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Objectives of This Week’s Lecture

To introduce:

² General theory of beam-columns

² Stability of continuous members

² Beam-column theory in axially loaded members

² Buckling determinant

² Effect of boundary conditions

² Effect of residual stresses

² Effect of imperfections

² Alignment charts for non-sway and sway frames

² Buckling resistance according to design standards
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Theory of Flexure from Structural Mechanics
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Equations of Equilibrium in Beam-Columns
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𝑄 𝑥 − 𝑄( + #
"

)
𝑝 𝑥∗ 𝑑𝑥∗ = 0

𝑀 𝑥 + 𝑁 , 𝑣 𝑥 − 𝑀( + 𝑄 , 𝑥 + #
"

)
𝑝 𝑥∗ 𝑥∗𝑑𝑥∗ = 0

Equilibrium of a segment of the deflected column for shear & flexure,

Differentiating the equations above,

𝜕𝑄
𝜕𝑥

+ 𝑝 𝑥 = 0
𝜕𝑀
𝜕𝑥

+ 𝑁
𝜕𝑣
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+ 𝑄 = 0

Equilibrium equations of beam-columns in terms of internal forces M

& Q

(1)

Equations of Equilibrium in Beam-Columns
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𝑁
𝜕𝑣
𝜕𝑥

can be neglected if 𝑁 << 𝑁𝑐𝑟 (first order analysis)The term

Differentiating Equation (1) from previous slide,

𝜕$𝑀
𝜕𝑥$

+
𝜕(𝑁𝜕𝑣)
𝜕𝑥$

+
𝜕𝑄
𝜕𝑥

= 0

𝜕𝑄
𝜕𝑥

+ 𝑝 𝑥 = 0

𝜕$𝑀
𝜕𝑥$

+
𝜕(𝑁𝜕𝑣)
𝜕𝑥$

= 𝑝

𝑀 = 𝐸𝐼
𝜕$𝑣
𝜕𝑥$

𝜕$(𝐸𝐼𝜕$𝑣)
𝜕𝑥*

+
𝜕(𝑁𝜕𝑣)
𝜕𝑥$

= 𝑝

Equations of Equilibrium in Beam-Columns
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Assume 𝐸𝐼 = Constant and 𝑁 = Constant

𝐸𝐼
𝜕*𝑣
𝜕𝑥*

+ 𝑁
𝜕$𝑣
𝜕𝑥$

= 𝑝

𝑝 = 0 We have a homogeneous problem with solution, 

𝑣 = 𝑒+)

𝐸𝐼𝜆* + 𝑁𝜆$ 𝑒+) = 0
Homogeneous problem with solution, 

𝜆$ +
𝑁
𝐸𝐼

𝜆$ = 0 𝑎𝑠𝑠𝑢𝑚𝑒, 𝑘$ =
𝑁
𝐸𝐼

𝜆$ + 𝑘$ 𝜆$ = 0

for

Equations of Equilibrium in Beam-Columns
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Differential Equation of Planar Flexure

𝜆 = ±𝑖𝑘 𝑜𝑟 𝜆 = 0If N > 0 (compression)

𝑣 𝑥 = 𝐴 + 𝐵𝑥 + 𝐶𝑠𝑖𝑛𝑘𝑥 + 𝐷𝑐𝑜𝑠𝑘𝑥 + 𝑣,(𝑥)

General solution is,

(𝑁 > 0)

𝐴, 𝐵, 𝐶, 𝐷 are constants
𝑣, 𝑥 is a particular solution corresponding to the transverse 
distributed load p(x)

𝜆 = ±𝑘 𝑜𝑟 𝜆 = 0, 𝑘$ =
𝑁
𝐸𝐼

If N < 0 (tension)

General solution is,

(𝑁 < 0)𝑣 𝑥 = 𝐴 + 𝐵𝑥 + 𝐶𝑠𝑖𝑛ℎ𝑘𝑥 + 𝐷𝑐𝑜𝑠ℎ𝑘𝑥 + 𝑣,(𝑥)



9Prof. Dimitrios G. Lignos:  “Structural Stability”
Stability of Axially Loaded Members

RESSLab
Resilient Steel Structures Laboratory

Boundary Conditions for Beam-Column Equation

Type of Boundary Initial Conditions to be Imposed
Fixed End 𝑣 = 0 𝜕𝑣

𝜕𝑥
= 𝑣' = 0

Hinge 𝑣 = 0 𝑀 = 0 or  (
")

(#"
= 𝑣'' = 0

Free End 𝑀 = 0 𝑉 = 0 or  ((+,(
"))

(##
+ .(/

(#
= 0

Sliding Restraint 
(pin)

𝜕𝑣
𝜕𝑥

= 𝑣' = 0 𝑉 = 0 or  ((+,(
"))

(##
+ .(/

(#
= 0
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Pin-Ended Column with Axial Load (p = 0)

𝐸𝐼
𝜕*𝑣
𝜕𝑥*

+ 𝑁
𝜕$𝑣
𝜕𝑥$

= 0

𝑣 𝑥 = 𝐴 + 𝐵𝑥 + 𝐶𝑠𝑖𝑛𝑘𝑥 + 𝐷𝑐𝑜𝑠𝑘𝑥 (N > 0)

𝑣 0 = 𝑣 𝐿 = 0
𝑀 0 = 𝑀 𝐿 = 0

𝑣 0 = 𝐴 , 1 + 𝐵 , 0 + 𝐶 , 0 + 𝐷 = 0

𝑣%% 0 = 𝐴 , 0 + 𝐵 , 0 + 𝐶 , 0 + 𝐷(−𝑘$) = 0

𝑣%% 𝐿 = 𝐴 , 0 + 𝐵 , 0 + 𝐶 , (−𝑘$𝑠𝑖𝑛𝑘𝐿) + 𝐷(−𝑘$𝑐𝑜𝑠𝑘𝐿) = 0

𝑣 𝐿 = 𝐴 , 1 + 𝐵 , 𝐿 + 𝐶 , 𝑠𝑖𝑛𝑘𝐿 + 𝐷𝑐𝑜𝑠𝑘𝐿 = 0

General solution
x

𝑣
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𝑁
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Pin-Ended Column – Buckling Determinant

Homogeneous system

Buckling Determinant

x

𝑣

𝑣(𝑥)

𝑁

𝑁
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Pin-Ended Column – Buckling Determinant
-Determination of Critical Load, 𝑁𝑐𝑟

𝑠𝑖𝑛𝑘𝐿 = 0 ⟹ 𝑘𝐿 = 𝑛𝜋 ⟹ 𝑁-. =
𝑛$𝜋$𝐸𝐼
𝐿$

, 𝑛 = 1,2,3, …
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𝑣 = 𝐶𝑠𝑖𝑛𝑘𝐿 = 0 ⟹ 𝑣(𝑥) = 𝐶𝑠𝑖𝑛
𝑛𝜋𝑥
𝐿

, 𝑛 = 1,2,3, …

Pin-Ended Column – Buckling Determinant
-Determination of Buckling Shape (Eigenvector)

Substitute 𝑘𝐿 = 𝑛𝜋 into the original simultaneous equations, 

The exact value C cannot be determined (remember we are

solving a homogeneous system).

C is the unknown amplitude of the sinusoidal deflected shape of

the column subjected to compressive load N.

This is called Eigenvector or Eigen mode of the column. The

first three eigen modes are shown in the next slide.
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Pin-Ended Column – Buckling Determinant

x
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Illustration in Real Buildings

ROOF JOISTS
(typ.) ROOF BEAMS

(typ.) 

COLUMN
(typ.)
 

VERTICAL
X BRACING

(typ.)

N x

𝑣

𝑣(𝑥)
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Illustration in Real Buildings
N

x

𝑣

𝑣(𝑥)
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Increase of Critical Buckling Load

ROOF JOISTS
(typ.) ROOF BEAMS

(typ.) 

COLUMN
(typ.)
 

VERTICAL
X BRACING

(typ.)

N



18Prof. Dimitrios G. Lignos:  “Structural Stability”
Stability of Axially Loaded Members

RESSLab
Resilient Steel Structures Laboratory

Increase of Critical Buckling Load

Source: http://www.timminsagricultural.co.uk/wp-
content/uploads/2012/11/BUILDING-1.jpg

N
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Critical Buckling Loads of Columns with Various End 
Restraints (no imperfections)

pinned

pinned

pinned

Fixed Fixed

Fixed

Fixed

Free

Fixed

Fixed in 
rotation
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Solution by 
trial and error

(Newton-Raphson)

Critical Buckling Loads of Columns with Various End 
Restraints (no imperfections)

𝑁$% = 𝑁&

𝑁$% = 2.045 0 𝑁&

𝑁$% = 4 0 𝑁&

𝑁$% =
𝑁&
4

𝑁$% = 𝑁&

𝑁& =
𝜋'𝐸𝐼
𝐿'
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The Concept of the Effective Length Factor

Popular artifice that connects any buckling load to the basic 

pin-pin case (pinned column) that we just solved:

𝑁-. =
𝜋$𝐸𝐼
𝐾𝐿 $

For the 5 elementary cases discussed above, one can

visualize the effective length as the distance between points

of inflection on the buckled shape of the column.



22Prof. Dimitrios G. Lignos:  “Structural Stability”
Stability of Axially Loaded Members

RESSLab
Resilient Steel Structures Laboratory

Effective Length – Geometric Interpretation



23Prof. Dimitrios G. Lignos:  “Structural Stability”
Stability of Axially Loaded Members

RESSLab
Resilient Steel Structures Laboratory

End-Restrained Columns in Multi-Storey Frames

Characteristic in frames with bracings (often called non-sway)
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x

End-Restrained Columns in Multi-Storey Frames

𝑣(𝑥) 𝑎( 0 𝑣)(0)

−𝐸𝐼 0 𝑣))(0)

𝑎* 0 𝑣)(𝐿)

−𝐸𝐼 0 𝑣))(𝐿)

𝑣 0 = 0
𝑎( 0 𝑣) 0 − 𝐸𝐼 0 𝑣)′ 0 = 0

𝑣 𝐿 = 0
−𝑎* 0 𝑣) 𝐿 − 𝐸𝐼 0 𝑣)′ 𝐿 = 0

Rotational
stiffness

Rotational
stiffness

𝑁

𝑁
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End-Restrained Columns in Multi-Storey Frames
-General Solution and Boundary Conditions

𝑣 𝑥 = 𝐴 + 𝐵𝑥 + 𝐶𝑠𝑖𝑛𝑘𝑥 + 𝐷𝑐𝑜𝑠𝑘𝑥
General solution,

(N > 0)

Buckling Determinant

Introduce non-dimensional rigidities,

𝑅/ =
𝑎/𝐿
𝐸𝐼

𝑅0 =
𝑎0𝐿
𝐸𝐼
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𝑎/ = 𝑎0 = 0 → 𝑅/ = 𝑅0 = 0

Pinned Column
𝑎/ = 𝑎0 = ∞ → 𝑅/ = 𝑅0 = ∞

Fixed Column

𝑠𝑖𝑛𝑘𝐿 = 0 𝑠𝑖𝑛
𝑘𝐿
2
= 0

(1)

Eq. (1) encloses all the intermediate conditions between 

totally pinned and fixed ends. Therefore,  

End-Restrained Columns in Multi-Storey Frames
-General Solution and Boundary Conditions

𝑁1 ≤ 𝑁2. ≤ 4 , 𝑁1 0.5 ≤ 𝑘 ≤ 1.0

If the elastic rotational spring constants αT and αB are known,

then the buckling condition of Eq. (1) is directly applicable.
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End-Restrained Columns
-Example: Frame with Rigid Connections

Effective length determination for column C
N

Column C
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End-Restrained Columns
-Example: Frame with Rigid Connections

𝑎/ =
2𝐸𝐼3/
𝐿3/

𝑎0 =
2𝐸𝐼30
𝐿30

Spring Constants

𝑛45, =
⁄𝐼2 𝐿2

⁄𝐼2 𝐿2 + ⁄𝐼3/ 𝐿3/

𝑛678 =
⁄𝐼2 𝐿2

⁄⁄𝐼2 𝐿2 + 𝐼30 𝐿30

Joint Rigidities
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End-Restrained Columns
-Example: Frame with Rigid Connections

𝑘𝐿 $𝑛45, , 𝑛678
4

− 1 +
𝑛45, + 𝑛678

2
1 −

𝑘𝐿
𝑡𝑎𝑛𝑘𝐿

+ 2𝑡𝑎𝑛
𝑘𝐿
𝑘𝐿

= 0 (2)

Eq. (1) Becomes

Assume that the effective factor is, 𝐾 = 9
:;
, then Eq (2) becomes,

𝜋
𝐾

$
𝑛45, , 𝑛678
4

− 1 +
𝑛45, + 𝑛678

2
1 −

𝜋
𝐾

𝑡𝑎𝑛 𝜋𝐾
+
2𝑡𝑎𝑛 𝜋

2𝐾
𝜋
𝐾

= 0 (3)

The equation above is known as the non-sway nomograph

(alignment chart) in all the design standards.
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End-Restrained Columns 
(TGC11-Charpentes Métalliques, Ch.13, p 585)
-Example: Planar Rigid Frame
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End-Restrained Columns – Not Continuous between Floors
-Example: Planar Rigid Frame
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End-Restrained Columns – Not Continuous between Floors
-Example: Planar Rigid Frame

By using the Cross method:

𝑛+,- =
𝐾.

𝐾. + ∑𝐾/,+,-
𝑛123 =

𝐾.
𝐾. + ∑𝐾/,123

𝐾. = 𝐸𝐼./ℎ.

𝐾/ = 𝐸𝐼//𝑙/

?𝐾/,+,- = 𝐾/,4,+,- + 𝐾/,5,+,-

?𝐾/,123 = 𝐾/,4,123 + 𝐾/,5,123

Rigidity of considered column

Rigidity of beam with moment 
of inertia, It, and length lt

Column
Beam (cross beam)
Top of the column
Bottom of the column
Right of the column
Left of the column
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End-Restrained Columns – Continuous between Floors
-Example: Planar Rigid Frame
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End-Restrained Columns – Continuous between Floors
-Example: Planar Rigid Frame (General case)

By using the Cross method:

𝑛+,- =
𝐾. + 𝐾.,+,-

𝐾. + 𝐾.,+,- + ∑𝐾/,+,-
𝑛123 =

𝐾. + 𝐾.,123
𝐾. + 𝐾.,123 + ∑𝐾/,123

𝐾. = 𝐸𝐼./ℎ.

𝐾/ = 𝐸𝐼//𝑙/

?𝐾/,+,- = 𝐾/,4,+,- + 𝐾/,5,+,-

?𝐾/,123 = 𝐾/,4,123 + 𝐾/,5,123

Rigidity of considered column

Rigidity of beam with moment 
of inertia, It, and length lt

Column
Beam (cross beam)
Top of the column
Bottom of the column
Right of the column
Left of the column
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Alignment Chart for Non-Sway Frames
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𝑁

𝑁

x

Expansion of Stability Problem to Sway Frames

Boundary conditions
@𝑥 = 0:
−𝐸𝐼𝑣%%% − 𝑁𝑣% = 𝛽/𝑣
−𝐸𝐼𝑣%% = −𝑎/𝑣′
@𝑥 = 𝐿:
−𝐸𝐼𝑣%%% − 𝑁𝑣% = −𝛽0𝑣
−𝐸𝐼𝑣%% = 𝑎0𝑣′
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Expansion of Stability Problem to Sway Frames
Assume the non-dimensional restraint factors 

x

𝑅/ =
𝛼/𝐿
𝐸𝐼

𝑅0 =
𝛼0𝐿
𝐸𝐼 𝑇/ =

𝛽/𝐿&

𝐸𝐼
𝑇0 =

𝛽0𝐿&

𝐸𝐼
𝑘 =

𝑁
𝐸𝐼

The general buckling determinant becomes

The buckling load (kL) can be solved numerically 

(e.g., with Newton-Raphson iteration)

𝑁

𝑁
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End-Restrained Columns
-Example: Sway Permitted Subassembly

𝑁
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End-Restrained Columns
-Example: Sway-Permitted Subassembly

𝑇/ = 0

𝑇0 = ∞

𝑁

x

𝑁

𝑁
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End-Restrained Columns
-Example: Sway-Permitted Subassembly

In this case, the buckling determinant becomes:

Assume

𝑎/ =
6𝐸𝐼0/
𝐿0/

→ 𝑅/ =
𝑎/𝐿2
𝐸𝐼2

=
6𝐸𝐼0/
𝐿0/

,
𝐿2
𝐸𝐼2

= 6
⁄𝐼0/ 𝐿0/
⁄𝐼2 𝐿2

=
6

𝑛45,

𝑎0 =
6𝐸𝐼00
𝐿00

→ 𝑅0 =
𝑎0𝐿2
𝐸𝐼2

=
6𝐸𝐼00
𝐿00

,
𝐿2
𝐸𝐼2

= 6
⁄𝐼00 𝐿00
⁄𝐼2 𝐿2

=
6
𝑛678
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End-Restrained Columns
-Example: Sway Permitted Subassembly

The decomposed determinant becomes

𝑘𝐿
tan𝐾𝐿

−
𝑘𝐿 $𝑛45, , 𝑛678 − 36
6 𝑛45, + 𝑛678

= 0

Eq. (4) provides the basis of the sway alignment chart in, 

design standards (see next page)

(4)
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Alignment Chart for Effective Length
-Sway-Permitted Planar Rigid Frames
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Combining Yield and Buckling Resistance
Depending on the member slenderness, the critical stress may

be restricted by 𝜎𝑦 rather than 𝜎𝑐𝑟 = 𝑁𝑐𝑟 / 𝐴

𝜎𝑦
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Member slenderness:

Euler Curve,

Safe region to 
prevent buckling

Buckling Resistance of Steel Columns

σy

𝑁12 =
𝜋3𝐸𝐼
𝐿3

⇒ 𝜎12 =
𝑁12
𝐴

= 𝜋3
𝐸 , 𝐼/𝐴
𝐿3

= 𝜋3
𝐸 , 𝑖3

𝐿3
= 𝜋3

𝐸
(𝐿/𝑖)3

𝜆 = 𝐿/𝑖

𝜆 = 𝐿/𝑖

𝜎12 = 𝜋3
𝐸
(𝜆)3



45Prof. Dimitrios G. Lignos:  “Structural Stability”
Stability of Axially Loaded Members

RESSLab
Resilient Steel Structures Laboratory

Interaction Curve for Elastic & Inelastic Buckling

Failure due to yielding

Failure due to buckling

Safe regionσy
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Buckling Experiments on Steel Columns

N

Image courtesy of Prof. Tremblay

𝑁 = 𝑁!"

𝑁 = 𝑁!"

𝑁 = 𝑁!"

𝑀#$%
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Buckling Experiments on Steel Columns
-Comparison with Theoretical Solution

𝑇𝑒𝑠𝑡𝑠 𝑜𝑛 𝐼𝑃𝐸200, 𝜎6 = 275𝑀𝑃𝑎

𝜆̅ =
𝐴 8 𝑓!
𝑁"#

𝑁
𝑁!"
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σ/σy

Normalized Slenderness, λ/λ1
Source: Karamanci and Lignos (2011)

σ/
f y

Due to material hardening &
member actual dimensions

Due to residual stress
and imperfections

𝜆̅

Buckling Experiments on Steel Columns
-Comparison with Theoretical Solution
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Effect of Residual Stresses on Buckling Resistance

✩ Residual stresses could be held accountable for the lower

resistance of steel members with intermediate length

✩ Confirmed by research at Lehigh University on residual

stress measurements (Beedle and Tall 1960)

✩ Residual stresses are caused by:

✩ Manufacturing process of steel profiles

✩ Welding (common in built-up sections)

✩ For stress-relieved columns, deviations are only due to

initial out-of-straightness of the members (see slide 52)
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Residual Stresses due to Manufacturing

Residual Stress Distribution IPE400

Source: Sousa and Lignos 2017

Residual Stress Distribution HEM300
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Residual Stresses due to Welding
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The Effect of Imperfections
In a real column, imperfections affect the behaviour near
𝑁𝑐𝑟. Imperfections may be due to out-of-straightness of the
column axis or small load eccentricity.

N

N

N

N
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The Effect of Imperfections
-Out-of-Straightness

𝑣6 = 𝑣" sin
𝜋𝑥
𝐿

Assumed initial shape due to out-of-straightness:

𝑀67< = −𝐸𝐼𝑣′′

Internal and external moments at location x, 
𝑀=)< = 𝑁(𝑣6 + 𝑣)

𝐸𝐼𝑣%% + 𝑁𝑣 = −𝑁𝑣6 𝑎𝑠𝑠𝑢𝑚𝑒 𝑘$ =
𝑁
𝐸𝐼

𝑣%% + 𝑘$𝑣 = −𝑘$𝑣" sin
𝜋𝑥
𝐿

(2)

𝑣> = 𝐴𝑠𝑖𝑛𝑘𝑥 + 𝐵𝑐𝑜𝑠𝑘𝑥

𝑣? = 𝐶𝑠𝑖𝑛
𝜋𝑥
𝐿

+ 𝐷𝑐𝑜𝑠
𝜋𝑥
𝐿

Homogeneous solution

Particular solution

N

N
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𝑣 0 = 𝑣 𝐿 = 0 ⟹ 𝐴 = 𝐵 = 0

𝑣 =
⁄𝑁 𝑁1

1 − ⁄𝑁 𝑁1
𝑣" sin

𝜋𝑥
𝐿

Substituting to Eq. (2):

−𝐶
𝜋&

𝐿&
sin

𝜋𝑥
𝐿

− 𝐷
𝜋&

𝐿&
cos

𝜋𝑥
𝐿

+ 𝐶𝑘& sin
𝜋𝑥
𝐿

+ 𝐷𝑘& cos
𝜋𝑥
𝐿

= −𝑘&𝑣' sin
𝜋𝑥
𝐿

𝐶 𝑘& −
𝜋&

𝐿&
= −𝑣', 𝐷 = 0

Total deflection due to axial load 𝑁,

𝑣 = 𝑣> + 𝑣? = 𝐴𝑠𝑖𝑛𝑘𝑥 + 𝐵𝑐𝑜𝑠𝑘𝑥 +
⁄𝑁 𝑁1

1 − ⁄𝑁 𝑁1
𝑣" sin

𝜋𝑥
𝐿

Initial Conditions:

Therefore,

The Effect of Imperfections
-Out-of-Straightness
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𝑣<@<AB = 𝑣6 + 𝑣 =
𝑣" sin

𝜋𝑥
𝐿

1 − ⁄𝑁 𝑁1
≤

𝑣"
1 − ⁄𝑁 𝑁1

𝑣<@<AB
𝐿

=
𝑣"/𝐿

1 − ⁄𝑁 𝑁1
= 𝑣"/𝐿

1
1 − ⁄𝑁 𝑁1

The initial out-of-straightness 𝑣0 is the fabrication tolerance

for straightness in the rolling mill, and in steel design practice

it is usually 1/1000 of the respective column length. It is not

detectable by eye. If it is then you have a big problem!

The Effect of Imperfections
-Out-of-Straightness

At the center :

Magnification Factor (MF)

1
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The Effect of Imperfections
-Out-of-Straightness

vtotal/L
0 0.02 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed
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om

pr
es

si
ve

 A
xi

al
 L

oa
d,

 P
/P

E

0

0.2

0.4

0.6

0.8

1

1.2
v0=1/1000 (Code Limit)
v0=1/100

𝑀𝐹 =
1

1 − ⁄𝑁 𝑁&

𝑀𝐹 =
1

1 − ⁄𝑁 𝑁&

𝑣0 = 1/100

⁄𝑣𝑡𝑜𝑡𝑎𝑙 𝐿
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0 50 100 150−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Total Height [ft]
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d 
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n 
P/

P y

Compression

Tension
2-story

12-story

Due to gravity load

Exterior First Storey Steel Columns

Tension

Compression

Source: Suzuki and Lignos (2014)

The Effect of Imperfections
-One Important Example (Frame under Seismic Load)
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oa

d 
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n 
N

/N
pl

Total Height [m]
15 30 45
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Buckling Curves in SIA 263 or EC3-1-1

0 0.5 1 1.5 2 2.5 3
Non-Dimensional Slenderness, (A.fy/Ncr)

1/2

0
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Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)

𝑁#$
𝑁%,'$

≤ 1

Class 1 & 2 members: Buckling resistance in compression:

𝑁%,'$ =
𝜒 & 𝐴 & 𝑓(
𝛾)*

𝜒 =
1

Φ+ Φ+ − 𝜆̅+
≤ 1.0

Buckling factor:

Φ = 0.5 & 1 + 𝑎 & 𝜆̅ − 0.2 + 𝜆̅+ 𝜆̅ =
𝐴 & 𝑓(
𝑁,-

General Condition:

Imperfection factor
(depends on shape, steel material, thickness)

Assume 𝛾𝑀1 = 1.0
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Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)
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Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)
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Steel Column Design 
-Buckling Resistance (EC3-Part 1-1 Section 6.3)

𝜆̅ =
𝐴 & 𝑓(
𝑁,-

Normalized Member Slenderness

𝑁,- = 𝜋+ &
𝐸 & 𝐼
𝑙. +

Critical Load

lk: Distance 
between two points 
that moment 
becomes zero 
within the column
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Modern Codes – Buckling Resistance
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Exercise Figures
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𝑎𝑃

𝑎𝑃

𝑎𝑃(1 − 𝑎)𝑃

𝑎𝐿 1 − 𝑎 𝐿

(a) (b)(c)


