c2.eff
he,2 E o . — 2 2
y-—- ¢ —-F+-—— ——- mm,2fe¢ hepeff —-—
- 2 777777777777 -
T 2 3
T — EEm— ——
! ! Oinf,eff
2 TGC 12 - [Lebet and Hirt, 2009]

Let’s look now at the lower compressed patch (2). This patch has the particularity that it is
not compressed throughout height of the panel it belongs to. In such cases, there is an
important modification to Eq. (32), in which the effective width is calculated proportionally
to the compressed portion of the total width (b,), that is,

_b . qgg. [L.,._™E __ fea E
besr =2+ 0.9 \/fy kTt £ (33) = hepepy =5~ 0.86 /k -

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

O max,1 h Osup,eff
O m——— ? ; ‘:t c,l,eﬁ
he,1 E Omin,1 = : e 2 |
5 I E 7Gmax,2 - L hc,;,eﬁ +hc§,eﬁ
c,2
, ) h
ye-—o0— — - — — — — -3 G—m m’zfeﬁ hc,Z,eﬁ‘ B
- - 2 ,,,,,,,,,,,, -
T % S
_‘_ —_—— —‘— Glnf;eff
é TGC 12 - [Lebet and Hirt, 2009]
hc'z E
hc'zleff — h + h 2 0-86 k c = tW
C,2 f/ fy

Again with k from SIA263’s table in slide 29,

16 o
k= and p = —L > 1.2
\/(1 + 1/1)2 + 0112(1 — l/))z + 1+ 1/) max,2
RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

b beff
1 T -

Omax,1 h "
O m——— ? ; ‘:t c,l,ej]‘
he,1 E Omin,1 = : e 2
c,2
y=-—0— — - — — — — - Omin2 | h feﬁ hc,Z,eﬁ‘ —-—
- - 2 ,,,,,,,,,,,, -
T % >
—‘— —_— ] Glnﬁeﬁc
2 TGC 12 - [Lebet and Hirt, 2009]
hc'z E
hc'zleff — h + h 2 0186 k T tW
c,2 f/ fy

The effective width for patch 2 is then assigned to equally between the compressed edge

ef hc,z,eff

h
of the panel and the point of zero uniaxial stress, that is,% next to stiffener and—2

on the upper side of the gross-section’s neutral axis.

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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=PFL Applications
Class 4 cross-sections — effective widths

Omax,1 h ” Osup,eff
h —@—— — ( 1 ‘:t C’;’eﬁ |
NN & omin1 = — I
Omax,2 ¢ leff N c2.eff
he2 E o I — & 9 2
y-— ¢ — -+ — mm,2fe¢ hepeff —-—
J— 2 777777777777 [
T 2 3
I — ]
! ! Oinf,eff
2 TGC 12 - [Lebet and Hirt, 2009]

The next effective width to calculate is that of the compressed top flange. This can be
done similarly to what but (i) with a cantilever model from the web (b, /2) and (ii)
corresponding plate buckling factor k.

—09. |L.,.™E | berr _ /._E.
beff_O'g \/fy k 12(1-v2) t(32):> ) = 0.86 |k 3 tf,top

With k from SIA263’s table in slide 29, k = 0.426

RESSLab Prof. Dr. Dimitrios G. Lignos and Dr. Albano de Castro e Sousa
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EPFL Applications
Class 4 cross-sections — effective geometric properties

b beﬁ
” (o)
, b —— Omax,1 —_ hC,lz,eff sup,eﬁ“
C,L L E _Omin,1 = I h I |
Omax,2 ¢ leff N c2.eff
he,2 E o . — 2 2
yo—-¢—-—-}F-—-——-—- mm,2fe¢ hc,2,ejj‘ ——
J— 2 ,,,,,,,,,,,, [
+ B 3
I — ]
! ! Oinf,eff
2 TGC 12 - [Lebet and Hirt, 2009]

Having calculated all the relevant effectives widths, the next step in cross-section
verification involves in computing:

1. Effective area A,sr of the cross section (sum of all areas effective areas);

2. The position of effective neutral axis and obtaining eccentricity e (the
difference in position between the gross and effective axes);

3. Effective moment of inertia I, ¢f (a systematic application of Steiner’s

theorem);
. . 1
4. Section modulus to the farthest fiber, e.g. W o¢p = o
’ h.+e
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=PFL Applications
Class 4 cross-sections — eccentricity load update

b beff
T T -

O max,1 h :
h —@—— — ( 1 ‘:t C’;’eﬂ
C’L,i - E Omin 1= I i h
Omax,2 ¢ leff N c2.eff
he2 E o I — & 9 2
y-—-eo - —F+-————- mm,2fe¢ hepeff —-—
J— 2 777777777777 [
T 2 3
T — EEm— ——
‘ Oinf,eff
é TGC 12 - [Lebet and Hirt, 2009]

If the load combination under analysis has axial load, then care must be taken to the fact
the added eccentricity induces an extra moment in the cross,

AMy = NEd * e,

_/ TGC12 -
" [Lebet and Hirt, 2009]
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=PFL Applications
Class 4 cross-sections — code checks

Cross section resistance in SIA 263 (§5.3.5) follows,

NEd n My,Ed+NEdez n Mz,Ed+NEdey fy

OFEd = (34)
BT Aoss Wy err Wi err )’M1
And stability checks in SIA 263 (§5.3.9) follow,
N 1 M Negq(e, +w Ngq(e,+w
opy = NEA . y.Ed+Nga(ez O,z)_l_ 2 Ed+NEed(ey Oy) fy (35)
Aerr 1 _ NEd Wy err Waerr )/M1
Ncr,y
N My gq+Ngq(e, +w 1 M Ngq(ey,+w
Opg = Ed n y,Ed+*VE ( Z O,z) n z,Ed+ Ed( y Oy) fy (36)
A W. N w.
eff veff 1 —£d zeff VM1
Ncr,z
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=PFL Applications
Class 4 cross-sections — code checks

For open-sections, if the compressed flange is unrestrained, SIA 263 (§5.6.2) also asks to
check its stability. This equivalent to checking for lateral torsional buckling with SIA’s
method.

Mgq Op
OEd = < (3 7)
g Wc,eff YMm1

The computation of critical stress o was discussed in the lateral torsional buckling
lecture and can also be found in Annex B of SIA263. For slender webs, the critical
stress is more associated with the warping term and thus,

2
m°E
Op = Opyy = 7z with, Ag = L /i andi the radius of gyration with
k effective flange tfb.sr, and
. : h h
effective web min (tw cefl tw—;)
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