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=PFL Objectives of This Week’s Lecture

To introduce:
< General theory of beam-columns
<~ Stability of continuous members
<> Beam-column theory in axially loaded members
< Buckling determinant
<> Effect of boundary conditions
< Effect of residual stresses
< Effect of imperfections
< Alignment charts for non-sway and sway frames

< Buckling resistance according to design standards
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=PFL Theory of Flexure from Structural Mechanics
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=prL Equations of Equilibrium in Beam-Columns

Equilibrium of shear forces

0@ = i + [ pG)dx =0
0
Equilibrium of Moments
T M(x)+N-v(x)—M1+Q(x)-x+j p(x*)x*dx* =0
0
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=prL Equations of Equilibrium in Beam-Columns

Equilibrium of a segment of the deflected column for shear & flexure,

X

0 = + [ pGxdx =0
0
X
M(x)+N-v(x)—M;+0Q -x +f p(x*)x*dx* =0
0
Differentiating the equations above,
6Q+ (x)=0 6M+Nav+ 0
—_— —_ —_— —_— = 1
0x P d0x 0x ¢ )

Equilibrium equations of beam-columns in terms of internal forces M
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=prL Equations of Equilibrium in Beam-Columns

9, .
The term Na—v can be neglected it N << N, (first order analysis)
X

Differentiating Equation (1) from previous slide,

92M d(Ndv) a0Q

+ + — = O =
0x? dx*  Ox 02M  9(Nv)
- -l— — =
30 0x? 0x? P
5, TP =0 - M_Elazv -
7 Ox?
0%(E10%v) . d(Nov)
0x* axz P
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=prL Equations of Equilibrium in Beam-Columns

Assume EI = Constant and N = Constant
0%y 0%

El — + N— =
dx* dx? P

for p = 0 We have a homogeneous problem with solution,
V=e€

(EIZ* + NA%)e?™ = 0
Homogeneous problem with solution,
N

(/12 + ﬂ) A2 =0 (assume k? = —)
El ' El

A2+ k?)A2 =0
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=PFL Differential Equation of Planar Flexure

If N> 0 (compression) A =+ikorA=0
General solution is,

v(x) = A+ Bx + Csinkx + Dcoskx + v,(x) (N > 0)

A,B,C,D are constants

v, (x) is a particular solution corresponding to the transverse
distributed load p(x)
IN|

If N<O (tension) 1 = +kor 1 =0,k? :E

General solution is,
v(x) = A + Bx + Csinhkx + Dcoshkx + v,(x) (N < 0)
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=PrL Boundary Conditions for Beam-Column Equation

Type of Boundary Initial Conditions to be Imposed
Fixed End V= v |
—=v =0
0x
Hinge v="0 M=0or 2=y =0
0x2
Free End M =0 d(EId%v) = Nov
V=0o ———+—-==0
Sliding Restraint ov d(EId%v) = Nov
(pin) x V) %7 1o
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EPFL Pin-Ended Column with Axial Load (p = 0)

N
6417 azv U(O) = U(L) =0

1 A ot V52=0 Mo=mMw=o0
| . General solution
. in(x) v(x) = A + Bx + Csinkx + Dcoskx (N> 0)
| »(0)=A-1+B-0+C-0+D=0
i v"(0)=A4-04+4B-0+C-0+D(—k*)=0
_v " v(L)=A-1+B-L+C-sinkL + DcoskL = 0

v'"'(L)=A-04+B-0+C - (=k?sinkL) + D(—k?coskL) = 0
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EPFL Pin-Ended Column - Buckling Determinant

lN
. 10 0 1 J[A°
x 0 O 0 —k? B| 0
. o) 1 L Sin kL c?s kL C
Lo 0 0 —k"sinkL —k“coskL | [ D
i Homogeneous system
|
Do 1 0 0 1
' . 0 0 0 —k? 0
1 L sin kL cos kL
0 0 —k’*sinklL. —k*coskL

Buckling Determinant
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£PFL Pin-Ended Column — Buckling Determinant

| D
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sin kL
—k*sinkL

0
L
0

— k2
cos kL
—k*cos kL

—k2
cos kL
—k*cos kL

— 1 X

— 0 x
0O O
1 L
0O O

sinklL, = 0= kL =nm = N, =

-Determination of Critical Load, N,

0 0 —k?
| sin kL cos kL
0 —k*sinkl. —k*coskL
0
sinkL = ()
—k*sin kL
n?m?EIl
1z n=1273,..
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EPFL Pin-Ended Column — Buckling Determinant
-Determination of Buckling Shape (Eigenvector)

Substitute kL. = nm into the original simultaneous equations,

nmwx
v=C_CsinkL=0= v(x) = CsinT,n =1,2,3, ...

The exact value C cannot be determined (remember we are
solving a homogeneous system).

C is the unknown amplitude of the sinusoidal deflected shape of
the column subjected to compressive load N.

This is called Eigenvector or Eigen mode of the column. The

first three eigen modes are shown in the next slide.
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EPFL Pin-Ended Column - Buckling Determinant

n2E| InlE|
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|
- V
L |
|
|
|
Yy
n=1
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=PFL lllustration in Real Buildings

1
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£PFL lllustration in Real Buildings
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=PFL Increase of Critical Buckling Load
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£PFL Increase of Critical Buckling Load

Source: http://www.timminsagricultural.co.uk/wp-
content/uploads/2012/11/BUILDING-1.jpg
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=p= Critical Buckling Loads of Columns with Various End
Restraints (no imperfections)

inned ¢ inned {  Fixed Free Fixed in v
" / ” \ rotatioh” |
pinned \ Fixed Fixed Fixed Fixed

/ /l I vV V
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=p= Critical Buckling Loads of Columns with Various End
Restraints (no imperfections)

Eigenfunction Effective

m2El

Solution by
: trial and error
:(Newton-Raphson)

Boundary Buckling Eigenvalue  Length
Case Conditions Determinant Buckling Load Factor
I 0 0 | sinklL = 0
I v(0) =v"(0) =0 0 0 0 - KL — 1.0
v(L) =V'(L) =0 1 L sinkL coskL N. =N
T LU . ... el o211 2 N2 Y
1 0 0 1 _
11 v(0) =V'(0) =0 0 0 0 —i? Z"_“‘;‘g 0.7
v(L)=V(L) =0 1 L sinkl  coskL o ‘
0 1 kcoskL —ksinkL N, = 2.045 - Ng
..................................................... l()()lgnkLO
v(0) = V(0) =0 01 &k 0 S =
i v(L)y=V(L)=0 1 L sinklL  coskL kL = 2w 0.5
0 1 kcoskL —ksinkL _
cos sm NCT = 4. NE
0 0 0 i coskL =0
v V'O +EY=V(0)=0 [0 ¥ 0 0 ML= 0
v(L)=V(L) =0 I L sinkL  coskL N ‘
0O 1 kcoskL —ksmkL N. = _E
cr — 4
0 1 k 0 sinkL = 0
v V(O +KV=V0)=0 [0 & 0 0 S 10
v(L)=V'(L) =0 1 L sinkL coskL - ’
0 1 kcoskL —ksinkL | N, = Ng
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=PFL The Concept of the Effective Length Factor

Popular artifice that connects any buckling load to the basic
pin-pin case (pinned column) that we just solved:

m?E]

NCT = (KL)Z

For the 5 elementary cases discussed above, one can
visualize the effective length as the distance between points

of inflection on the buckled shape of the column.
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=PFL Effective Length — Geometric Interpretation

—_—————1 -

A

Lo

i
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EPFL End-Restrained Columns in Multi-Storey Frames

Characteristic in frames with bracings (often called non-sway)

Resilient Steel Structures Laboratory

Stability of Axially Loaded Members
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£PFL End-Restrained Columns in Multi-Storey Frames

N Rotational Boundary conditions:
/ stiffness »(0) =0
v(x) ar - v'(0) ar-v'(0)—EI-v'"(0)=0
| \ A
—EI-v"(0)

N —EI-v"(L)
Q v(lL)=0
—ag-v'(L)—EI-v'"'(L)=0

!/
: ) ag - v (L
Rotational -~ N BV (L)
stiffness
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£PFL End-Restrained Columns in Multi-Storey Frames
-General Solution and Boundary Conditions

General solution,
v(x) = A+ Bx + Csinkx + Dcoskx (N> 0)

Buckling Determinant

| 0 0 |

| L sin kL cos kL B
0 QT ()L’_rk E]k?‘ -
0 —oap —agkcoskL + Elk*sinkl. agksinkL + Elk*cos kL

Introduce non-dimensional rigidities,

arL aglL

R, = — R, = —
T El B E]

Prof. Dimitrios G. Lignos: “Structural Stability”
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. End-Restrained Columns in Multi-Storey Frames
-General Solution and Boundary Conditions

—2RrRp + sin kL[RrRgkL — kL(Ry + Rg) — (kL)’] (1)
+cos kL[2RrRg + (kL)*(R7 + Rg)] = 0

EPF

Pinned Column Fixed Column
ar =ag =0—-> Ry =Rz =0 Ar =g =00 > Ry = Rg = ©
sinkL = 0 . kL
Sl”l’l7 =0

Eq. (1) encloses all the intermediate conditions between

totally pinned and fixed ends. Therefore,
Ng < Ngp <4 - Npg 055k<1.0

If the elastic rotational spring constants arand ag are known,

then the buckling condition of Eq. (1) is directly applicable.
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-pr ENd-Restrained Columns
-Example: Frame with Rigid Connections

Effective length determination for column C

Column C f~—————_—_————/—"—""_

I
I
I
N
: LCuIc
”. ~ @=ML/2El
I‘
\
\

oa=M/06=2EIL

— - ——
.‘ ‘-

Lyg.lgs
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m

End-Restrained Columns
-Example: Frame with Rigid Connections

PrL

Lorlgr Spring Constants
e l
2E1
aT — g
M . M ~
Lol ﬁ'&e ; F/”/’
T ©=ML/2EI
a=M/0=2EIL
aB —
-------------------- LgB
N\
Lyg.lyg
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-pr ENd-Restrained Columns
-Example: Frame with Rigid Connections

Eq. (1) Becomes

kL)?ng,, - n;
( ) SUup mf_l_l_

Neup + Nins (1 kL ) kL
4 2

2tan— = 0 (2
tankL T ankL (2)

Assume that the effective factor is, K = kiL,then Eq (2) becomes,

(ﬂ)z n n + L 2tan——

174 sup ~inf n n; 74

K : 14 supz inf 4 _ KT[ n n.ZK=0(3)
tClTlK K

The equation above is known as the non-sway nomograph

(alignment chart) in all the design standards.
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End-Restrained Columns

hK=ﬂhm

EPFL (TGC11-Charpentes Métalliques, Ch.13, p 585)
-Example: Planar Rigid Frame
+— |
hm, sup
poutre supérieure
>
h, poteau m
1T poutre inférieure i
hm, inf
- —_— -

Resilient Steel Structures Laboratory
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=p= End-Restrained Columns — Not Continuous between Floors
-Example: Planar Rigid Frame

Upper
column\ | lpu

1 ' 1
//////4//////?

[ ]
14
v
1%
- ASB 'r Tie not §hown )
1 for clarity
!
| | |
)\, /7777777777

I (At hagsas!
| i QCA-A
Lower/: TPL : B-B

column

I | - A P z A T l‘) R

1 Y . i J v 1) e Ll &
' | u\~ o L N | [ # (I} B — i '4‘.i£§E§§£: ;§§_
| ' o= ; P! e B0 | o Ml e !
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=p=| End-Restrained Columns — Not Continuous between Floors
-Example: Planar Rigid Frame

By using the Cross method:

Kmn Km
n = n: =
P Km + Z Kt,sup nf Km + Z Kt,inf
¢+
K,, = El,,,/h,, Rigidity of considered column
K. = EI/l;  Rigidity of beam with moment
of inertia, /,, and length /,

Z Kt,sup = Kt,g,sup + Kt,d,sup

Z Kt,inf = Kt,g,inf + Kt,d,inf

m : Column

t : Beam (cross beam)

sup : Top of the column

inf * Bottom of the column

d * Right of the column

8 + Left of the column
RESSLab Prof. Dimitrios G. Lignos: “Structural Stability”
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=pEL End-Restrained Columns — Continuous between Floors

-Example: Planar Rigid Frame

RESSLab Prof. Dimitrios G. Lignos: “Structural Stability”
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=p=| ENnd-Restrained Columns — Continuous between Floors
-Example: Planar Rigid Frame (General case)

By using the Cross method:

o Km + K sup . Km + Kminf
— inf —
Km,sup Sup Ky + Km,sup + Kt,sup ! Km + Km,inf + 2 Kt,inf
‘- [ » [l »
K,, = El,,,/h,, Rigidity of considered column
K. = EI/l;  Rigidity of beam with moment
of inertia, /,, and length /,
h
N Z Kt,sup = Kt,g,sup + Kt,d,sup
Z Kt,inf = Kt,g,inf + Kt,d,inf
m : Column
_ t : Beam (cross beam)
sup . Top of the column
inf * Bottom of the column
d ! Right of the column
8 + Left of the column
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=PFL Alignment Chart for Non-Sway Frames

coefficient de rigidité 7yp
(articulé)
1.0 \ N \ Q;I(O
\\ N \,/| N
Y
0.8 N \ \ //,5) \
PIRRLS L KTN
\ ‘o
Sl N <o N
0.6 e X \\
\‘ \\ \\ \\
. N 2o, "N N
\\ Y NN\
?
02 \fz,\\%" NN
Jy
\’4{,)\ AN \ \\ \\
2 N\ AYAN
0 0.2 0.4 0.6 0.8 1.0
(rigide) coefficient de rigidité 7 inf (articuld)
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=PFL Expansion of Stability Problem to Sway Frames

Olr Y

Coldumn under =
sty
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N Boundary conditions

=\ @x =0:

=
\ Br —EIv'" —Nv' = frv

—EIv" = —a;v'
@x = L:
—EIv"" — Nv' = —fzv

—EIv" = agv’
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=PFL Expansion of Stability Problem to Sway Frames

N Assume the non-dimensional restraint factors —
N L agl BrL3 L3 N
4\/\/\/_| R — QLR = i = T T = B k =
! ‘t—"\ T T T A TR T
Br
‘X The general buckling determinant becomes
Ty (kL)? 0 Tr
L 0 Ry RrkL (kL)
TB [TB — (]xL)z] TBSiH kL TBCOS kL =0
0 RB [RB]\L cos kL [—RB]\L sin kL
— (kL)*sinkL] — (kL)*coskL]
og L/ B
1—\CAW The buckling load (kL) can be solved numerically
N (e.g., with Newton-Raphson iteration)
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=p= End-Restrained Columns
-Example: Sway Permitted Subassembly

Le.lc

e LT T T bk

Prof. Dimitrios G. Lignos: “Structural Stability”
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-pr, ENd-Restrained Columns
-Example: Sway-Permitted Subassembly

T+ =
yLerler  OT e T
iy -
?\ or = 0
M ~——= e M
Lole | G C—
M/6=6El/L=o
H
i
{ Lpg, Igs %8 .
zéw ---- ” >
g
TB — OO
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-pr ENd-Restrained Columns
-Example: Sway-Permitted Subassembly

In this case, the buckling determinant becomes:

— (kL)*sinkL] — (kL)*cos kL]

0 (kL)
0 Ry
| |
0 Rp
Assume
6E g7
— > R =
ar Lo T
6F 1
ap = BB _ R, =
LBB

0 0
RrkL (kL)?
sin kL cos kL

[RgkLcoskL |—RpgkLsinkL

arle 6EIBT. Le 6 Igr/Lpt
Elc Lgr El¢ Ic/L¢

aplc 6EIBB. Le <IBB/LBB
Ic/L¢
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=p= End-Restrained Columns
-Example: Sway Permitted Subassembly

The decomposed determinant becomes

kL (kL)*ngyp * Ny — 36
tan KL 6(nsup + ninf)

=0 (4

Eq. (4) provides the basis of the sway alignment chart in,

design standards (see next page)
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=p=L Alignment Chart for Effective Length
-Sway-Permitted Planar Rigid Frames

hK=ﬂhm Km

N Kom, inf

Resilient Steel Structures Laboratory

Stability of Axially Loaded Members

coefficient de rigidité Ngup
o (articulé) i
I==SSSSSNNY
e B e "W I N2 \U|
0.8 ::QQQ\\\\\\>\> N
SSENSNAN
o AN
~ AN
SN NSAR RN
\\\ /N\ \\\ \ \ \
Vi
BNSRNNBRLN
SO T
o NN Y VAN
Q . 0.2 0.4 0.6 0.8 }.O
(rigide) coefficient de rigidité 7 inf EIoue)
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=PFL Combining Yield and Buckling Resistance

Depending on the member slenderness, the critical stress may

be restricted by o), ratherthan o, = N, / A

Stress (MPa)

Strain

RESSLab Prof. Dimitrios G. Lignos: “Structural Stability”
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=PFL Buckling Resistance of Steel Columns

m?El Ny  LE-I/A E-i* | E

2
N..= =0, =—— =T =TT
cr LZ cr A

1z Tz L?

Member slenderness: A =1L/i

E
Euler Curve, 0.y = T¢ —

(1)?

Safe region to
prevent buckling

A=L/i
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Failure due to yielding

{
.

Prof. Dimitrios G.

Failure due to buckling




EPFL Buckling Experiments on Steel Columns

Image courtesy of Prof. Tremblay
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=pFL Buckling Experiments on Steel Columns
-Comparison with Theoretical Solution

e Siress relieved

10— O o] )
i ° o o As—rolled, strong axis
Np I - o + As—rolled, weak axis
] + Tests on IPE200, 0, = 275MPa
+
05+
[ TN N NN A (NN TN N NN N TN N O (O U T O O A N
0 05 1.0 15
1= |2k
NCT
RESSLab Prof. Dimitrios G. Lignos: “Structural Stability”

47

Stability of Axially Loaded Members



=pFL Buckling Experiments on Steel Columns
-Comparison with Theoretical Solution

O/Uy 1.8 .
o Class 1

¢ | | — ---------------- ------- o Class 2

: : ; v Class 3, 4
1_4_ ............... ................ ................. ............... _

I S RS S ]
oo & Due to material hardening &

1@ o= == = ~‘member-actual-dimensions

on Yo @ ‘

: oy, O:\ / '
0.8_ ............... ...Ofc,’ “'. Gl ...............
ND : :

(5N
A 4
RS
g8 it
0.6 PO NEBONGA
: el
-,

L ------ 0. 8% s _______________
0.2-.D.ue.to..ﬁes.idual_sj;ress D _

and imperfections X

00 0.5 1 1.5 2 2.5

Normalized Slenderness, 1
Source: Karamanci and Lignos (2011)
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EPFL Effect of Residual Stresses on Buckling Resistance

w Residual stresses could be he
resistance of steel members wit

v Confirmed by research at Le

d accountable for the lower

n intermediate length

nigh University on residual

stress measurements (Beedle and Tall 1960)

v¢ Residual stresses are caused by:

v Manufacturing process of steel profiles

v Welding (common in built-up sections)

v For stress-relieved columns, deviations are only due to

initial out-of-straightness of the members (see slide 52)

Resilient Steel Structures Laboratory



=PFL Residual Stresses due to Manufacturing

Residual Stress Distribution HEM300 Residual Stress Distribution IPE400

—150

Resilient Steel Structures Laboratory

0.00, /
—150 — -
R l/
| | | r — 7 |\ |
—50 0 50 —250 0 200
50 /@
-0.150'?/ —E—

—150 — —

Source: Sousa and Lignos 2017
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EPFL Residual Stresses due to Welding

' Hr ™S weld
' .
Yield . : ) i" :
stress ' " :
| ; Tension
' I zZone
Tensile —b: le
stress . :
| |
| |
| |
I
-
Compressive
stress
L e .
Distance from
weld centre-line
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£PFL The Effect of Imperfections
In a real column, imperfections affect the behaviour near

N_... Imperfections may be due to out-of-straightness of the

column axis or small load eccentricity.

Resilient Steel Structures Laboratory
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=p=L 1 he Effect of Imperfections
-Out-of-Straightness

Assumed initial shape due to out-of-straightness:
. TTX
Ui = UO Sin (T)
Internal and external moments at location x,

Mint — —EIU” Mext — N(Ul + U)

N
EIv" + Nv = —Nv; (assume k% = E)

v + k*v = —k?v, sm( ) (2)

Homogeneous solution vy = Asinkx + Bcoskx

Particular solution vp = (sin (nfx) + Dcos (7T_LX)
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=p=. 1 Ne Effect of Imperfections

-Out-of-Straightness
Substituting to Eq. (2):
2 2

—C%sin (nTx) — D%cos (n_lfc) + Ck* sin (l;c) + Dk* cos (ZZC) = —k?*v, sin (ZZC)

2
c[kz_”_]:_v D=0
12 0’

Total deflection due to axial load N,

— v, + vp = Asinkx + Beoskx +—2L N8 (ﬂx)
UV =7Vy Vp = ASINKX COSKX 1 — N/NE Vg SIn I

Initial Conditions: v(0) =v(L) =0=>A4A=B =0

N/Ng . TX
Therefore, v = 1= N/N. Vo Sin (T)
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=p=. 1 he Effect of Imperfections
-Out-of-Straightness 1

0% T

<
1—N/N; — 1—N/N,

Viotal = Vi TV =

L
At the center :  —total _ vo/l _ vo/L

L ~ 1-N/Ng

Magnification Factor (MF)

The initial out-of-straightness v, is the fabrication tolerance
for straightness in the rolling mill, and in steel design practice
it is usually 1/1000 of the respective column length. It is not

detectable by eye. If it is then you have a big problem!
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=prL 1 he Effect of Imperfections

-Out-of-Straightness
P iV = 1/100

1.2} | .

_v0=1/1 000 (Code Limit)
_v0=1/1 00

—h
1)
|

O
(0]
ST T T T T T

o .
~
sssmssssssssssssnenlisnnnnnnnnnnnn

Normalized Compressive Axial Load, P/PE
o
(@]

MF =
0.2 1—N/Ng _
O ] ] ] ]
0 0.02 0.04 0.06 0.08 0.1
vtotal/L
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=prL T he Effect of Imperfections
-One Important Example (Frame under Seismic Load)

Exterior First Storey Steel Columns

- O 0.3
]
I
] 0.2
i N
0.1 Tension
0 Due to gravity load

<

v
A

01" /

Compression

Axial Load Variation N/N,,,

_ 02" 2-story
'enS|on o 043l | 12-story
£, |
""" J 0% 15 30 45
Compression Total Height [m]
Source: Suzuki and Lignos (2014)
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=PFL Buckling Curves in SIA 263 or EC3-1-1

X
©c o o o 9O
o o N o o©

o
~

o
O
-
O
©
LL
C
o
=
(@)
-
O
O
o

o 0O
nNow

o
-

| |

o
o
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0.5 1 1.5 2 2.5
Non-Dimensional Slenderness, (A.fy/Ncr)
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ePFL Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)

N
Ed 4

General Condition: <
Np ra

Class 1 & 2 members: Buckling resistance in compression:

X A-f
Npra = > Assume Yy _ 10
YMm1 T

Buckling factor:
1
¥ = — < 1.0

D+ P2 — }2
_ _ - |A-f
® = 0.5-[14@\(/1—0.2)+/12] = |
V cr

Imperfection factor
(depends on shape, steel material, thickness)
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PrL. Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)

Buckling curve
Buckling | S 235
Cross section Limits about S 275 :
S -= | S 460
axis S 355
S 420
t y=y a g
ol tr <40 mm : e
] et Z2—-2 b a
i o
2 = =Yy b a
3 =1 40mm<1,<100 ) <
= z2-2 C a
P y y -
3
A \‘ - Y b a
= & t;< 100 mm 4 )
o - & & C a
z - .
( ] VI
L
= y—-Yy d C
- tr > 100 mm e
| | Z—-2 d C
| 1
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=prL Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)

Buckling curve

Resilient Steel Structures Laboratory

Buckling | S 235
Cross section Limits about S 275 .
axis S 355 S 460
S 420
" =, 1, t, < 40 mm ey b b
—— Z—-2 c C
2 o
A i y Y/
Z ¥ iy £ y
— > 4
ty > 40 mm - d ¥
Z Z

. hot finished any a a
o 8 E—

cold formed any C c

\Z 1 t, l
[ : I_l generally (except as
. ' .
é o . below) any b b
B2 h| = B y -
ﬁ J . -
v 2 ) ‘ e thick welds: a > 0,5t;
= [ ] b/t < 30 any C C
¥ ‘ J h/t, <30
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erFL Steel Column Design
-Buckling Resistance (EC3-Part 1-1 Section 6.3)

Normalized Member Slenderness

1= [Ah
V N cr
Critical Load E-]
N..=m?"
- (Lk)?
/k_ D|S tance Barre tenue transversalement Barre non tenue transversalement
between two points | \ |
that moment | 1) &
becomes zero | s
within the column
k=051 0.71 1.01 o
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=PFL  Modern Codes — Buckling Resistance

Code Authority Resistance Factor &  Column formula ’,’,—‘; Comments
AISC, AISI, 0.9 0.658"" A< LS5
AASHTOUSA
0.877 No15
A2 '
CSA, CANADA, 0.9 = SSRCCore T
SOUTH AFRICA [1+\%] I 2
11 1.34
11 1.00
EC, EUROPE 0.909 ! <10 Q=05[1 +a(—02)+N\]
Q0+ V@ -\
European Column Curve | «
a 0.21
b 0.34
c 0.49
d 0.76
AS, AUSTRALIA 0.9 50\ T = w800
Ell -y /1= (g_x) ] n = 0.00326(X — 13.5) >0
_(%/90)*+1 4+
2(%/90)*
AlJ, JAPAN 0.9 1.0 A <0.15
0.15 < A < ——
0.9 —0.05 —);_0"5 1.0 -0.5 —);"0‘15 vo.6
——-0.15 ——-0.15
V0.6 V0.6
1.0 1
RESSLab 085 1222 "= Tos
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Exercise Figures
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