

CIVIL 369: “Structural Stability”

School of Architecture, Civil & Environmental Engineering
Civil Engineering Institute
Resilient Steel Structures Laboratory (RESSLab)

Stability of Axially Loaded Members

Instructor: Prof. Dimitrios G. Lignos

GC B3 485 (bâtiment GC)

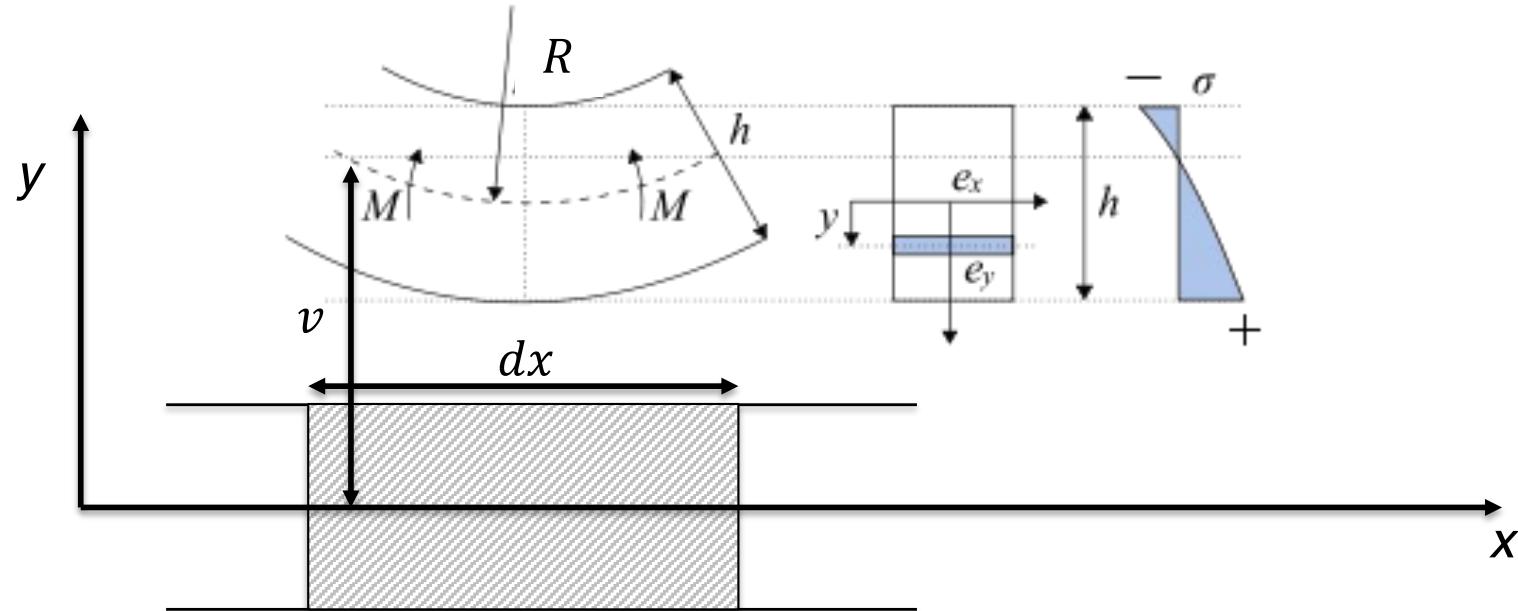
E-mail: dimitrios.lignos@epfl.ch

EPFL Objectives of This Week's Lecture

To introduce:

- ✧ General theory of beam-columns
 - ✧ Stability of continuous members
- ✧ Beam-column theory in axially loaded members
 - ✧ Buckling determinant
 - ✧ Effect of boundary conditions
 - ✧ Effect of residual stresses
 - ✧ Effect of imperfections
- ✧ Alignment charts for non-sway and sway frames
- ✧ Buckling resistance according to design standards

EPFL Theory of Flexure from Structural Mechanics

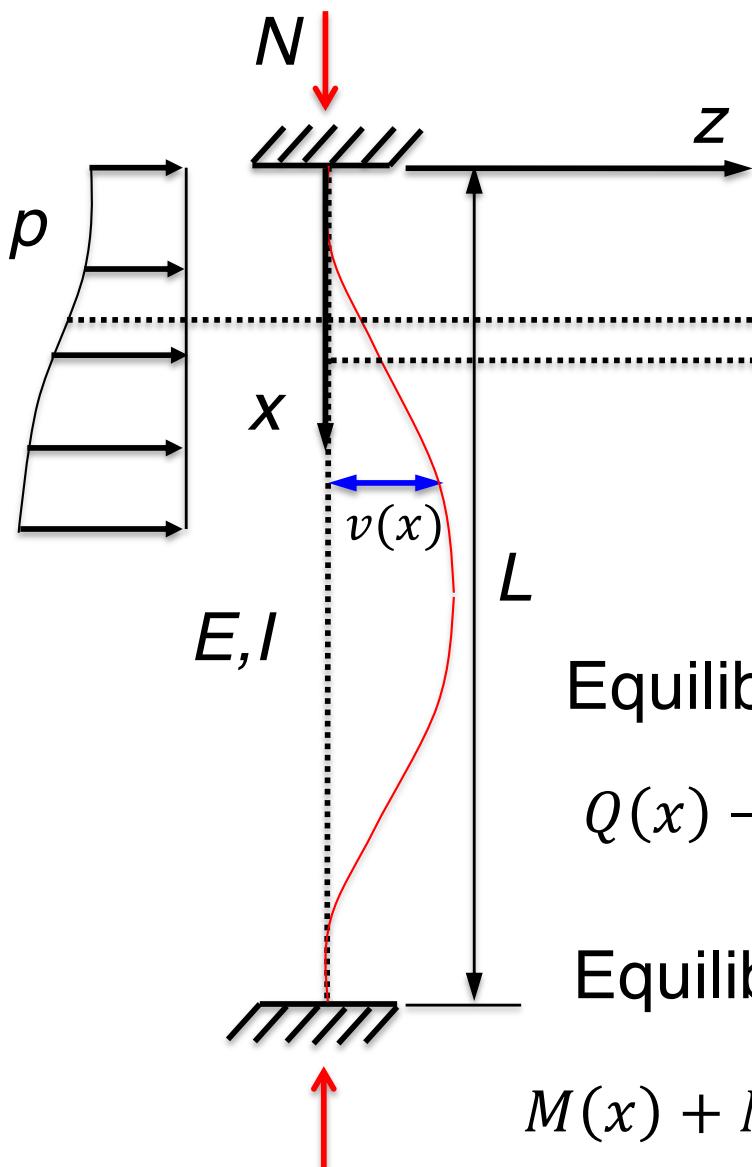
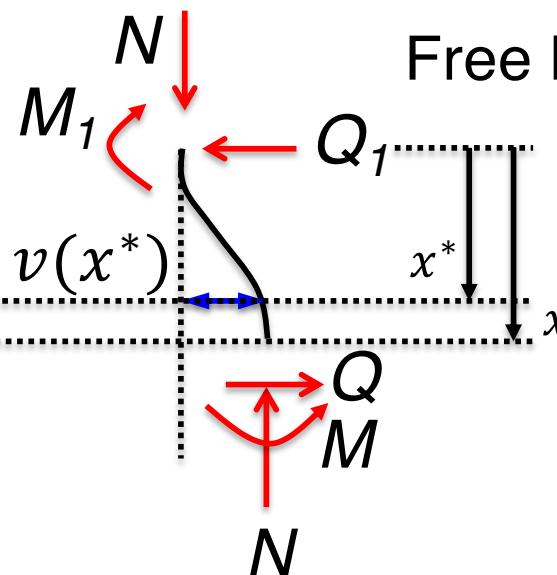


$$M = \int_A \sigma y dA = E \int_0^h y^2 dA / R \Rightarrow M = E \cdot I / R$$

$$I = \int_0^h y^2 dA \quad \frac{1}{R} = \frac{v''}{(1 + v'^2)^{\frac{3}{2}}} \cong v''$$

$$M = E \cdot I \cdot v''$$

EPFL Equations of Equilibrium in Beam-Columns



Equilibrium of shear forces

$$Q(x) - Q_1 + \int_0^x p(x^*) dx^* = 0$$

Equilibrium of Moments

$$M(x) + N \cdot v(x) - M_1 + Q(x) \cdot x + \int_0^x p(x^*) x^* dx^* = 0$$

EPFL Equations of Equilibrium in Beam-Columns

Equilibrium of a segment of the deflected column for shear & flexure,

$$Q(x) - Q_1 + \int_0^x p(x^*) dx^* = 0$$

$$M(x) + N \cdot v(x) - M_1 + Q \cdot x + \int_0^x p(x^*) x^* dx^* = 0$$

Differentiating the equations above,

$$\frac{\partial Q}{\partial x} + p(x) = 0 \quad \frac{\partial M}{\partial x} + N \frac{\partial v}{\partial x} + Q = 0 \quad (1)$$

Equilibrium equations of beam-columns in terms of internal forces M & Q

EPFL Equations of Equilibrium in Beam-Columns

The term $N \frac{\partial v}{\partial x}$ can be neglected if $N \ll N_{cr}$ (first order analysis)

Differentiating Equation (1) from previous slide,

$$\left. \begin{aligned} \frac{\partial^2 M}{\partial x^2} + \frac{\partial(N\partial v)}{\partial x^2} + \frac{\partial Q}{\partial x} &= 0 \\ \frac{\partial Q}{\partial x} + p(x) &= 0 \end{aligned} \right\} \quad \left. \begin{aligned} \frac{\partial^2 M}{\partial x^2} + \frac{\partial(N\partial v)}{\partial x^2} &= p \\ M &= EI \frac{\partial^2 v}{\partial x^2} \end{aligned} \right\}$$

$$\frac{\partial^2(EI\partial^2 v)}{\partial x^4} + \frac{\partial(N\partial v)}{\partial x^2} = p$$

EPFL Equations of Equilibrium in Beam-Columns

Assume $EI = \text{Constant}$ and $N = \text{Constant}$

$$EI \frac{\partial^4 v}{\partial x^4} + N \frac{\partial^2 v}{\partial x^2} = p$$

for $p = 0$ We have a homogeneous problem with solution,

$$v = e^{\lambda x}$$

$$(EI\lambda^4 + N\lambda^2)e^{\lambda x} = 0$$

Homogeneous problem with solution,

$$\left(\lambda^2 + \frac{N}{EI}\right)\lambda^2 = 0 \quad \left(\text{assume, } k^2 = \frac{N}{EI}\right)$$

$$(\lambda^2 + k^2)\lambda^2 = 0$$

EPFL Differential Equation of Planar Flexure

If $N > 0$ (compression) $\lambda = \pm ik$ or $\lambda = 0$

General solution is,

$$v(x) = A + Bx + C \sin kx + D \cos kx + v_p(x) \quad (N > 0)$$

A, B, C, D are constants

$v_p(x)$ is a particular solution corresponding to the transverse distributed load $p(x)$

If $N < 0$ (tension) $\lambda = \pm k$ or $\lambda = 0, k^2 = \frac{|N|}{EI}$

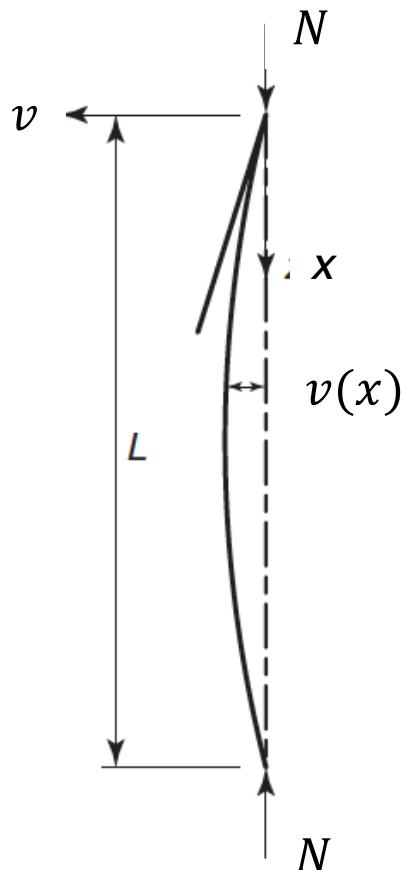
General solution is,

$$v(x) = A + Bx + C \sinh kx + D \cosh kx + v_p(x) \quad (N < 0)$$

EPFL Boundary Conditions for Beam-Column Equation

Type of Boundary	Initial Conditions to be Imposed	
Fixed End	$v = 0$	$\frac{\partial v}{\partial x} = v' = 0$
Hinge	$v = 0$	$M = 0$ or $\frac{\partial^2 v}{\partial x^2} = v'' = 0$
Free End	$M = 0$	$V = 0$ or $\frac{\partial(EI\partial^2 v)}{\partial x^3} + \frac{N\partial v}{\partial x} = 0$
Sliding Restraint (pin)	$\frac{\partial v}{\partial x} = v' = 0$	$V = 0$ or $\frac{\partial(EI\partial^2 v)}{\partial x^3} + \frac{N\partial v}{\partial x} = 0$

EPFL Pin-Ended Column with Axial Load ($p = 0$)



$$EI \frac{\partial^4 v}{\partial x^4} + N \frac{\partial^2 v}{\partial x^2} = 0 \quad v(0) = v(L) = 0 \quad M(0) = M(L) = 0$$

General solution

$$v(x) = A + Bx + C \sin kx + D \cos kx \quad (N > 0)$$

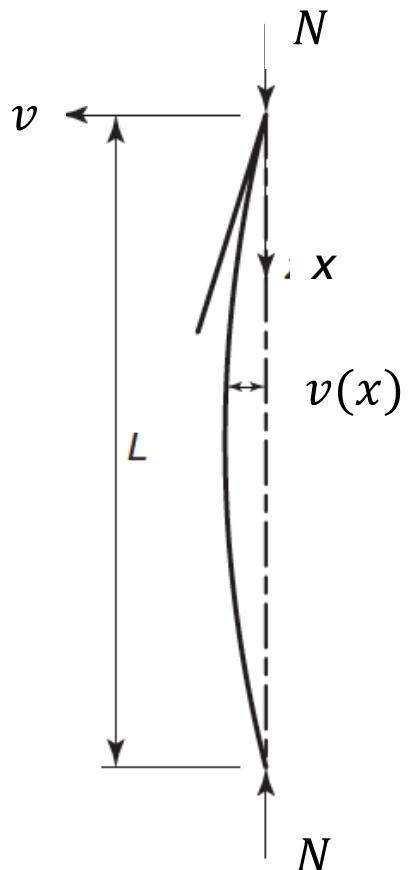
$$v(0) = A \cdot 1 + B \cdot 0 + C \cdot 0 + D = 0$$

$$v''(0) = A \cdot 0 + B \cdot 0 + C \cdot 0 + D(-k^2) = 0$$

$$v(L) = A \cdot 1 + B \cdot L + C \cdot \sin kL + D \cos kL = 0$$

$$v''(L) = A \cdot 0 + B \cdot 0 + C \cdot (-k^2 \sin kL) + D(-k^2 \cos kL) = 0$$

EPFL Pin-Ended Column – Buckling Determinant



$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -k^2 \\ 1 & L & \sin kL & \cos kL \\ 0 & 0 & -k^2 \sin kL & -k^2 \cos kL \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = 0$$

Homogeneous system

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -k^2 \\ 1 & L & \sin kL & \cos kL \\ 0 & 0 & -k^2 \sin kL & -k^2 \cos kL \end{vmatrix} = 0$$

Buckling Determinant

EPFL Pin-Ended Column – Buckling Determinant

-Determination of Critical Load, N_{cr}

$$1 \times \begin{vmatrix} 0 & 0 & -k^2 \\ L & \sin kL & \cos kL \\ 0 & -k^2 \sin kL & -k^2 \cos kL \end{vmatrix} - 0 \times \begin{vmatrix} 0 & 0 & -k^2 \\ 1 & \sin kL & \cos kL \\ 0 & -k^2 \sin kL & -k^2 \cos kL \end{vmatrix} \\ + 0 \times \begin{vmatrix} 0 & 0 & -k^2 \\ 1 & L & \cos kL \\ 0 & 0 & -k^2 \cos kL \end{vmatrix} - 1 \times \begin{vmatrix} 0 & 0 & 0 \\ 1 & L & \sin kL \\ 0 & 0 & -k^2 \sin kL \end{vmatrix} = 0$$

$$\sin kL = 0 \Rightarrow kL = n\pi \Rightarrow N_{cr} = \frac{n^2 \pi^2 EI}{L^2}, n = 1, 2, 3, \dots$$

EPFL Pin-Ended Column – Buckling Determinant

-Determination of Buckling Shape (Eigenvector)

Substitute $kL = n\pi$ into the original simultaneous equations,

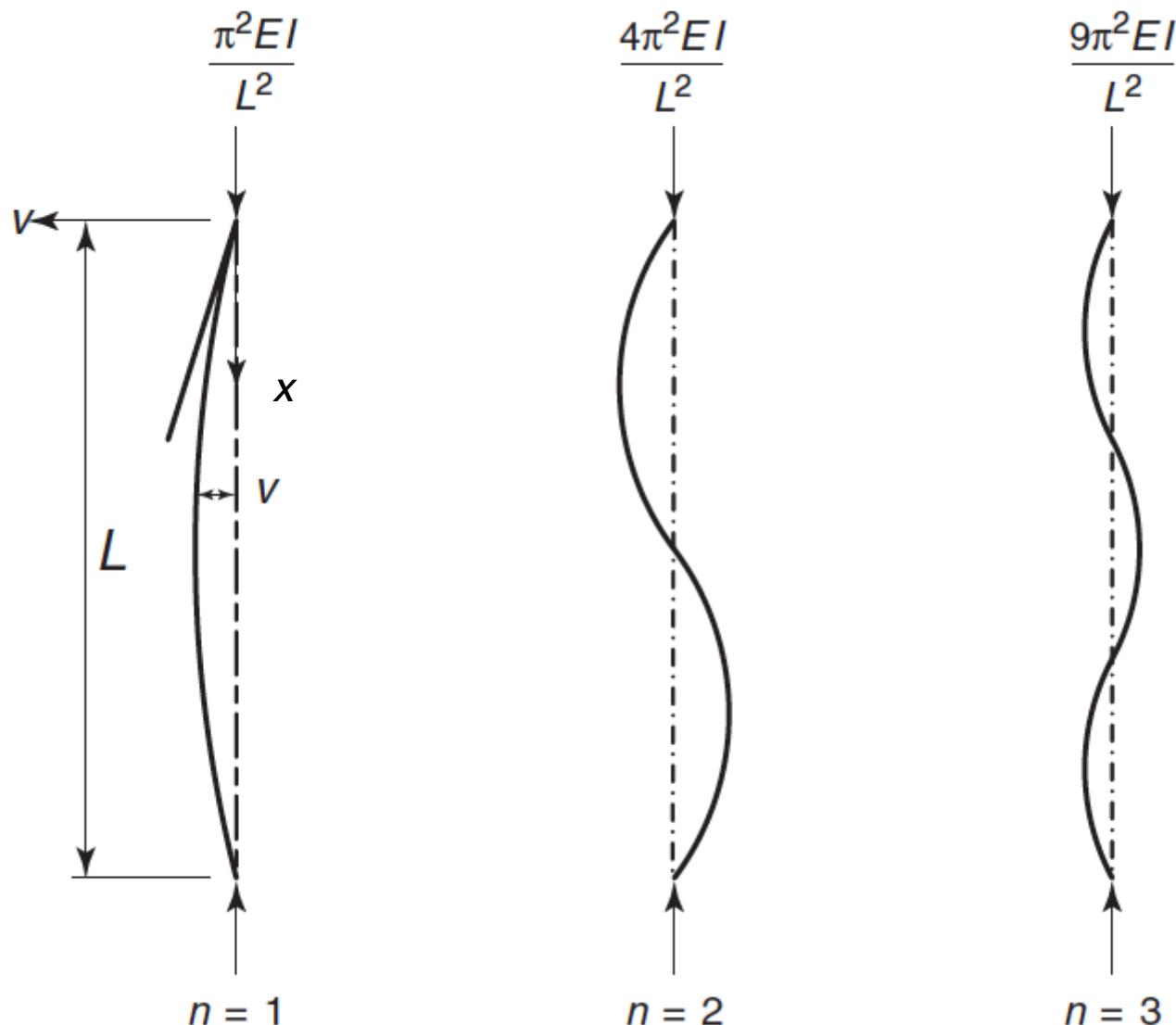
$$v = C \sin kL = 0 \Rightarrow v(x) = C \sin \frac{n\pi x}{L}, n = 1, 2, 3, \dots$$

The exact value C cannot be determined (remember we are solving a homogeneous system).

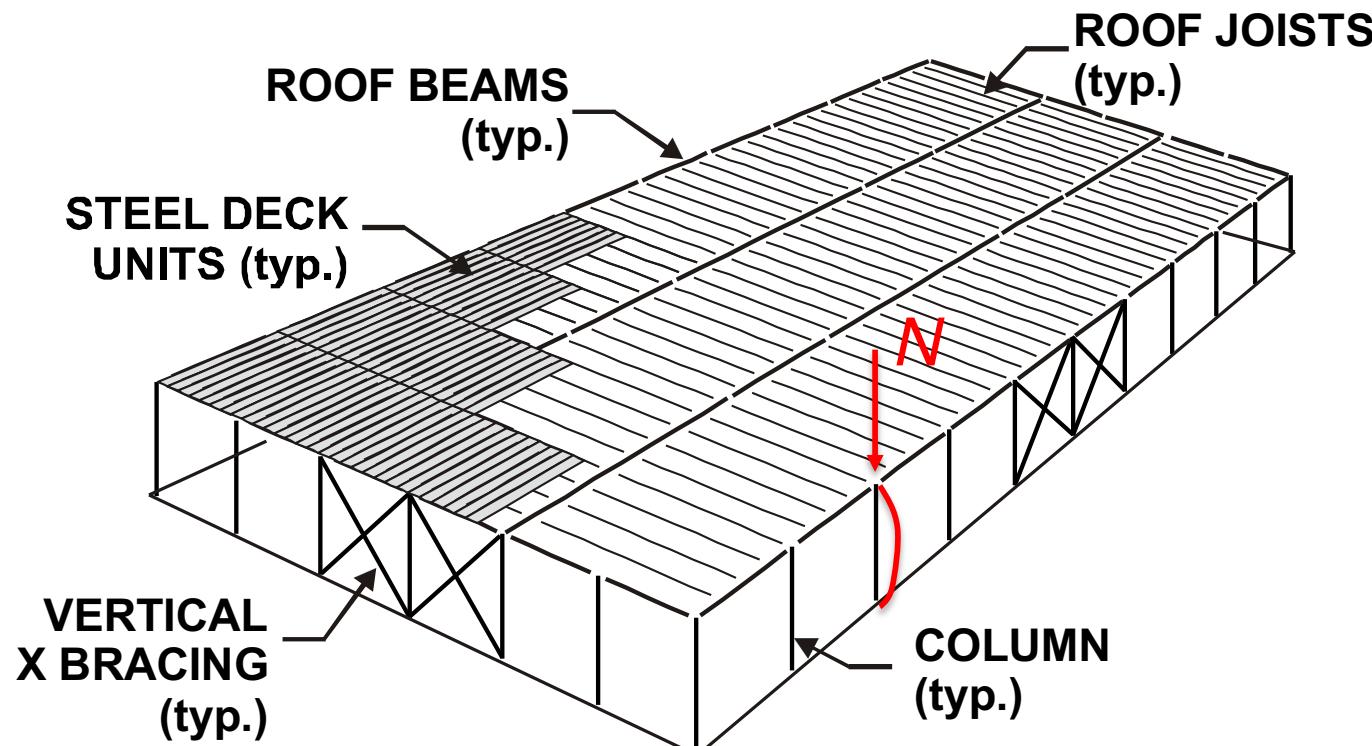
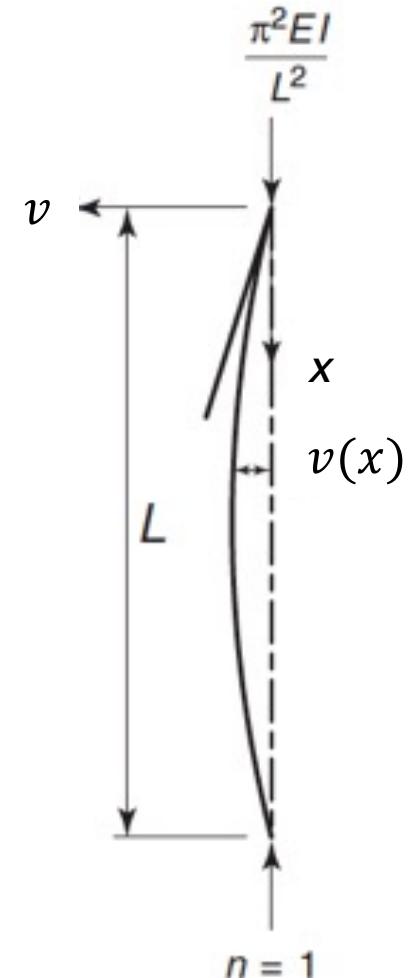
C is the unknown amplitude of the sinusoidal deflected shape of the column subjected to compressive load N .

This is called *Eigenvector* or *Eigen mode* of the column. The first three *eigen modes* are shown in the next slide.

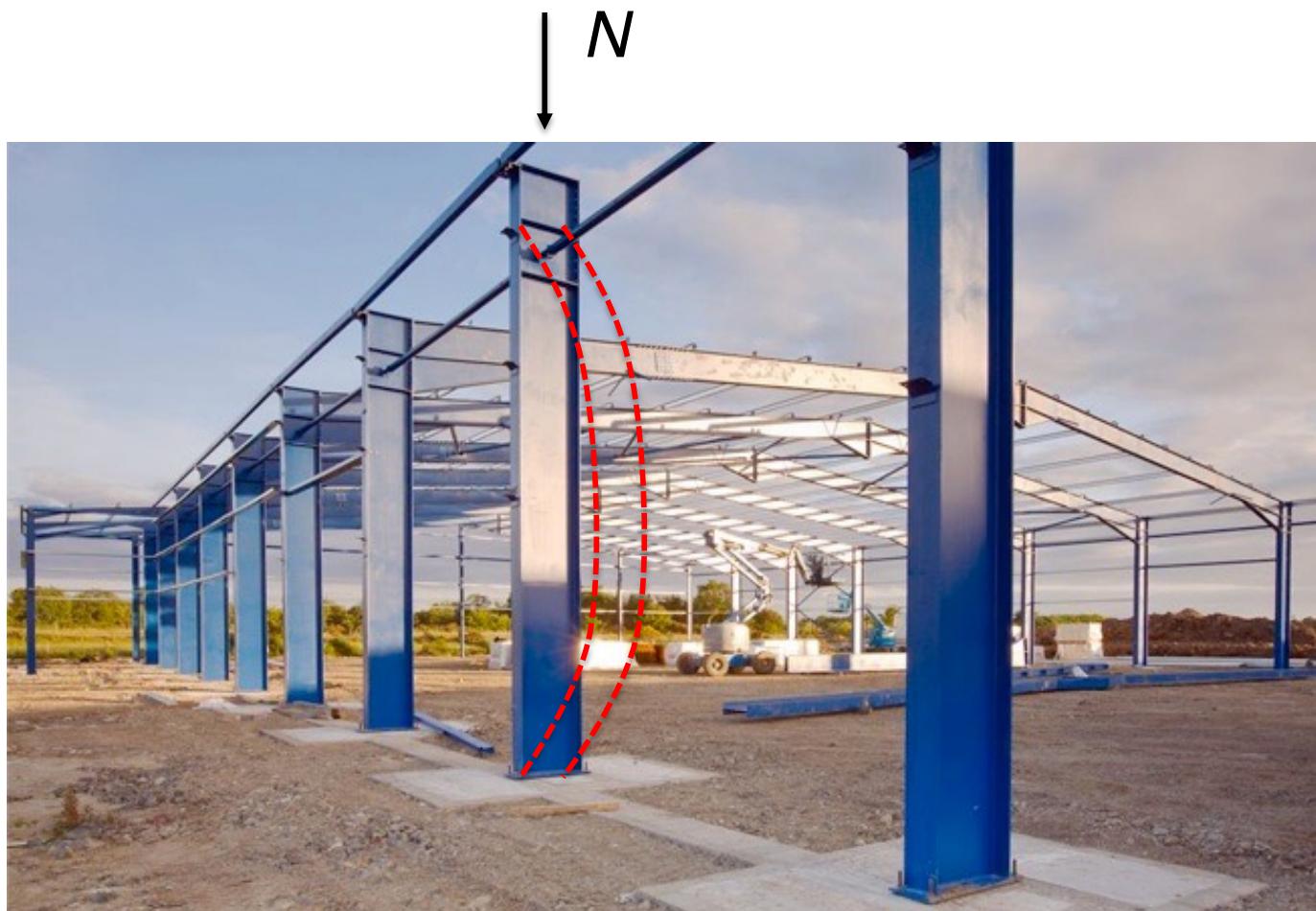
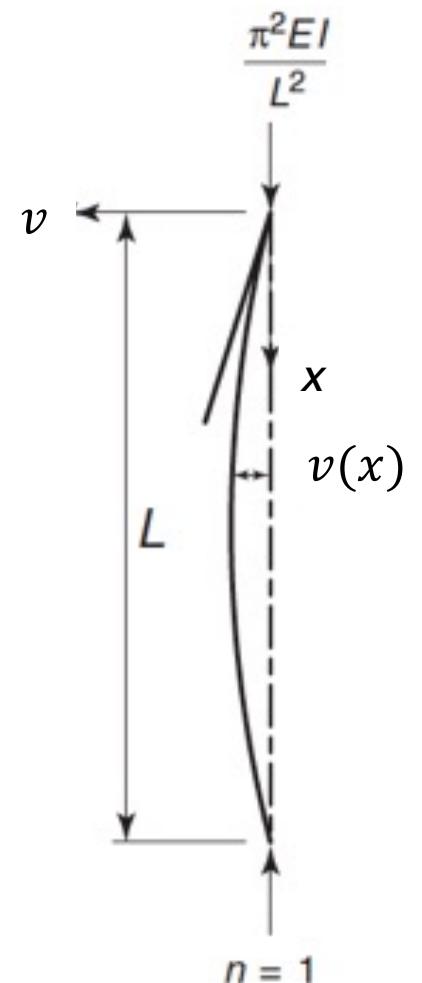
EPFL Pin-Ended Column – Buckling Determinant



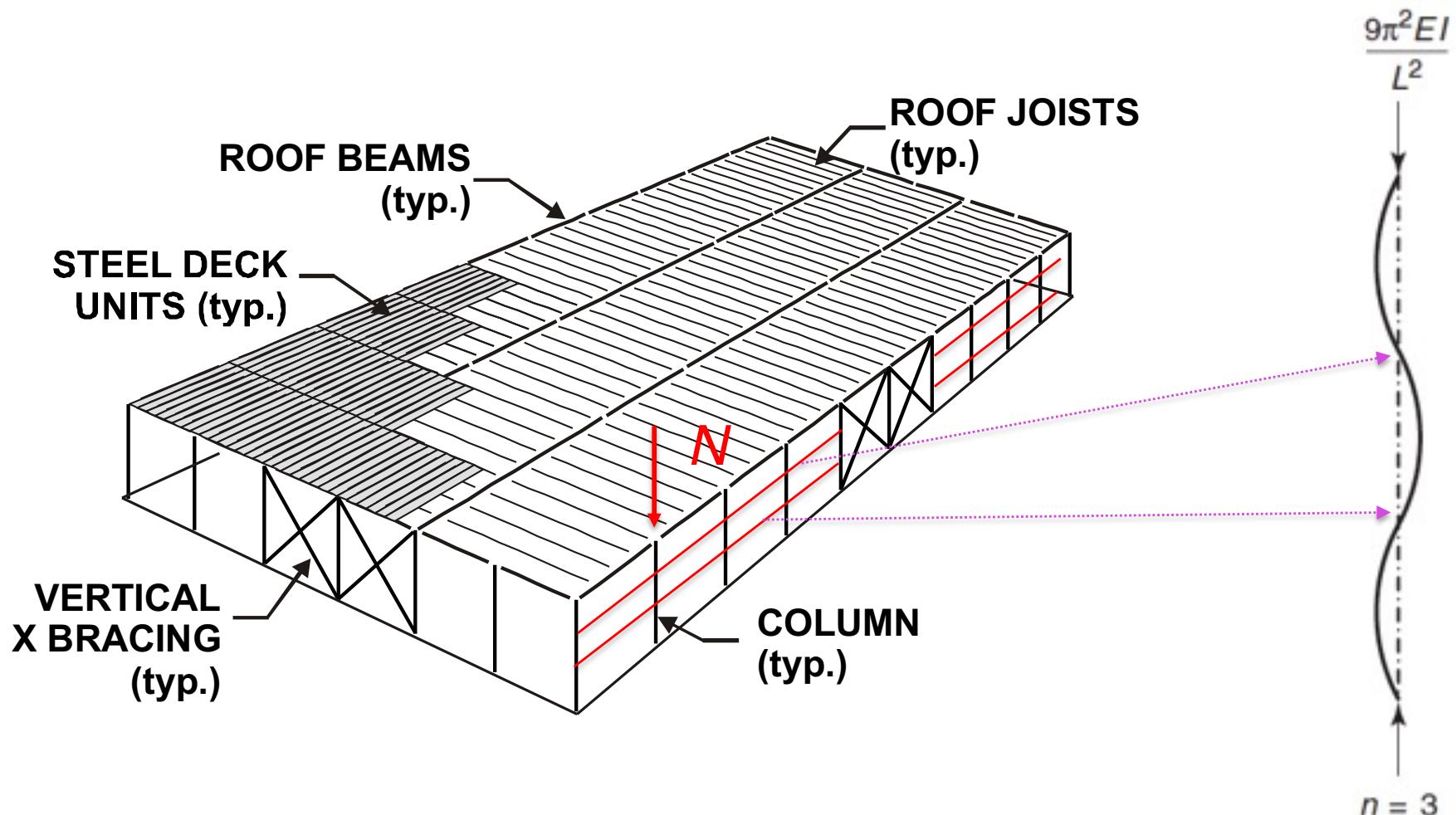
EPFL Illustration in Real Buildings



EPFL Illustration in Real Buildings



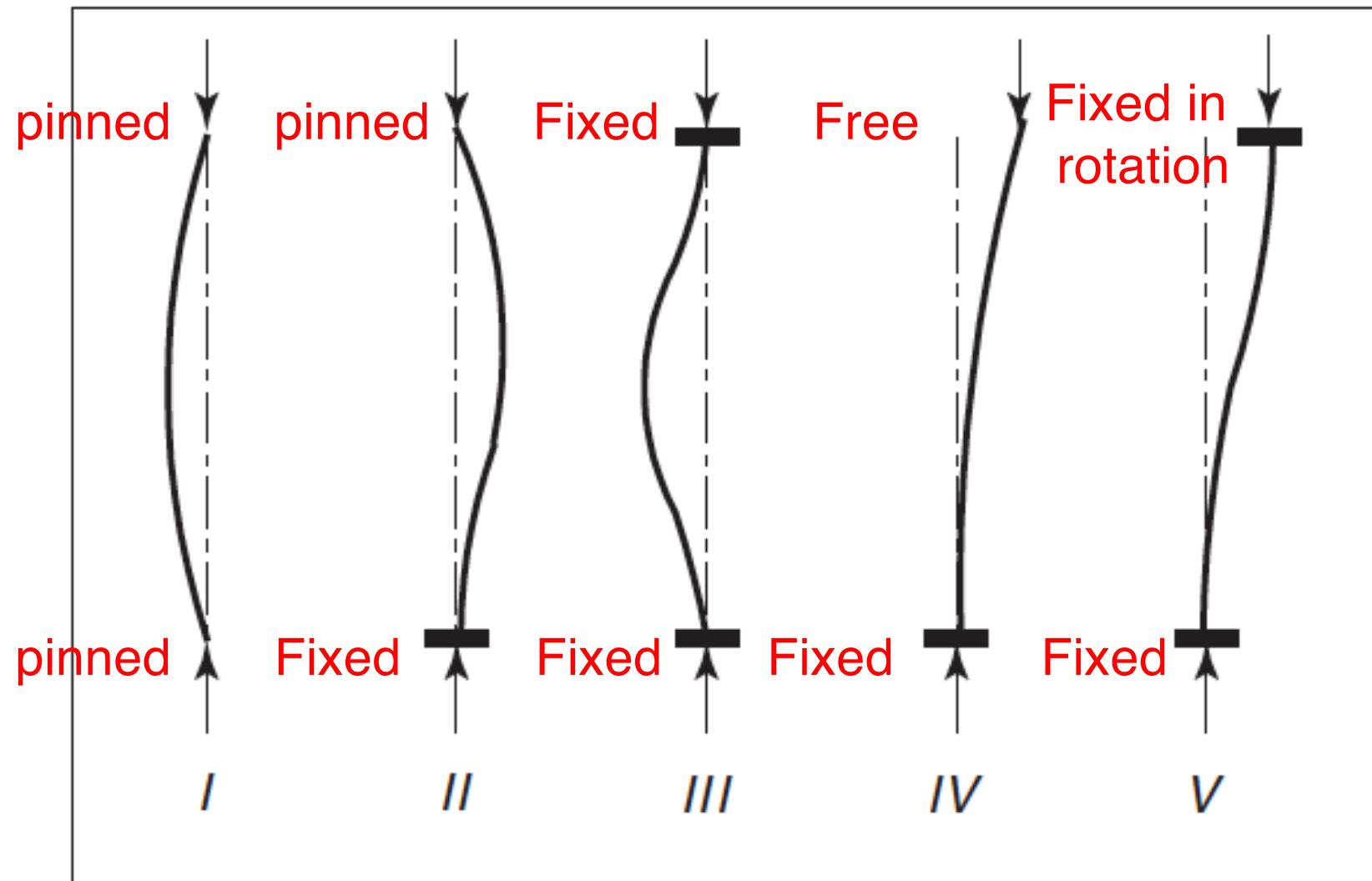
EPFL Increase of Critical Buckling Load



EPFL Increase of Critical Buckling Load

Source: <http://www.timminsagricultural.co.uk/wp-content/uploads/2012/11/BUILDING-1.jpg>

Critical Buckling Loads of Columns with Various End Restraints (no imperfections)



EPFL Critical Buckling Loads of Columns with Various End Restraints (no imperfections)

Case	Boundary Conditions	Buckling Determinant	Eigenfunction	Effective Length Factor
			Eigenvalue	
I	$v(0) = v''(0) = 0$ $v(L) = v''(L) = 0$	$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -k^2 \\ 1 & L & \sin kL & \cos kL \\ 0 & 0 & -k^2 \sin kL & -k^2 \cos kL \end{vmatrix}$	$\sin kL = 0$ $kL = \pi$ $N_{cr} = N_E$	1.0
II	$v(0) = v''(0) = 0$ $v(L) = v'(L) = 0$	$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -k^2 \\ 1 & L & \sin kL & \cos kL \\ 0 & 1 & k \cos kL & -k \sin kL \end{vmatrix}$	$\tan kl = kl$ $kl = 4.493$ $N_{cr} = 2.045 \cdot N_E$	0.7
III	$v(0) = v'(0) = 0$ $v(L) = v'(L) = 0$	$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & k & 0 \\ 1 & L & \sin kL & \cos kL \\ 0 & 1 & k \cos kL & -k \sin kL \end{vmatrix}$	$\sin \frac{kL}{2} = 0$ $kL = 2\pi$ $N_{cr} = 4 \cdot N_E$	0.5
IV	$v'''(0) + k^2 v' = v''(0) = 0$ $v(L) = v'(L) = 0$	$\begin{vmatrix} 0 & 0 & 0 & -k^2 \\ 0 & k^2 & 0 & 0 \\ 1 & L & \sin kL & \cos kL \\ 0 & 1 & k \cos kL & -k \sin kL \end{vmatrix}$	$\cos kL = 0$ $kL = \frac{\pi}{2}$ $N_{cr} = \frac{N_E}{4}$	2.0
V	$v'''(0) + k^2 v' = v'(0) = 0$ $v(L) = v'(L) = 0$	$\begin{vmatrix} 0 & 1 & k & 0 \\ 0 & k^2 & 0 & 0 \\ 1 & L & \sin kL & \cos kL \\ 0 & 1 & k \cos kL & -k \sin kL \end{vmatrix}$	$\sin kL = 0$ $kL = \pi$ $N_{cr} = N_E$	1.0

$$N_E = \frac{\pi^2 EI}{L^2}$$

Solution by trial and error
(Newton-Raphson)

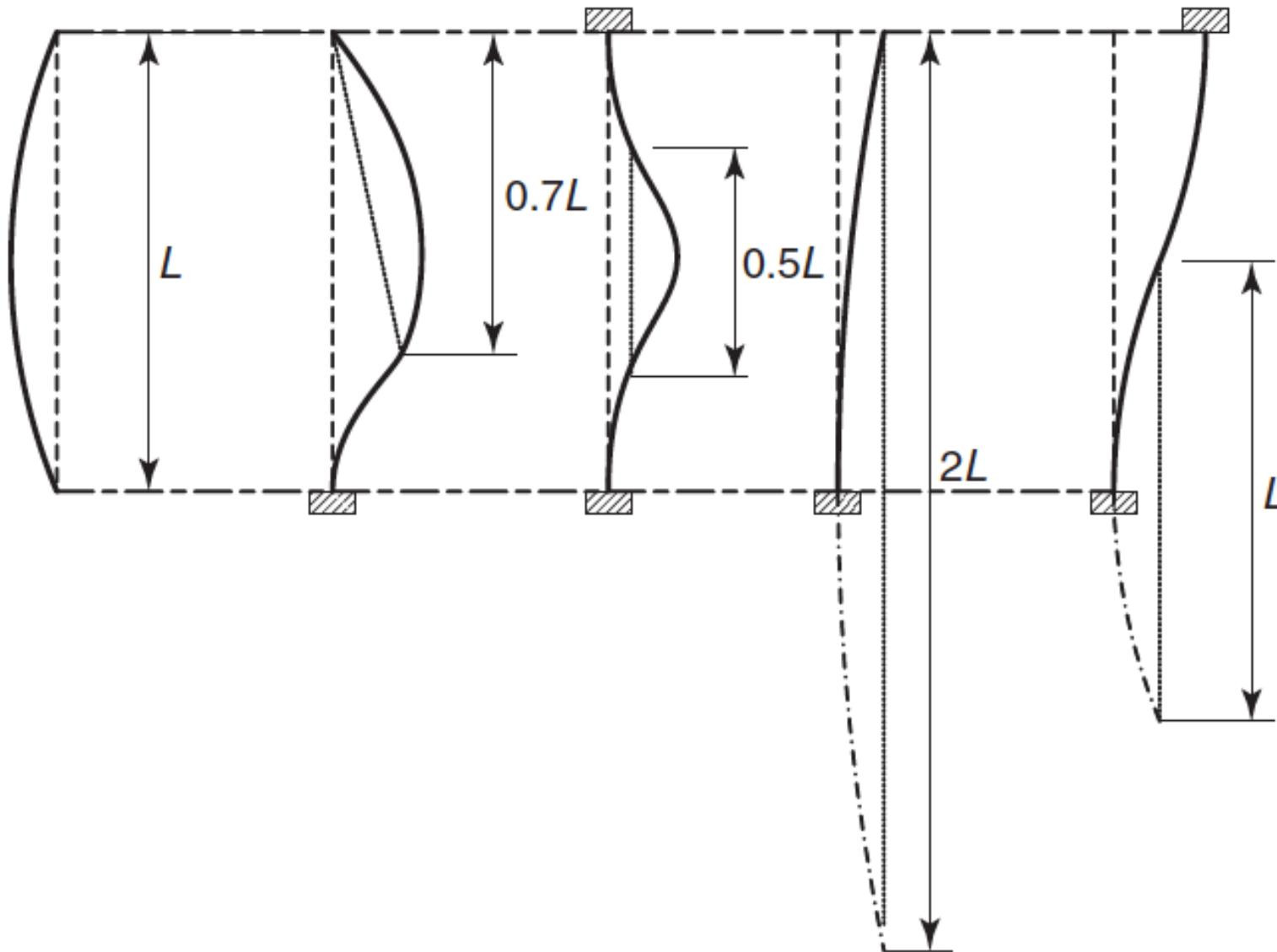
EPFL The Concept of the Effective Length Factor

Popular artifice that connects any buckling load to the basic pin-pin case (pinned column) that we just solved:

$$N_{cr} = \frac{\pi^2 EI}{(KL)^2}$$

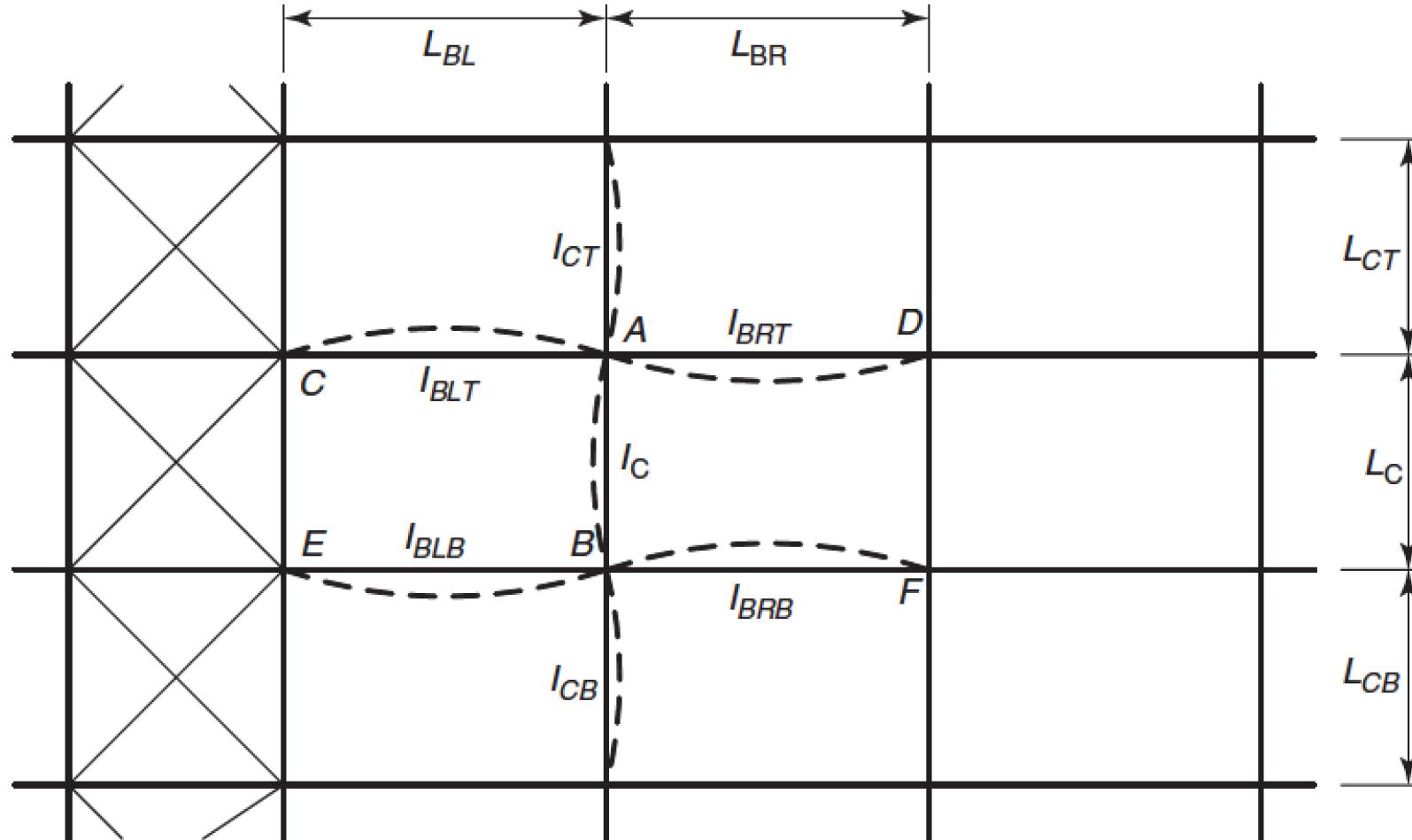
For the 5 elementary cases discussed above, one can visualize the effective length as the distance between points of inflection on the buckled shape of the column.

EPFL Effective Length – Geometric Interpretation

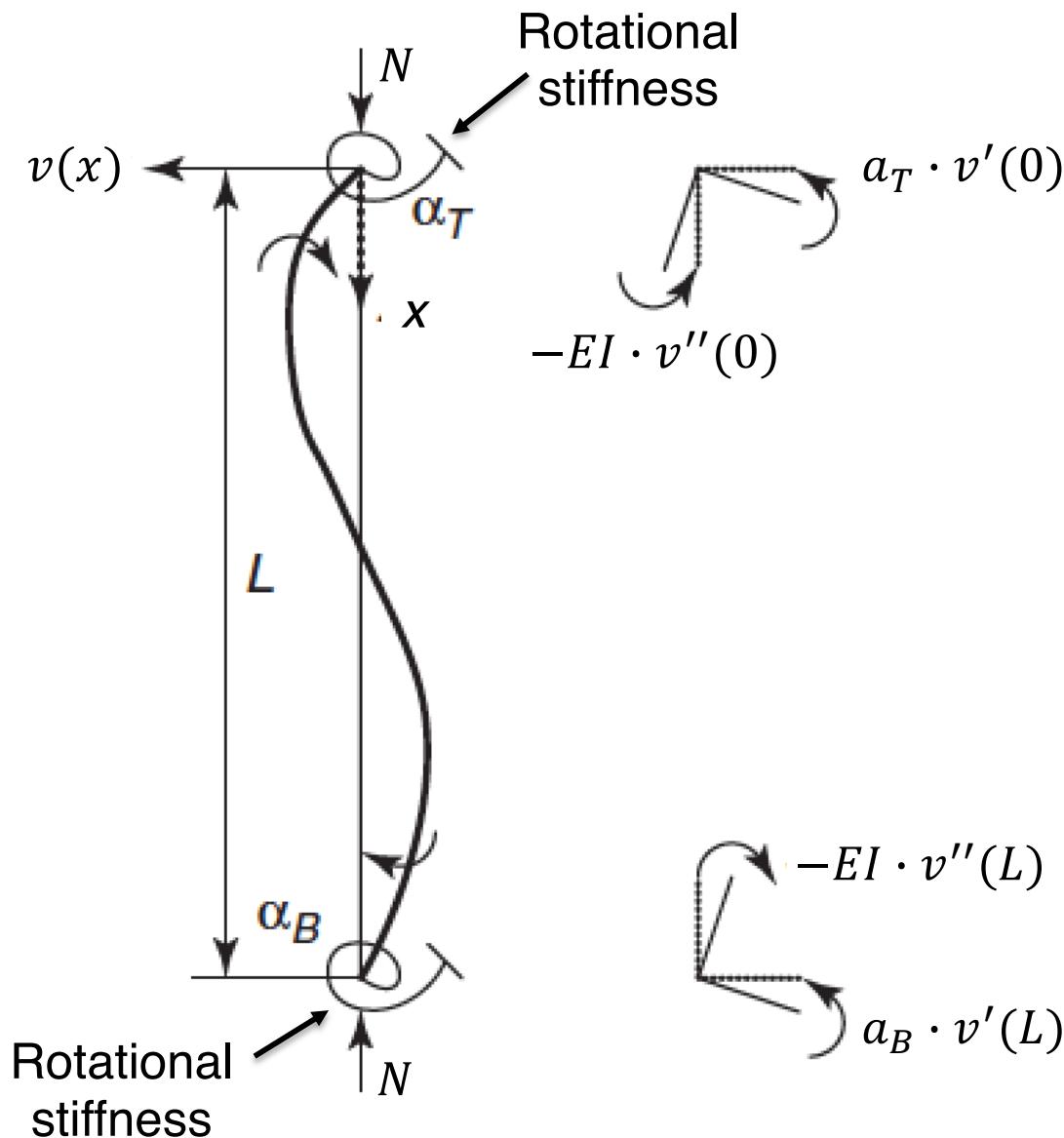


EPFL End-Restrained Columns in Multi-Storey Frames

Characteristic in frames with bracings (often called non-sway)



EPFL End-Restrained Columns in Multi-Storey Frames



Boundary conditions:

$$v(0) = 0$$

$$a_T \cdot v'(0) - EI \cdot v''(0) = 0$$

$$v(L) = 0$$

$$-a_B \cdot v'(L) - EI \cdot v''(L) = 0$$

EPFL End-Restrained Columns in Multi-Storey Frames

-General Solution and Boundary Conditions

General solution,

$$v(x) = A + Bx + C \sin kx + D \cos kx \quad (N > 0)$$

Buckling Determinant

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 1 & L & \sin kL & \cos kL \\ 0 & \alpha_T & \alpha_T k & EI k^2 \\ 0 & -\alpha_B & -\alpha_B k \cos kL + EI k^2 \sin kL & \alpha_B k \sin kL + EI k^2 \cos kL \end{vmatrix} = 0$$

Introduce non-dimensional rigidities,

$$R_T = \frac{\alpha_T L}{EI} \quad R_B = \frac{\alpha_B L}{EI}$$

-General Solution and Boundary Conditions

$$\begin{aligned} -2R_T R_B + \sin kL[R_T R_B kL - kL(R_T + R_B) - (kL)^3] & \quad (1) \\ + \cos kL[2R_T R_B + (kL)^2(R_T + R_B)] & = 0 \end{aligned}$$

Pinned Column

$$a_T = a_B = 0 \rightarrow R_T = R_B = 0$$

$$\sin kL = 0$$

Fixed Column

$$a_T = a_B = \infty \rightarrow R_T = R_B = \infty$$

$$\sin \frac{kL}{2} = 0$$

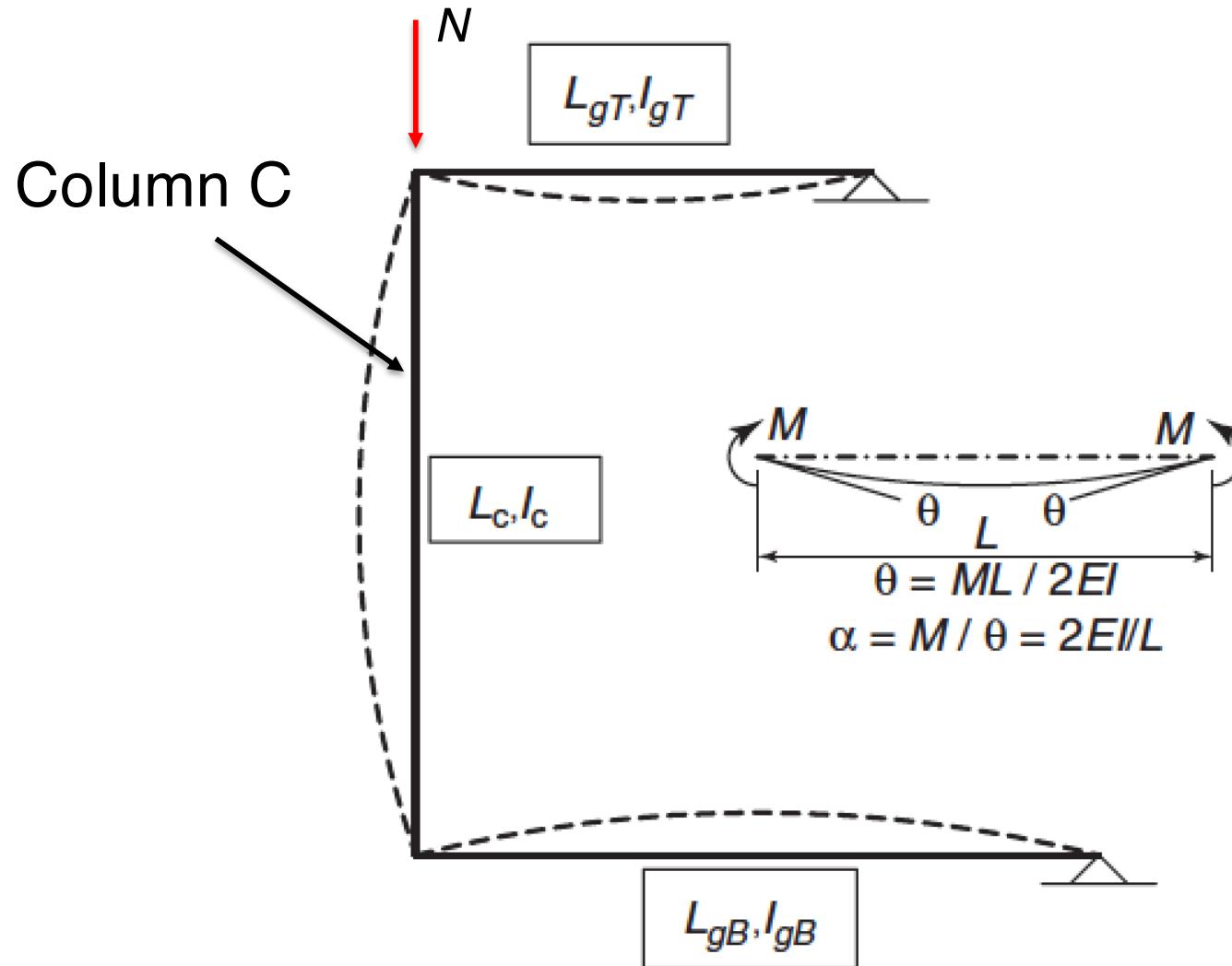
Eq. (1) encloses all the intermediate conditions between totally pinned and fixed ends. Therefore,

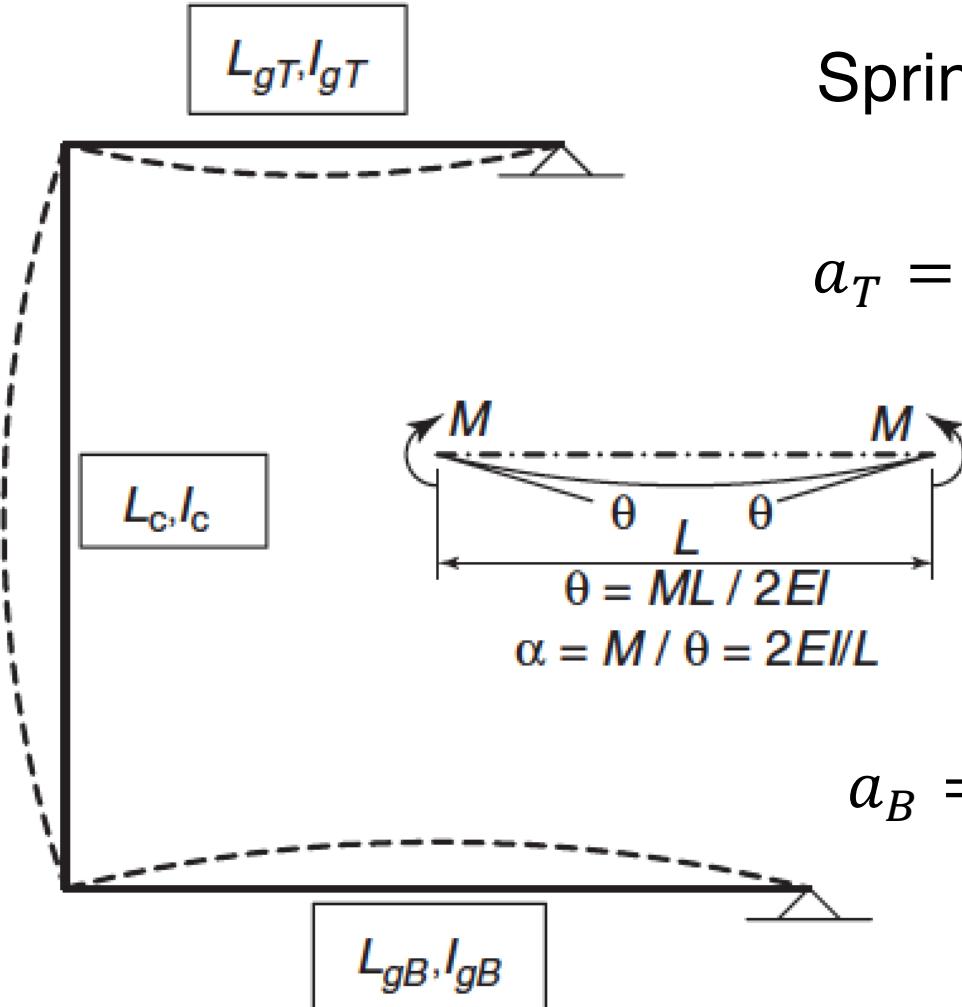
$$N_E \leq N_{Cr} \leq 4 \cdot N_E$$

$$0.5 \leq k \leq 1.0$$

If the elastic rotational spring constants a_T and a_B are known, then the buckling condition of Eq. (1) is directly applicable.

Effective length determination for column C





Spring Constants

$$a_T = \frac{2EI_{gt}}{L_{gt}}$$

Joint Rigidities

$$n_{sup} = \frac{I_c/L_c}{I_c/L_c + I_{gt}/L_{gt}}$$

$$a_B = \frac{2EI_{gb}}{L_{gb}}$$

$$n_{inf} = \frac{I_c/L_c}{I_c/L_c + I_{gb}/L_{gb}}$$

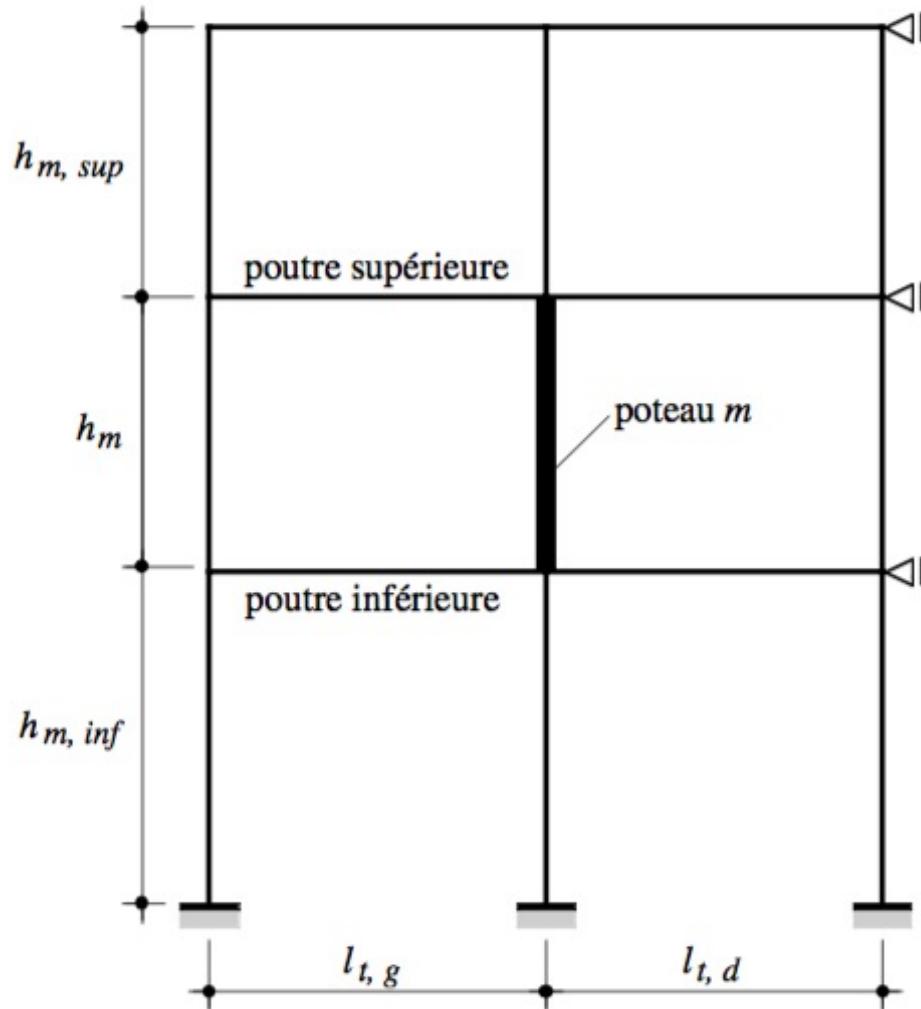
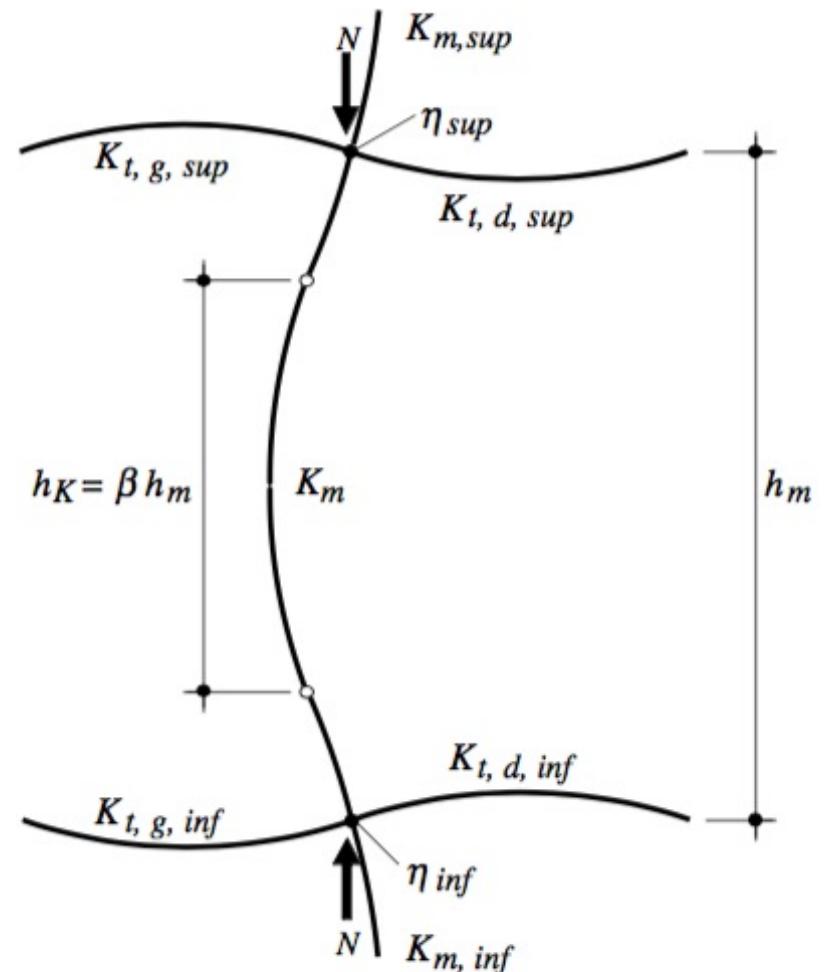
Eq. (1) Becomes

$$\frac{(kL)^2 n_{sup} \cdot n_{inf}}{4} - 1 + \frac{n_{sup} + n_{inf}}{2} \left(1 - \frac{kL}{tan kL} \right) + 2 tan \frac{kL}{kL} = 0 \quad (2)$$

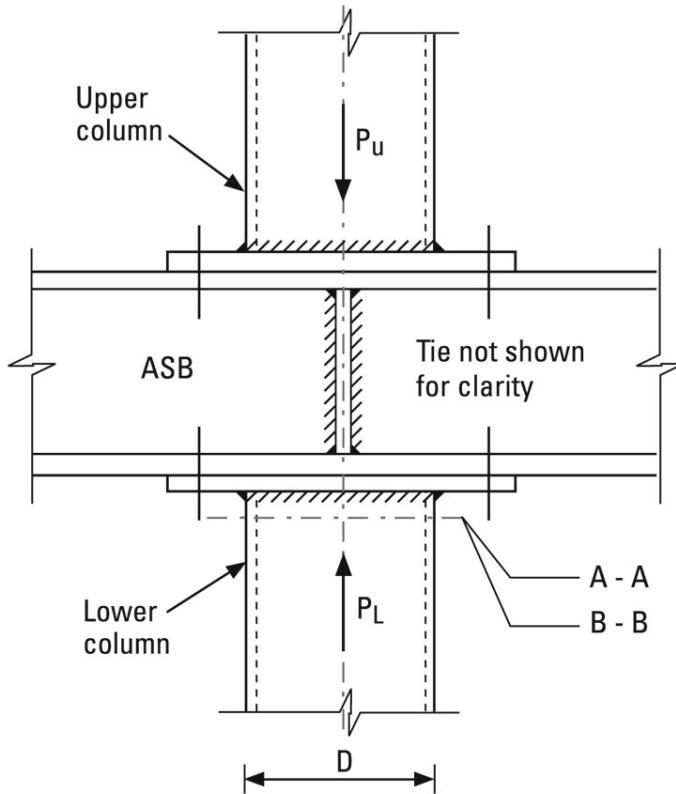
Assume that the effective factor is, $K = \frac{\pi}{kL}$, then Eq (2) becomes,

$$\frac{\left(\frac{\pi}{K}\right)^2 n_{sup} \cdot n_{inf}}{4} - 1 + \frac{n_{sup} + n_{inf}}{2} \left(1 - \frac{\frac{\pi}{K}}{tan \frac{\pi}{K}} \right) + \frac{2 tan \frac{\pi}{2K}}{\frac{\pi}{K}} = 0 \quad (3)$$

The equation above is known as the non-sway *nomograph* (*alignment chart*) in all the design standards.

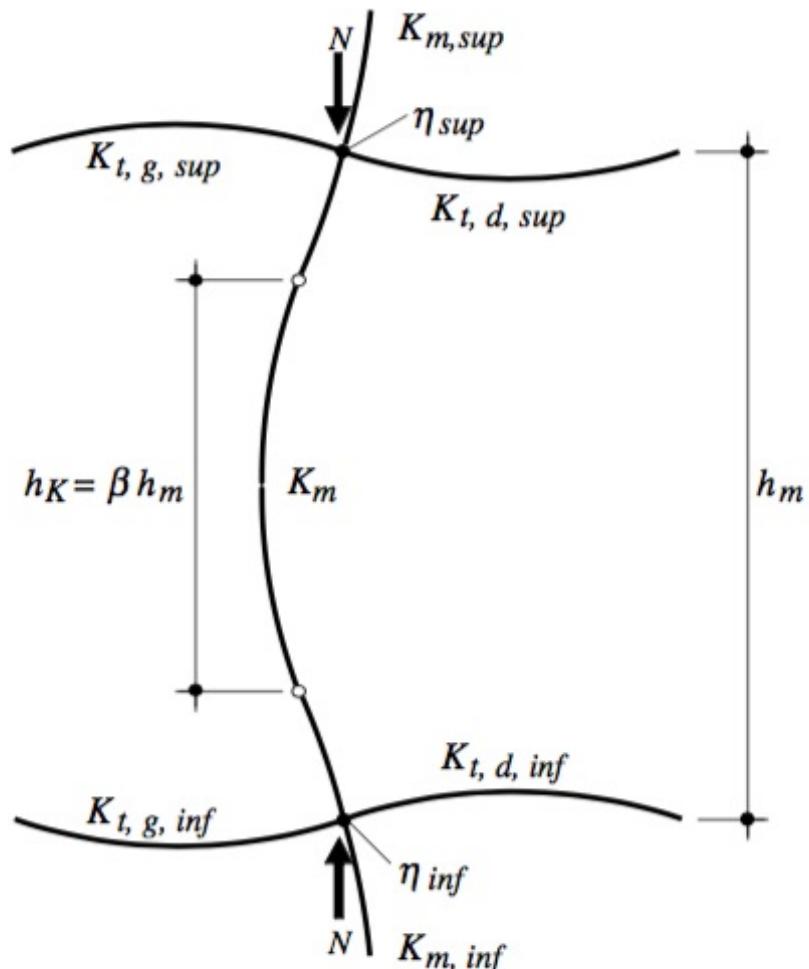


-Example: Planar Rigid Frame



EPFL End-Restrained Columns – Not Continuous between Floors
 -Example: Planar Rigid Frame

By using the Cross method:



$$n_{sup} = \frac{K_m}{K_m + \sum K_{t,sup}} \quad n_{inf} = \frac{K_m}{K_m + \sum K_{t,inf}}$$

$K_m = EI_m/h_m$ Rigidity of considered column

$K_t = EI_t/l_t$ Rigidity of beam with moment of inertia, I_t , and length l_t

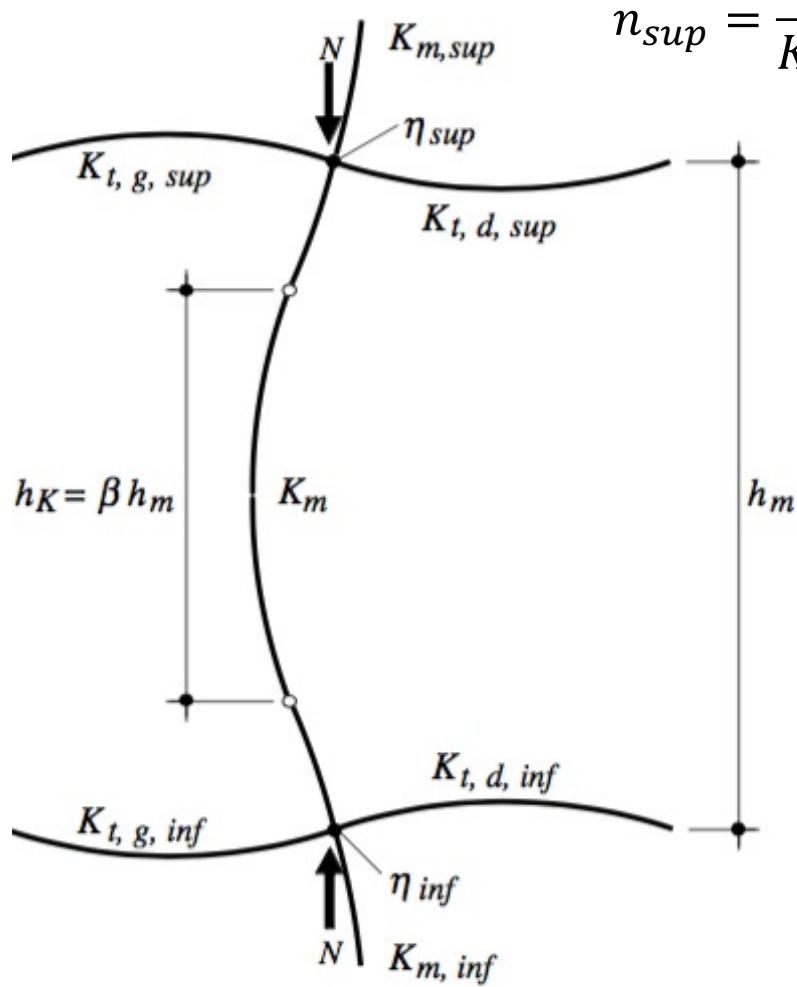
$$\sum K_{t,sup} = K_{t,g,sup} + K_{t,d,sup}$$

$$\sum K_{t,inf} = K_{t,g,inf} + K_{t,d,inf}$$

- m : Column
- t : Beam (cross beam)
- sup : Top of the column
- inf : Bottom of the column
- d : Right of the column
- g : Left of the column

EPFL End-Restrained Columns – Continuous between Floors
 -Example: Planar Rigid Frame (General case)

By using the Cross method:



$$n_{sup} = \frac{K_m + K_{m,sup}}{K_m + K_{m,sup} + \sum K_{t,sup}} \quad n_{inf} = \frac{K_m + K_{m,inf}}{K_m + K_{m,inf} + \sum K_{t,inf}}$$

$K_m = EI_m/h_m$ Rigidity of considered column

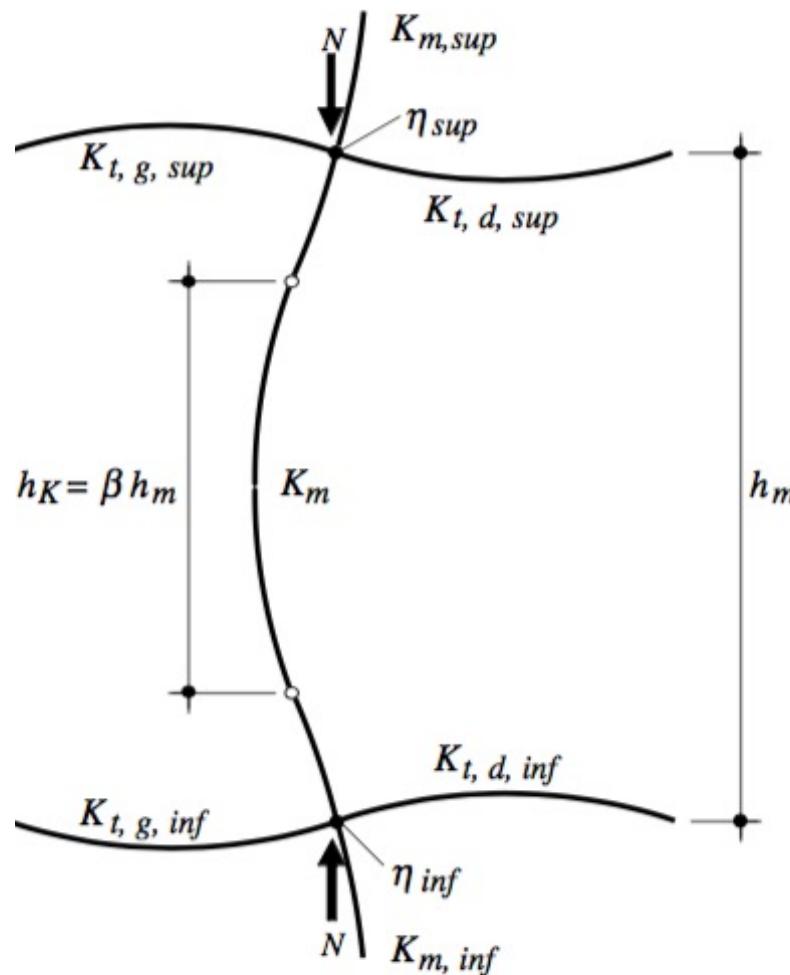
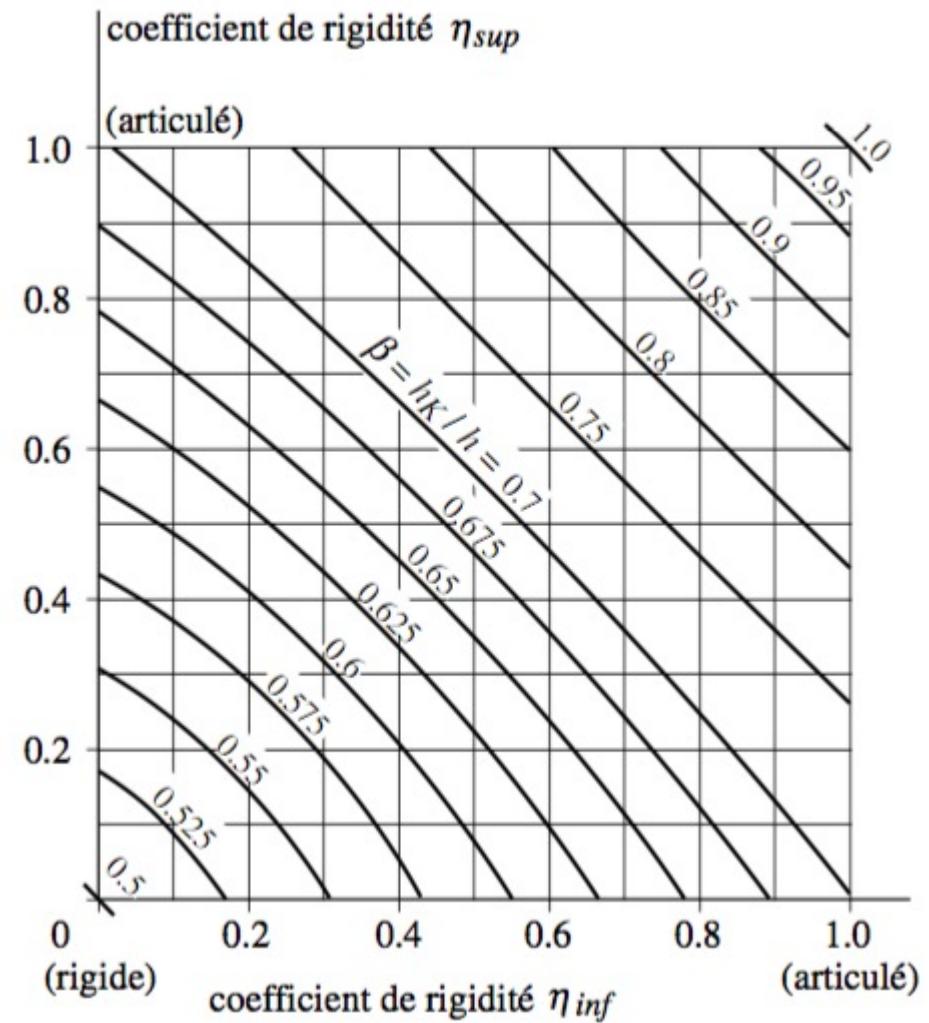
$K_t = EI_t/l_t$ Rigidity of beam with moment of inertia, I_t , and length l_t

$$\sum K_{t,sup} = K_{t,g,sup} + K_{t,d,sup}$$

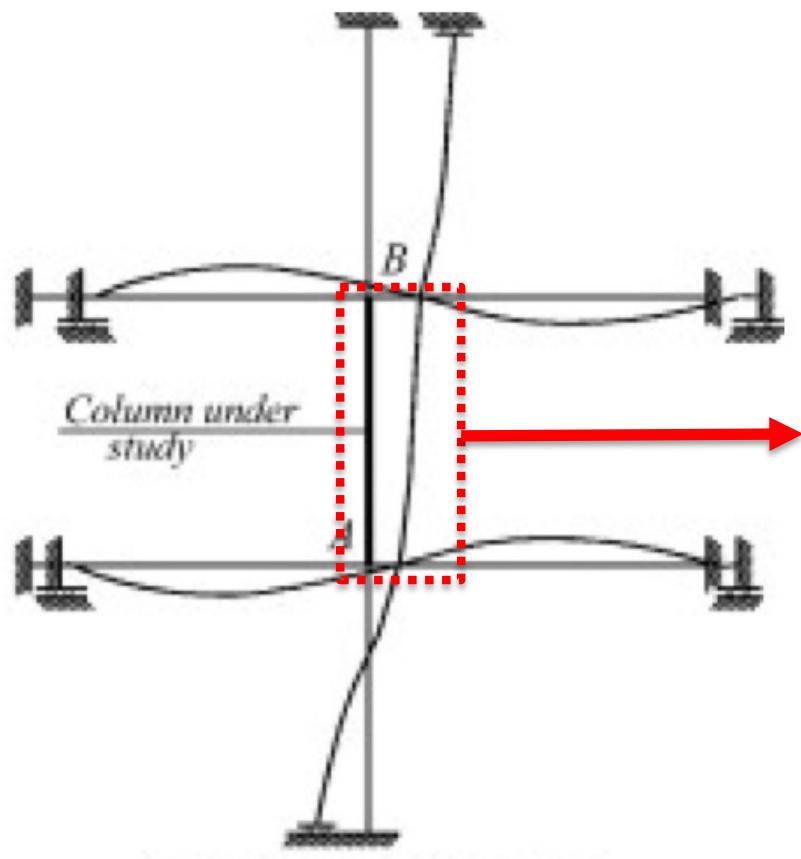
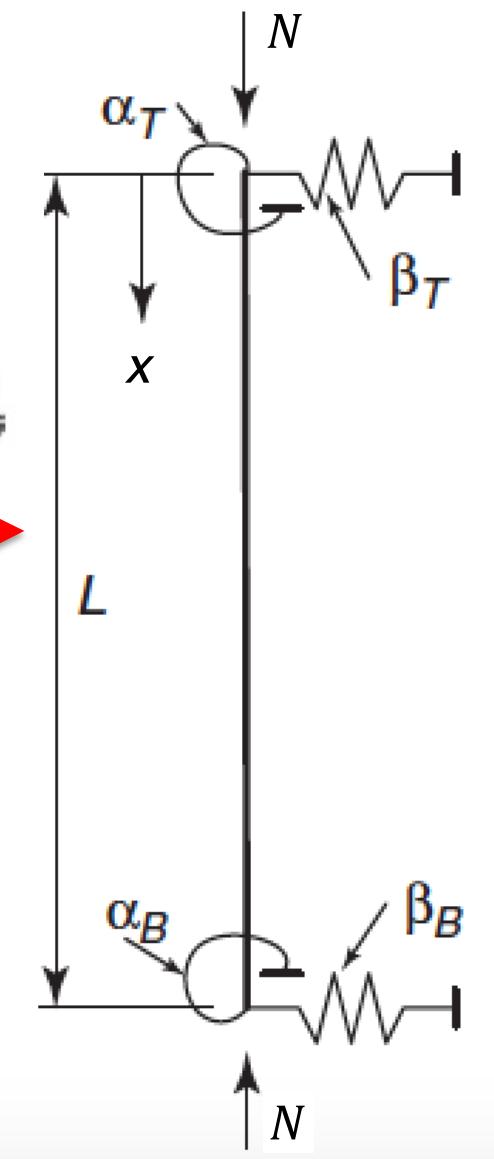
$$\sum K_{t,inf} = K_{t,g,inf} + K_{t,d,inf}$$

<i>m</i>	: Column
<i>t</i>	: Beam (cross beam)
<i>sup</i>	: Top of the column
<i>inf</i>	: Bottom of the column
<i>d</i>	: Right of the column
<i>g</i>	: Left of the column

EPFL Alignment Chart for Non-Sway Frames



EPFL Expansion of Stability Problem to Sway Frames



Boundary conditions

@ $x = 0$:

$$-EIv''' - Nv' = \beta_T v$$

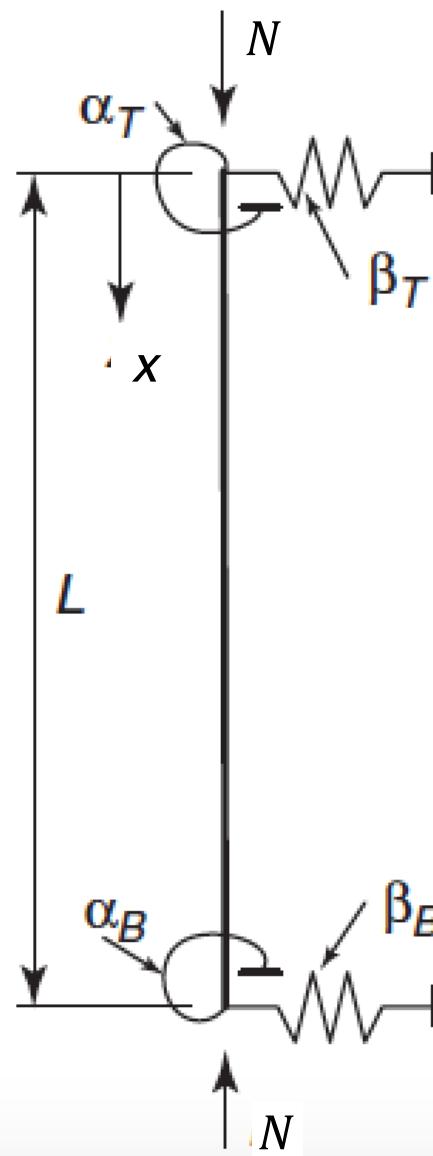
$$-EIv'' = -a_T v'$$

@ $x = L$:

$$-EIv''' - Nv' = -\beta_B v$$

$$-EIv'' = a_B v'$$

EPFL Expansion of Stability Problem to Sway Frames



Assume the non-dimensional restraint factors

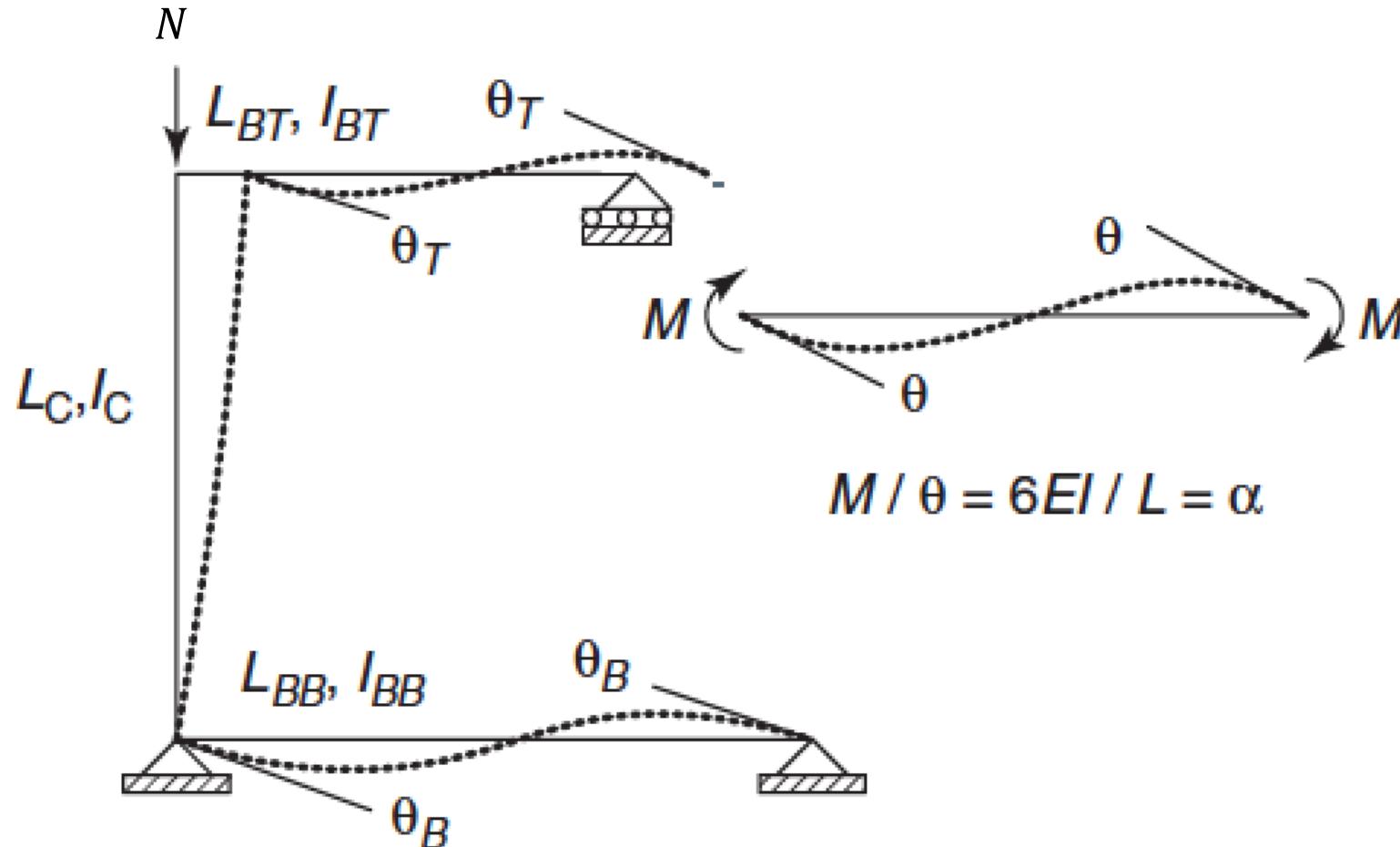
$$R_T = \frac{\alpha_T L}{EI} R_B = \frac{\alpha_B L}{EI} \quad T_T = \frac{\beta_T L^3}{EI} \quad T_B = \frac{\beta_B L^3}{EI} \quad k = \sqrt{\frac{N}{EI}}$$

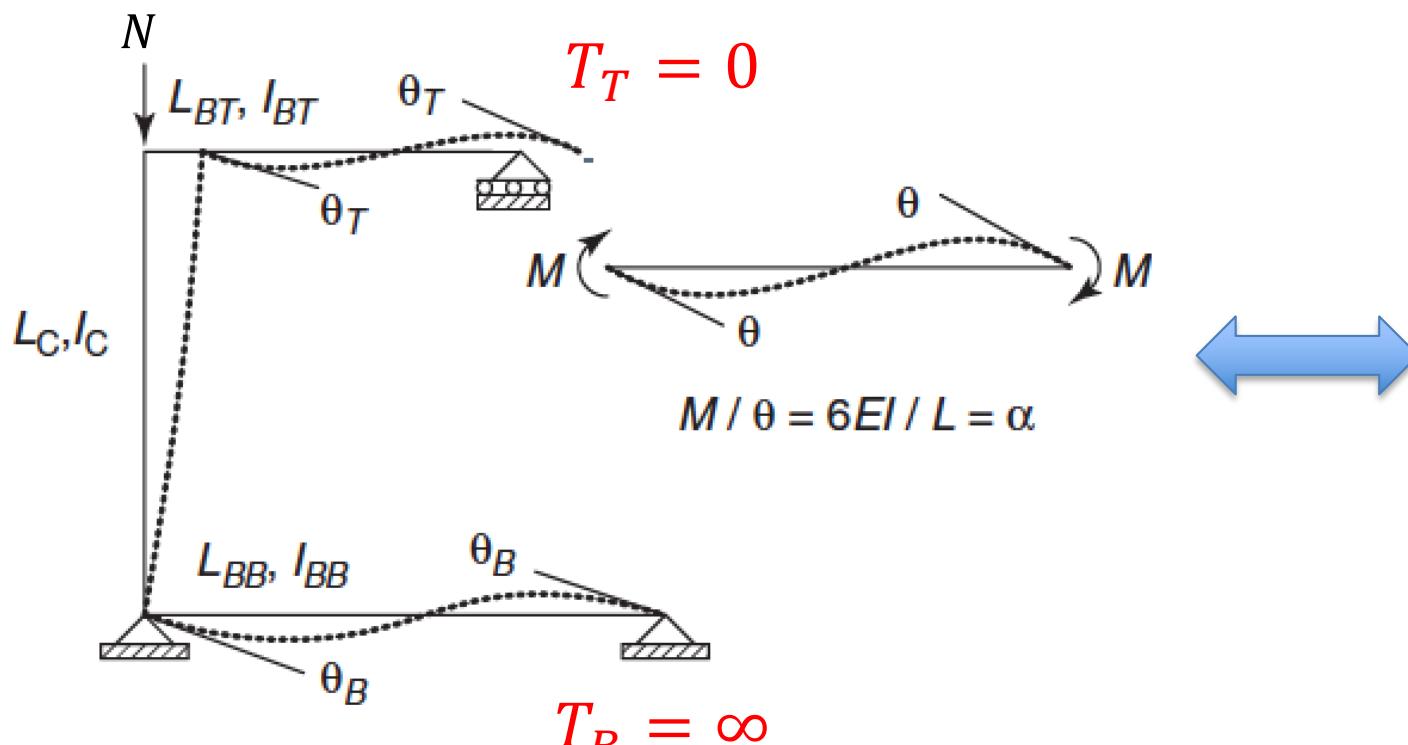
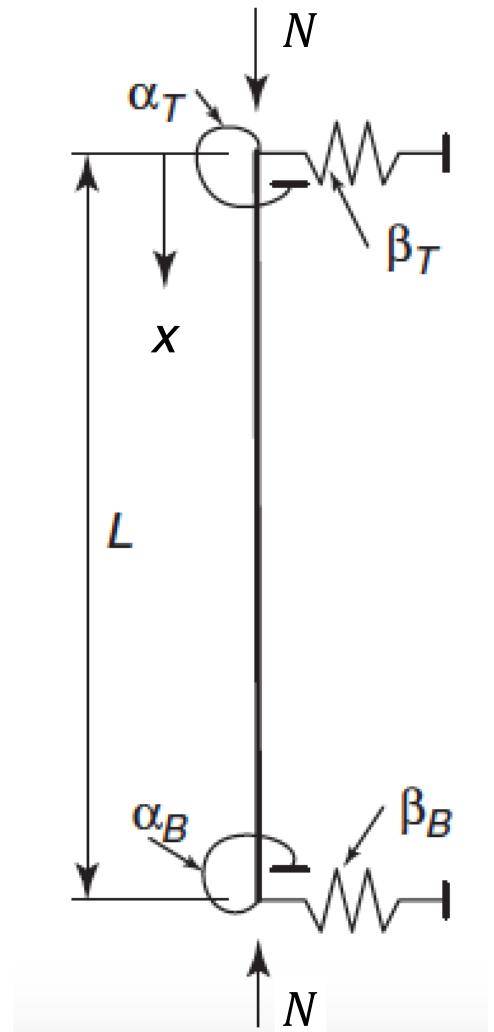
The general buckling determinant becomes

$$\begin{vmatrix} T_T & (kL)^2 & 0 & T_T \\ 0 & R_T & R_T kL & (kL)^2 \\ T_B & [T_B - (kL)^2] & T_B \sin kL & T_B \cos kL \\ 0 & R_B & [R_B kL \cos kL - (kL)^2 \sin kL] & [-R_B kL \sin kL - (kL)^2 \cos kL] \end{vmatrix} = 0$$

The buckling load (kL) can be solved numerically (e.g., with Newton-Raphson iteration)

-Example: Sway Permitted Subassembly





In this case, the buckling determinant becomes:

$$\begin{vmatrix} 0 & (kL)^2 & 0 & 0 \\ 0 & R_T & R_T kL & (kL)^2 \\ 1 & 1 & \sin kL & \cos kL \\ 0 & R_B & [R_B kL \cos kL & [-R_B kL \sin kL \\ & & - (kL)^2 \sin kL] & - (kL)^2 \cos kL] \end{vmatrix} = 0$$

Assume

$$a_T = \frac{6EI_{BT}}{L_{BT}} \rightarrow R_T = \frac{a_T L_C}{EI_C} = \frac{6EI_{BT}}{L_{BT}} \cdot \frac{L_C}{EI_C} = 6 \left(\frac{I_{BT}/L_{BT}}{I_C/L_C} \right) = \frac{6}{n_{sup}}$$

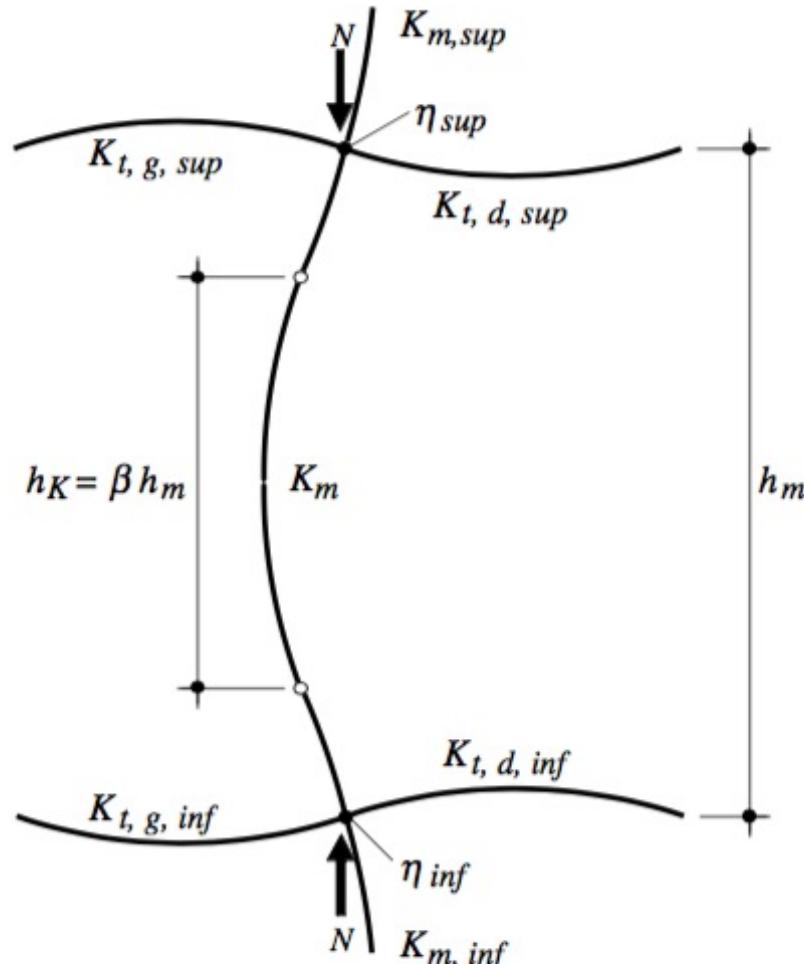
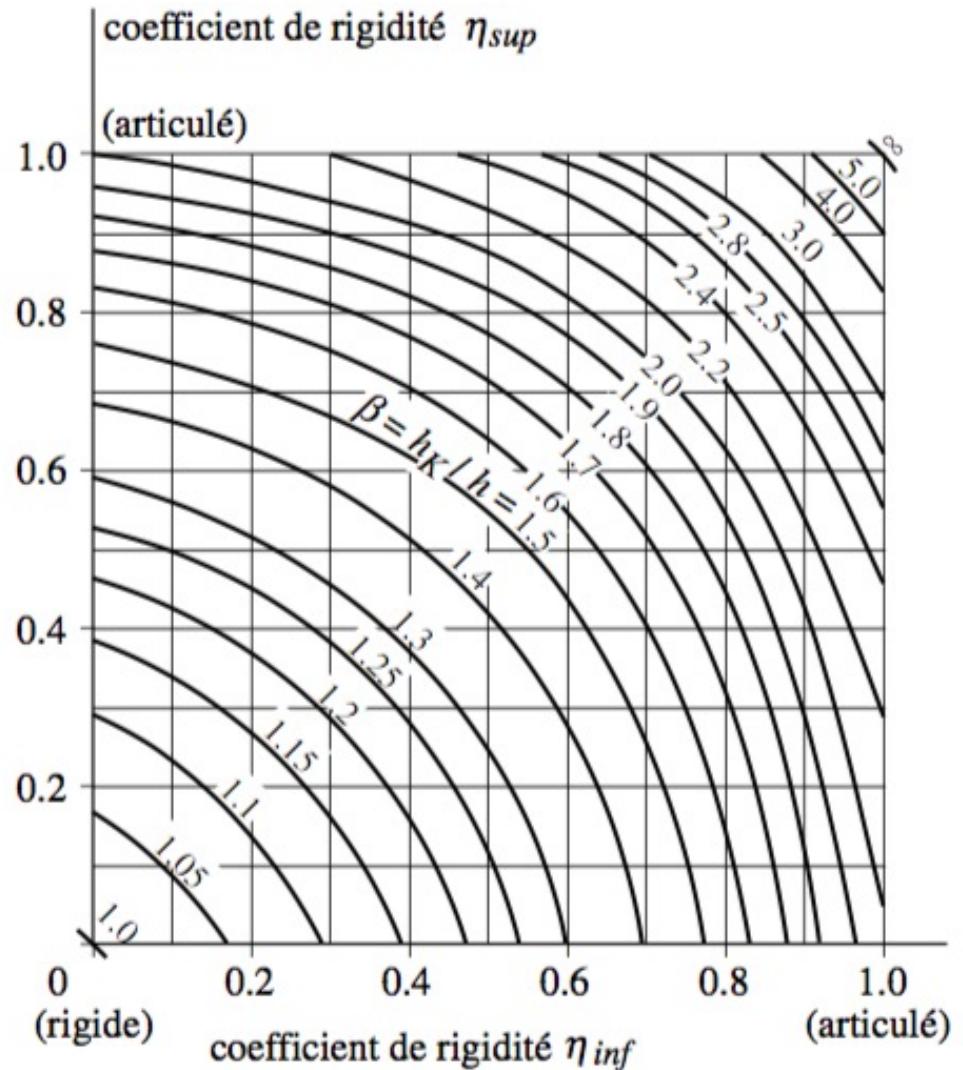
$$a_B = \frac{6EI_{BB}}{L_{BB}} \rightarrow R_B = \frac{a_B L_C}{EI_C} = \frac{6EI_{BB}}{L_{BB}} \cdot \frac{L_C}{EI_C} = 6 \left(\frac{I_{BB}/L_{BB}}{I_C/L_C} \right) = \frac{6}{n_{inf}}$$

The decomposed determinant becomes

$$\frac{kL}{\tan KL} - \frac{(kL)^2 n_{sup} \cdot n_{inf} - 36}{6(n_{sup} + n_{inf})} = 0 \quad (4)$$

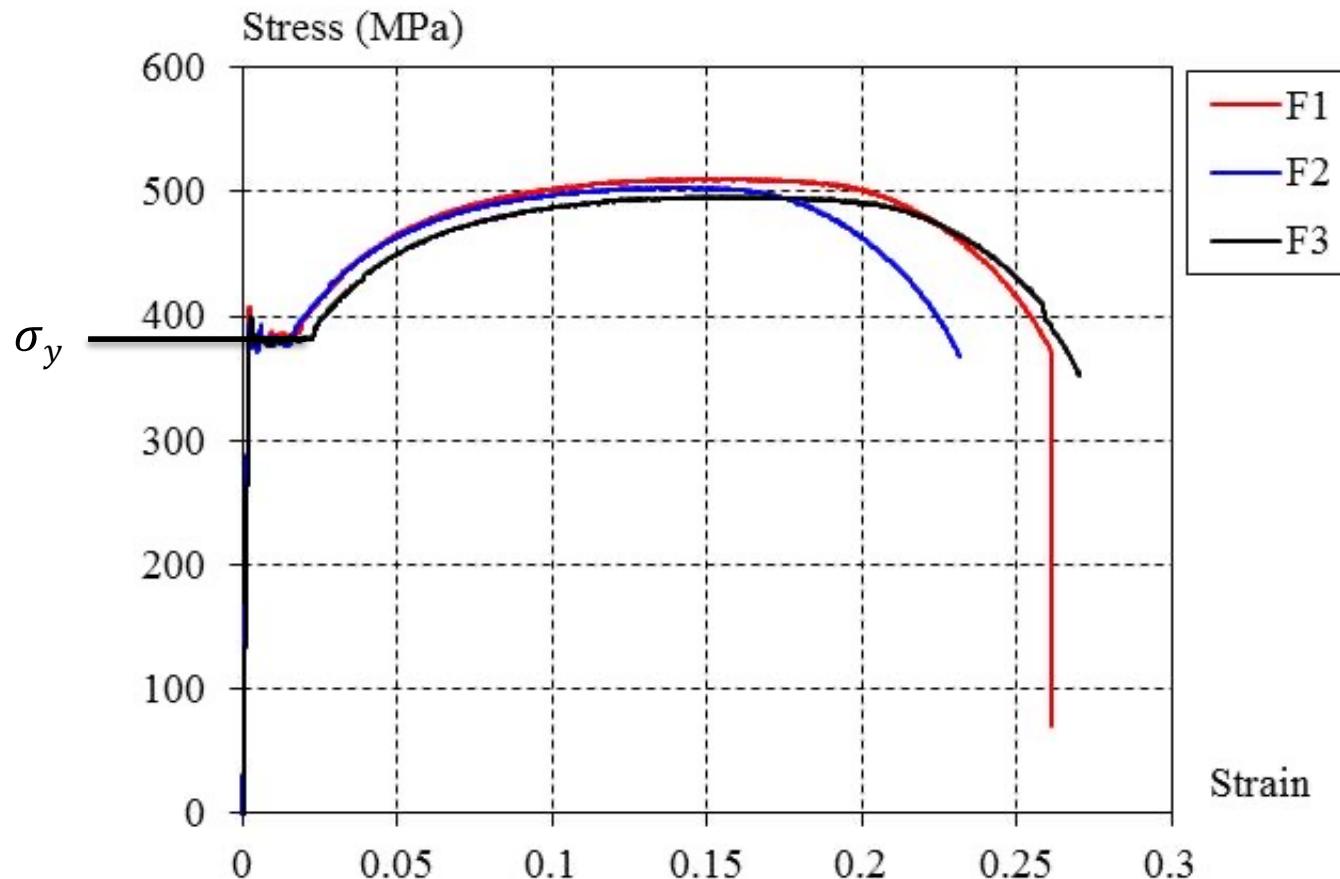
Eq. (4) provides the basis of the sway alignment chart in, design standards (see next page)

EPFL Alignment Chart for Effective Length -Sway-Permitted Planar Rigid Frames



EPFL Combining Yield and Buckling Resistance

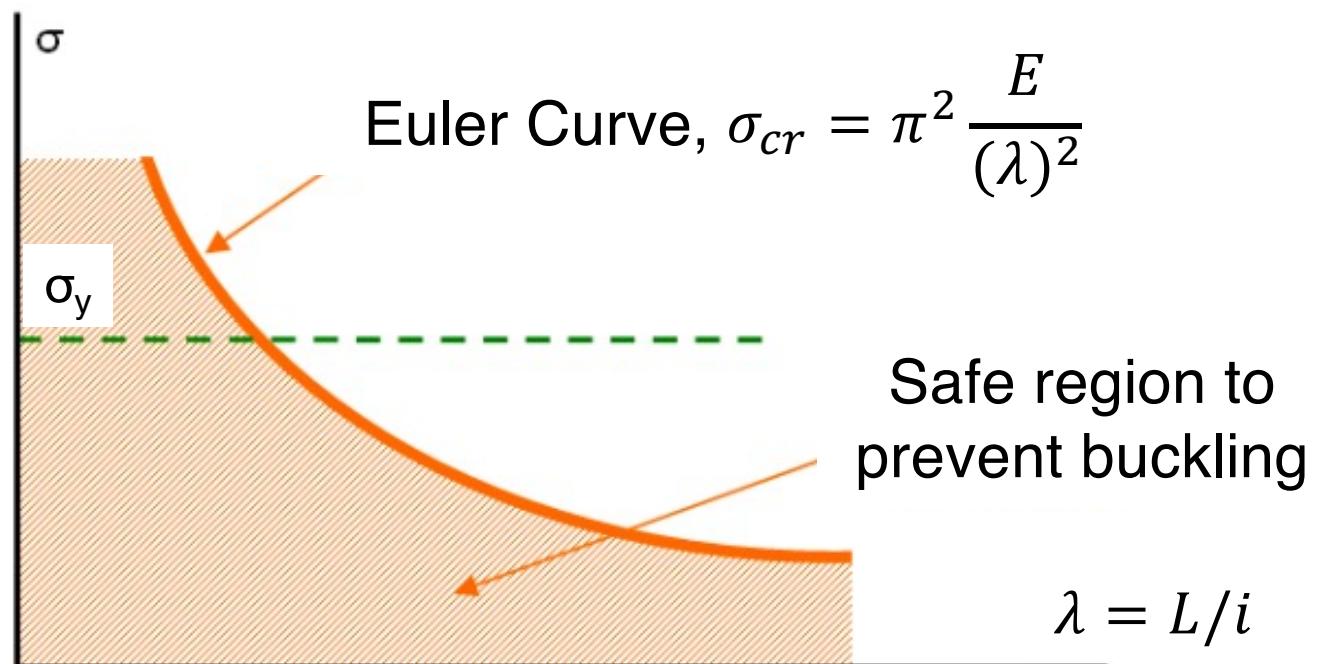
Depending on the member slenderness, the critical stress may be restricted by σ_y rather than $\sigma_{cr} = N_{cr} / A$



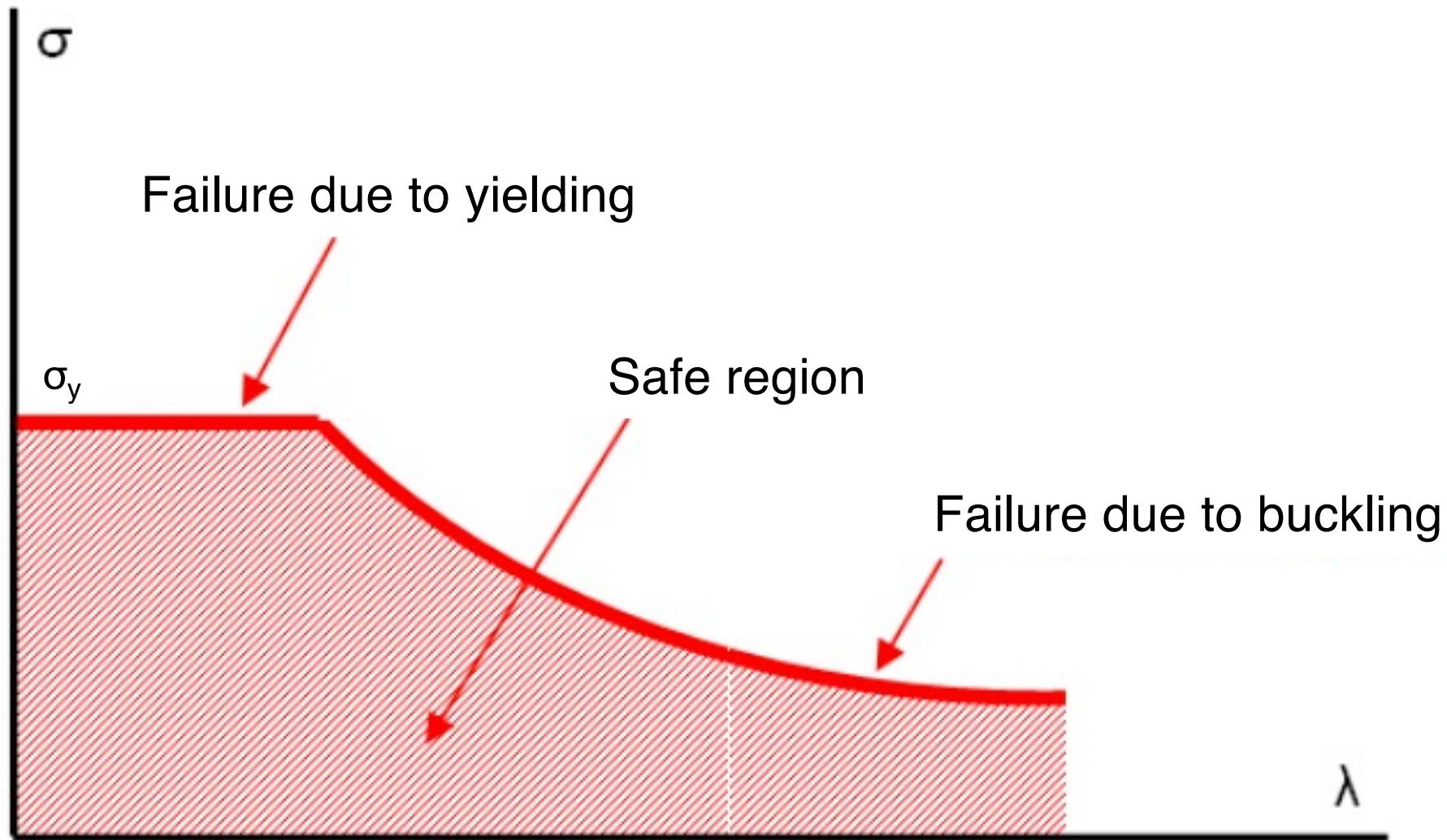
EPFL Buckling Resistance of Steel Columns

$$N_{cr} = \frac{\pi^2 EI}{L^2} \Rightarrow \sigma_{cr} = \frac{N_{cr}}{A} = \pi^2 \frac{E \cdot I/A}{L^2} = \pi^2 \frac{E \cdot i^2}{L^2} = \pi^2 \frac{E}{(L/i)^2}$$

Member slenderness: $\lambda = L/i$



EPFL Interaction Curve for Elastic & Inelastic Buckling



EPFL Buckling Experiments on Steel Columns

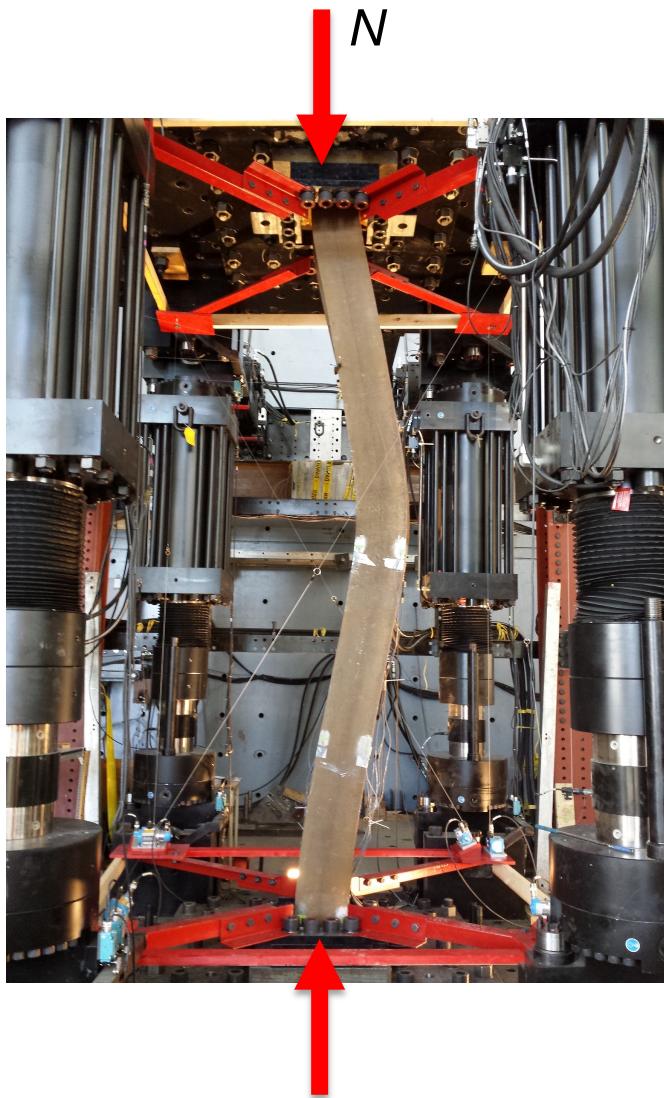
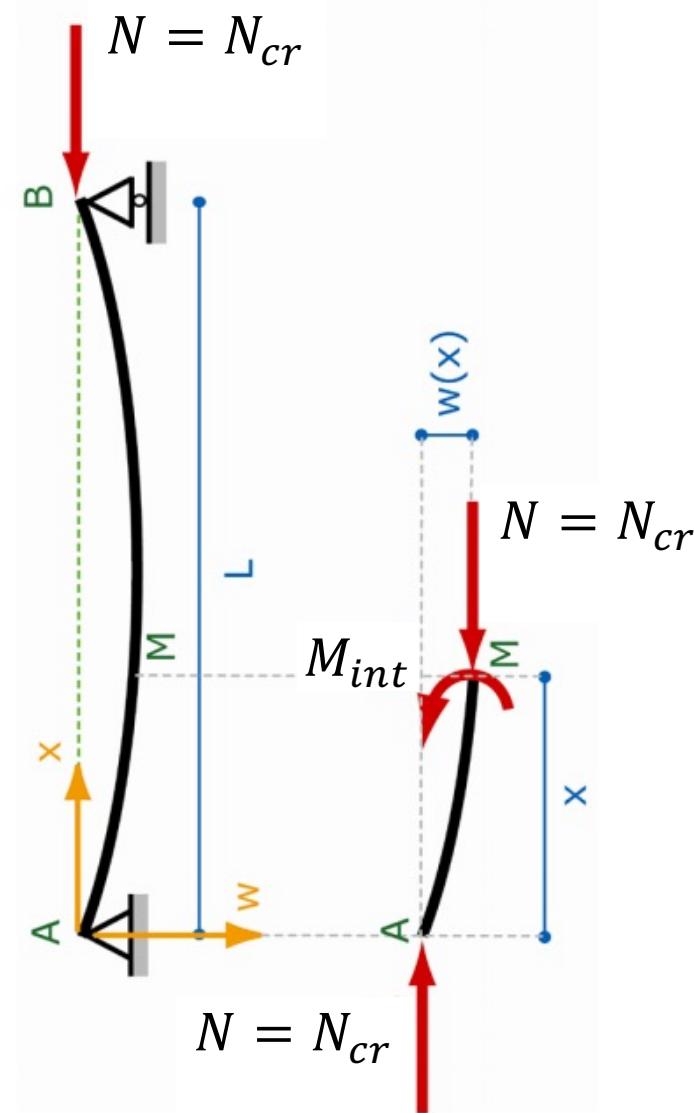
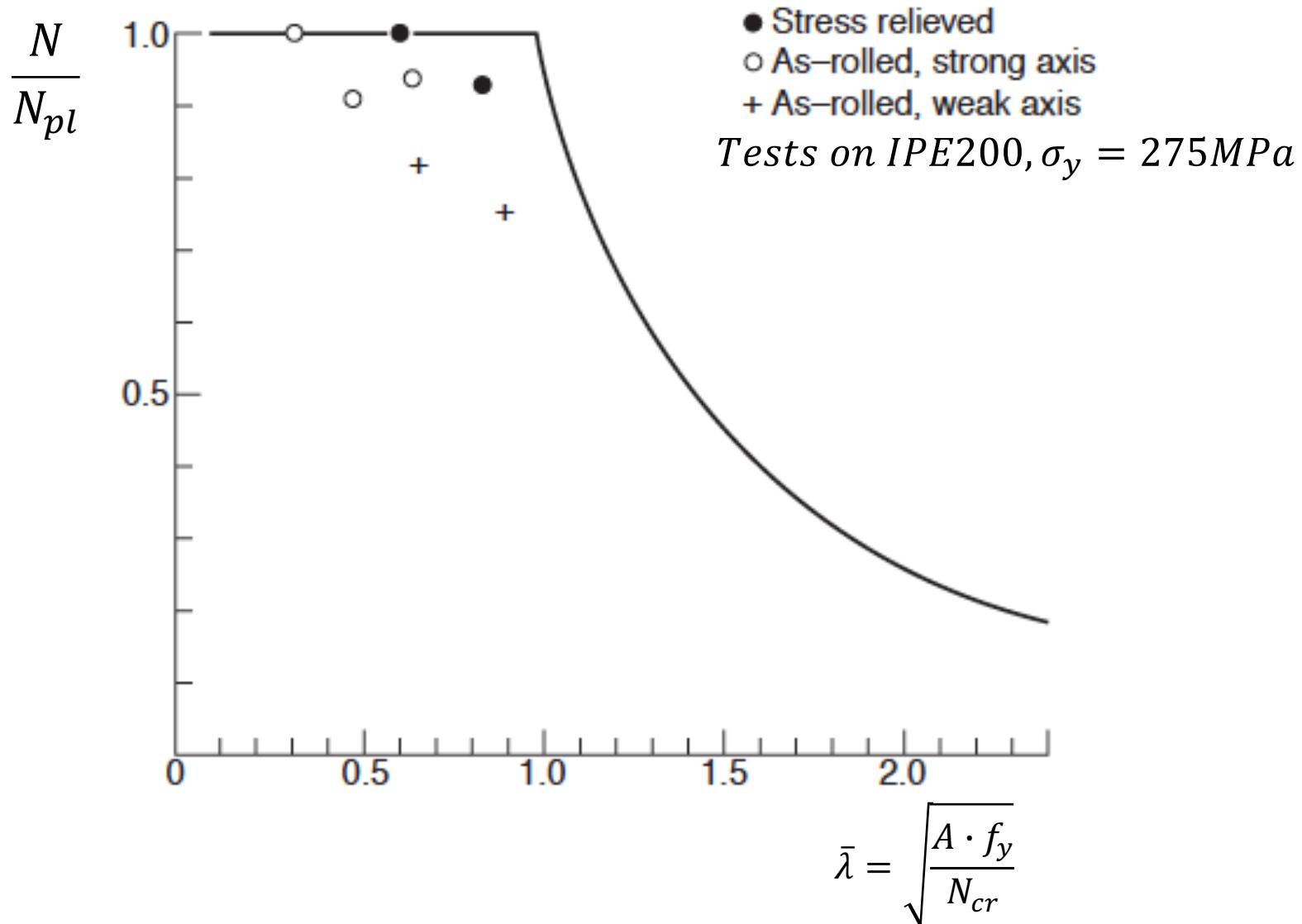


Image courtesy of Prof. Tremblay

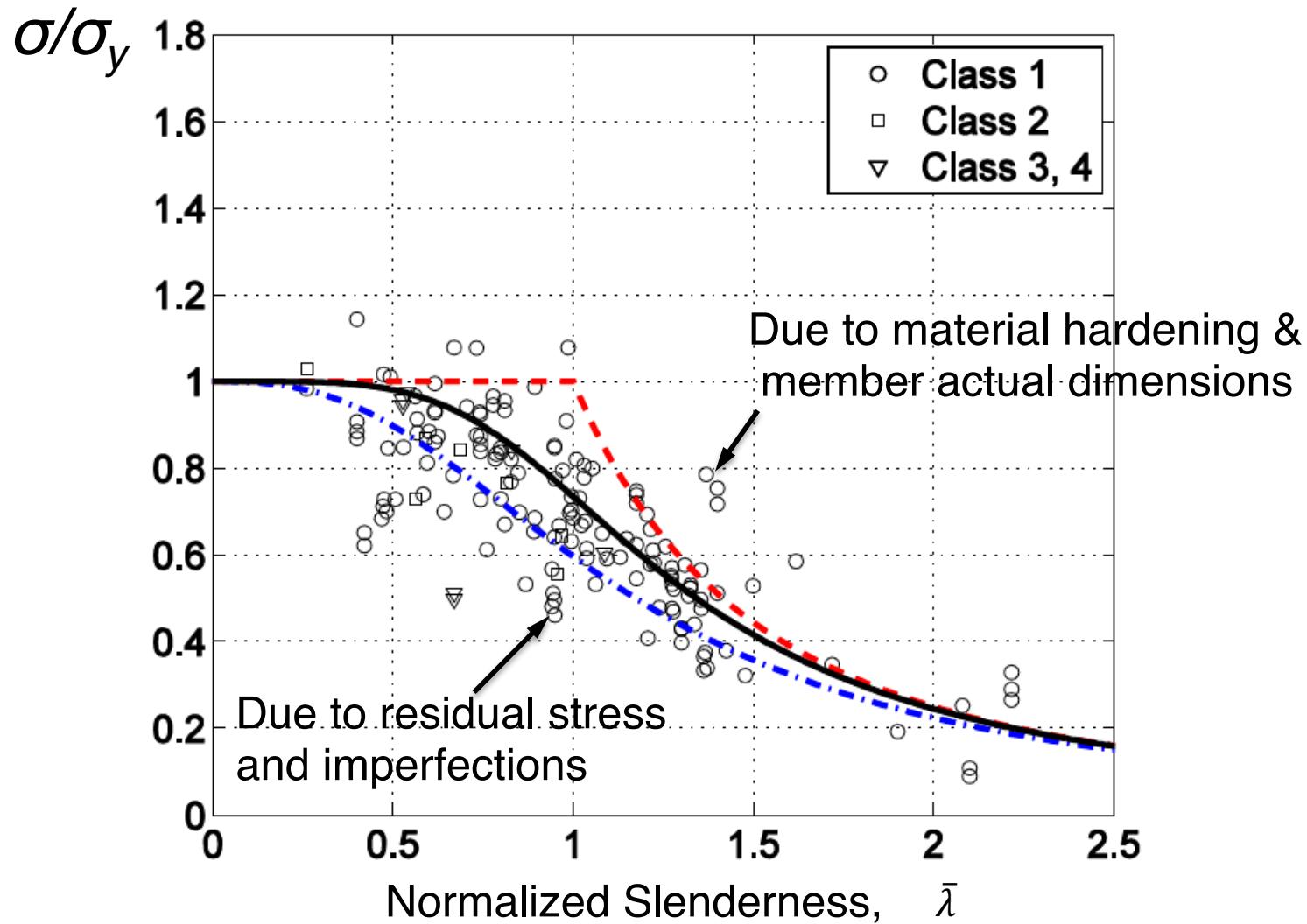
EPFL Buckling Experiments on Steel Columns

-Comparison with Theoretical Solution



EPFL Buckling Experiments on Steel Columns

-Comparison with Theoretical Solution



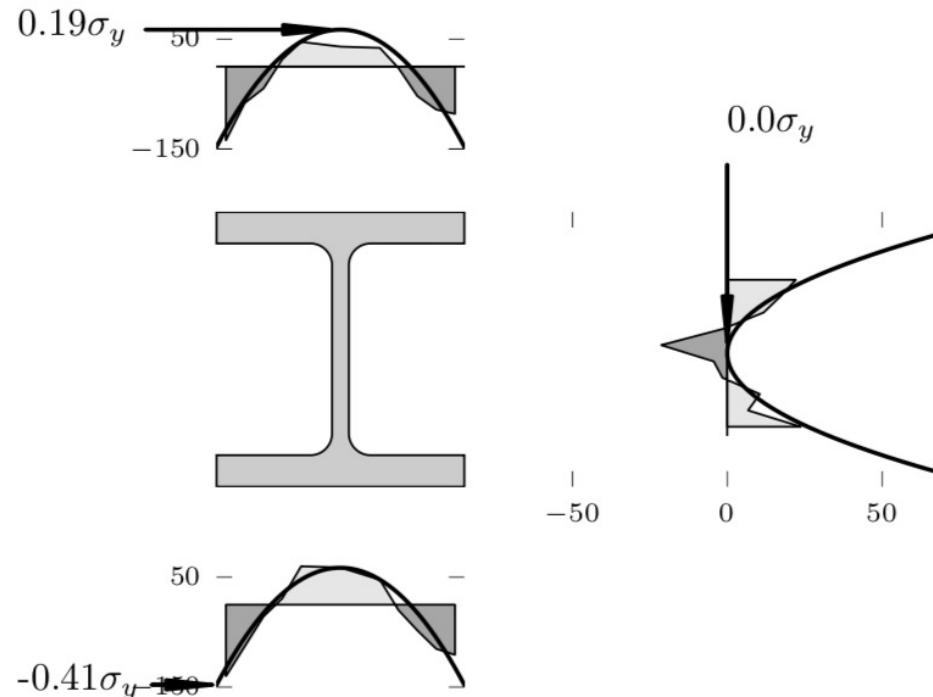
Source: Karamanci and Lignos (2011)

EPFL Effect of Residual Stresses on Buckling Resistance

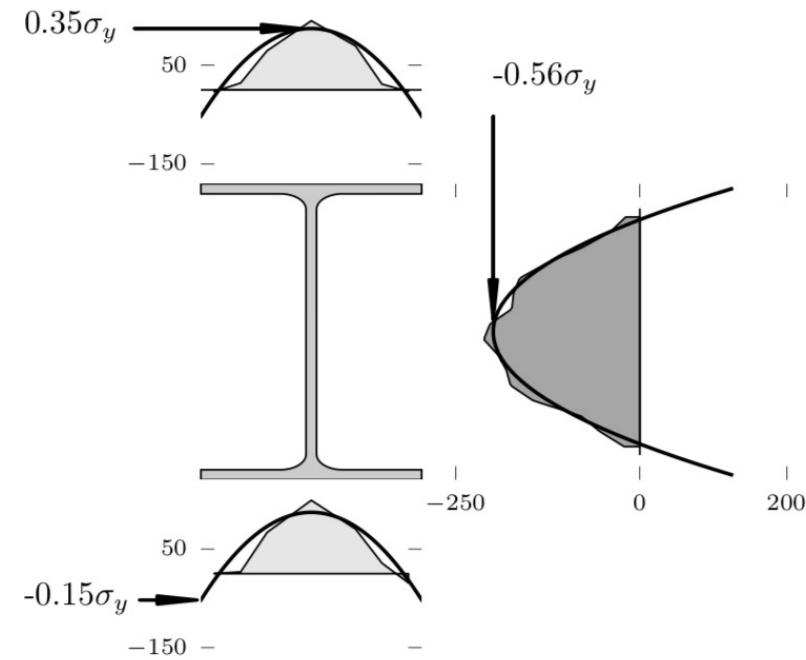
- ☆ Residual stresses could be held accountable for the lower resistance of steel members with intermediate length
- ☆ Confirmed by research at Lehigh University on residual stress measurements (Beedle and Tall 1960)
- ☆ Residual stresses are caused by:
 - ☆ Manufacturing process of steel profiles
 - ☆ Welding (common in built-up sections)
- ☆ For stress-relieved columns, deviations are only due to initial out-of-straightness of the members (see slide 52)

EPFL Residual Stresses due to Manufacturing

Residual Stress Distribution HEM300



Residual Stress Distribution IPE400



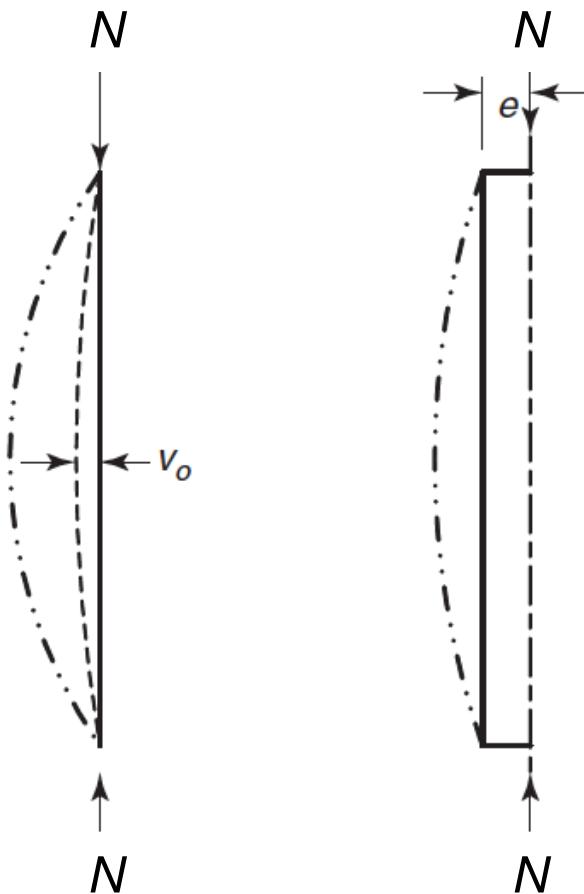
Source: Sousa and Lignos 2017

EPFL Residual Stresses due to Welding



EPFL The Effect of Imperfections

In a real column, imperfections affect the behaviour near N_{cr} . Imperfections may be due to out-of-straightness of the column axis or small load eccentricity.



EPFL The Effect of Imperfections
-Out-of-Straightness

Assumed initial shape due to out-of-straightness:

$$v_i = v_0 \sin\left(\frac{\pi x}{L}\right)$$

Internal and external moments at location x ,

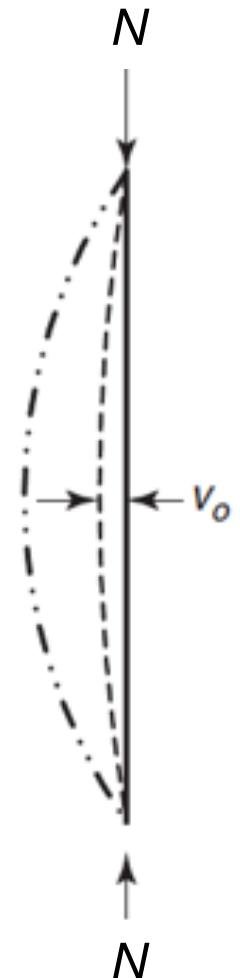
$$M_{int} = -EIv'' \quad M_{ext} = N(v_i + v)$$

$$EIv'' + Nv = -Nv_i \quad \left(\text{assume } k^2 = \frac{N}{EI}\right)$$

$$v'' + k^2v = -k^2v_0 \sin\left(\frac{\pi x}{L}\right) \quad (2)$$

Homogeneous solution $v_H = A \sin kx + B \cos kx$

Particular solution $v_P = C \sin\left(\frac{\pi x}{L}\right) + D \cos\left(\frac{\pi x}{L}\right)$



EPFL The Effect of Imperfections -Out-of-Straightness

Substituting to Eq. (2):

$$-C \frac{\pi^2}{L^2} \sin\left(\frac{\pi x}{L}\right) - D \frac{\pi^2}{L^2} \cos\left(\frac{\pi x}{L}\right) + Ck^2 \sin\left(\frac{\pi x}{L}\right) + Dk^2 \cos\left(\frac{\pi x}{L}\right) = -k^2 v_0 \sin\left(\frac{\pi x}{L}\right)$$
$$C \left[k^2 - \frac{\pi^2}{L^2} \right] = -v_0, D = 0$$

Total deflection due to axial load N ,

$$v = v_H + v_P = A \sin kx + B \cos kx + \frac{N/N_E}{1 - N/N_E} v_0 \sin\left(\frac{\pi x}{L}\right)$$

Initial Conditions: $v(0) = v(L) = 0 \Rightarrow A = B = 0$

Therefore,

$$v = \frac{N/N_E}{1 - N/N_E} v_0 \sin\left(\frac{\pi x}{L}\right)$$

EPFL The Effect of Imperfections

-Out-of-Straightness

$$v_{total} = v_i + v = \frac{v_0 \sin\left(\frac{\pi x}{L}\right)}{1 - N/N_E} \leq \frac{v_0}{1 - N/N_E}$$

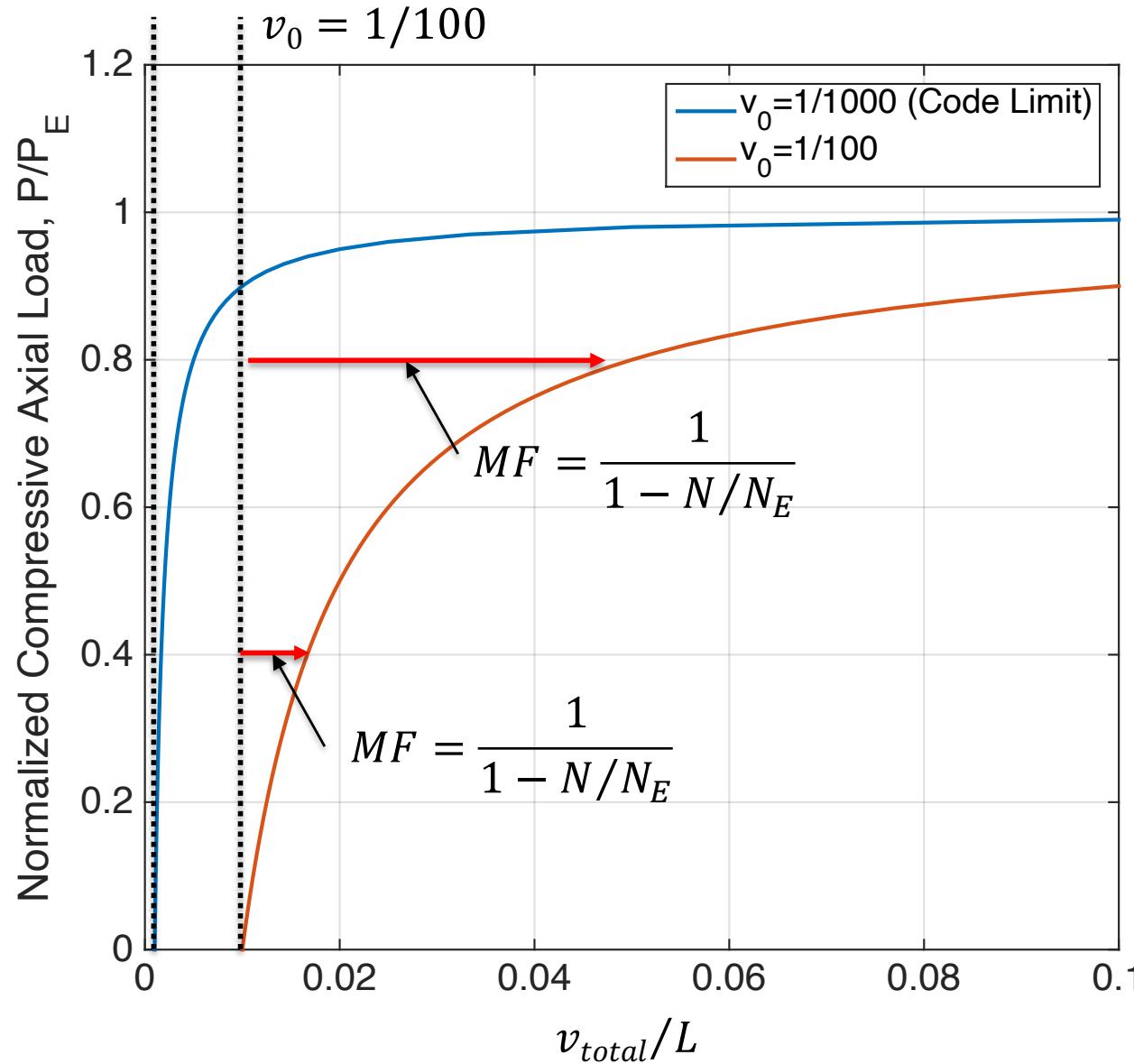
At the center : $\frac{v_{total}}{L} = \frac{v_0/L}{1 - N/N_E} = v_0/L \frac{1}{1 - N/N_E}$

Magnification Factor (MF)

The initial out-of-straightness v_0 is the fabrication tolerance for straightness in the rolling mill, and in steel design practice it is usually 1/1000 of the respective column length. **It is not detectable by eye. If it is then you have a big problem!**

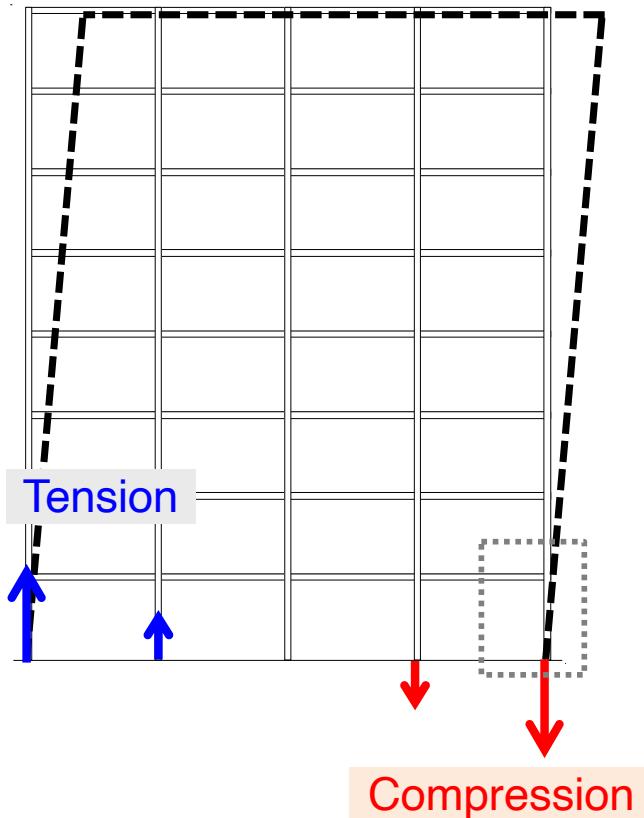
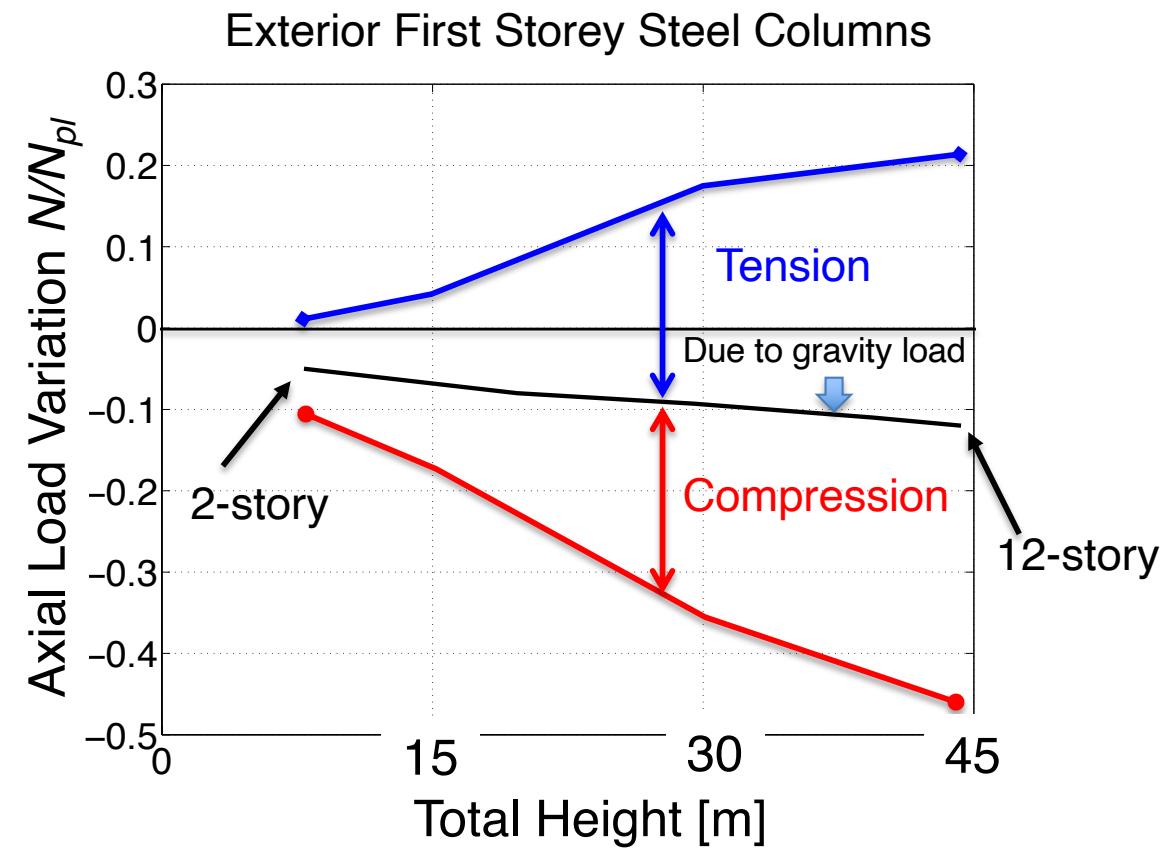
EPFL The Effect of Imperfections

-Out-of-Straightness



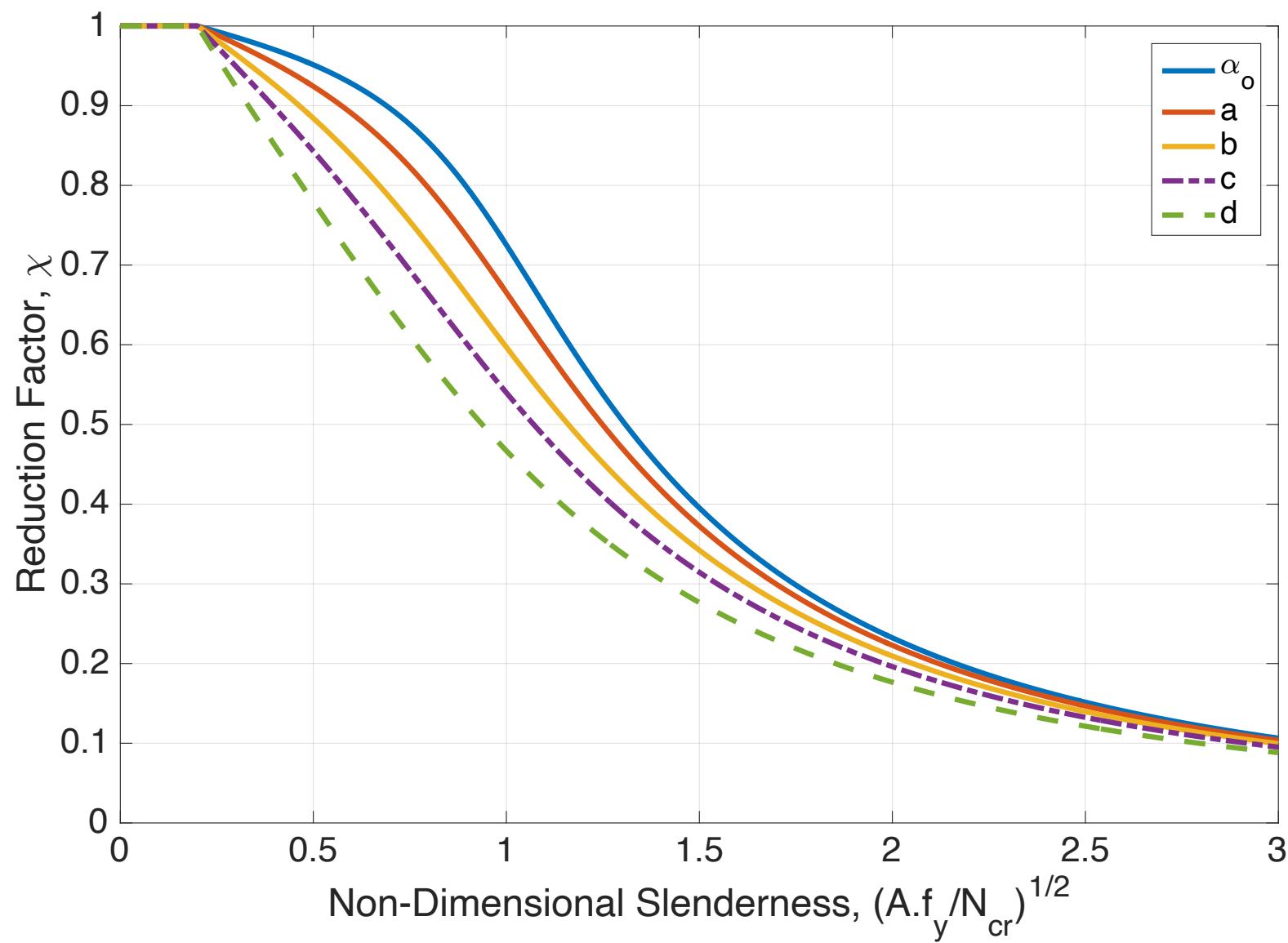
EPFL The Effect of Imperfections

-One Important Example (Frame under Seismic Load)



Source: Suzuki and Lignos (2014)

EPFL Buckling Curves in SIA 263 or EC3-1-1



EPFL Steel Column Design

-Buckling Resistance (EC3-Part 1-1 Section 6.3)

General Condition:

$$\frac{N_{Ed}}{N_{b,Rd}} \leq 1$$

Class 1 & 2 members: Buckling resistance in compression:

$$N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{M1}} \quad \text{Assume } \gamma_{M1} = 1.0$$

Buckling factor:

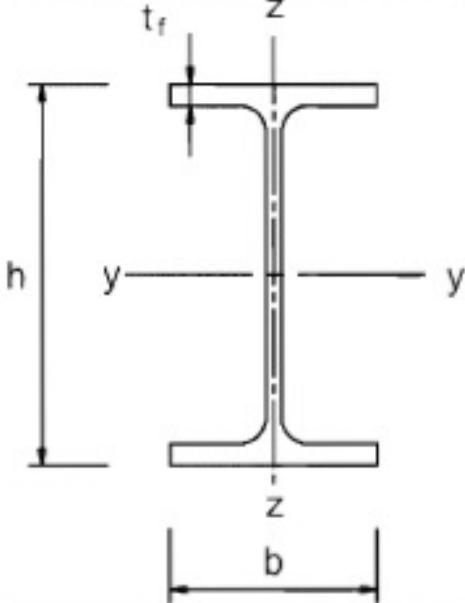
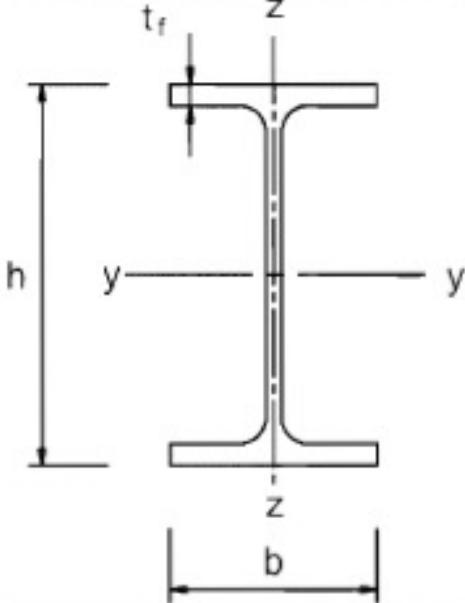
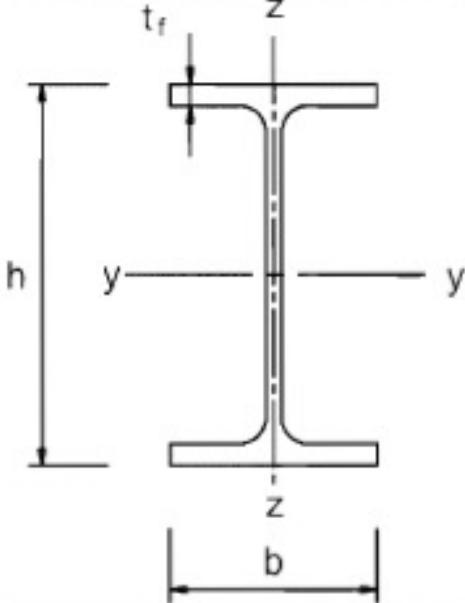
$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} \leq 1.0$$

$$\Phi = 0.5 \cdot [1 + a \cdot (\bar{\lambda} - 0.2) + \bar{\lambda}^2] \quad \bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

a → Imperfection factor
(depends on shape, steel material, thickness)

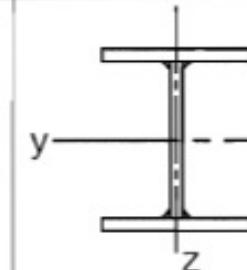
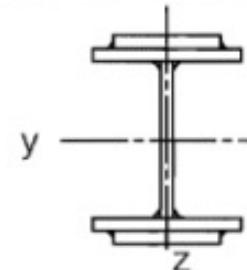
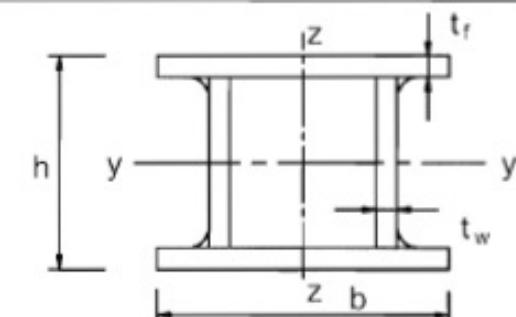
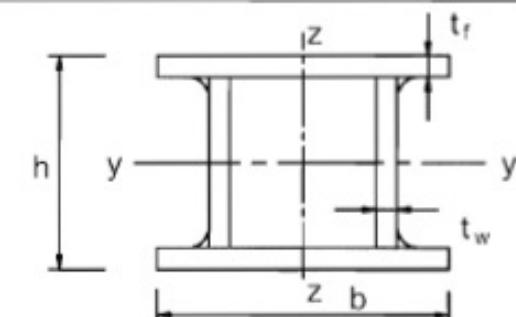
EPFL Steel Column Design

-Buckling Resistance (EC3-Part 1-1 Section 6.3)

Cross section	Limits	Buckling about axis	Buckling curve	
			S 235	S 275
	$h/b > 1,2$	$t_f \leq 40 \text{ mm}$	$y - y$	a
		$40 \text{ mm} < t_f \leq 100 \text{ mm}$	$y - y$	b
		$t_f \leq 100 \text{ mm}$	$z - z$	c
		$t_f > 100 \text{ mm}$	$z - z$	a
	$h/b \leq 1,2$	$y - y$	a	a_0
		$z - z$	b	a_0
		$y - y$	b	a
		$z - z$	c	a
	$t_f > 100 \text{ mm}$	$y - y$	d	c
		$z - z$	d	c
		$y - y$	d	c
		$z - z$	d	c

EPFL Steel Column Design

-Buckling Resistance (EC3-Part 1-1 Section 6.3)

Cross section		Limits	Buckling about axis	Buckling curve	
Welded I-sections	Hollow sections			S 235	S 460
 		$t_f \leq 40 \text{ mm}$	$y - y$ $z - z$	b c	b c
		$t_f > 40 \text{ mm}$	$y - y$ $z - z$	c d	c d
		hot finished	any	a	a_0
		cold formed	any	c	c
		generally (except as below)	any	b	b
		thick welds: $a > 0,5t_f$ $b/t_f < 30$ $h/t_w < 30$	any	c	c

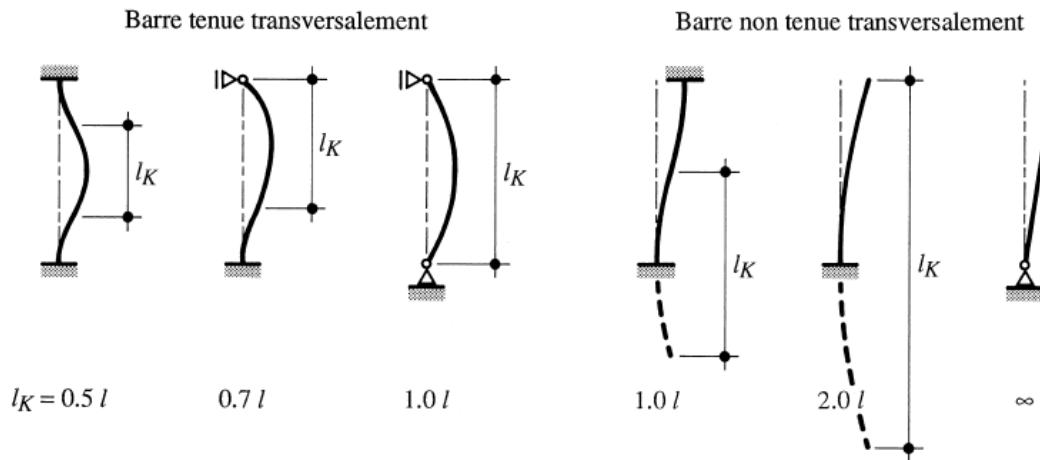
Normalized Member Slenderness

$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

Critical Load

$$N_{cr} = \pi^2 \cdot \frac{E \cdot I}{(l_k)^2}$$

l_k : Distance between two points that moment becomes zero within the column



Code Authority	Resistance Factor ϕ	Column formula $\frac{P_{cr}}{P_y}$	Comments										
AISC, AISI, AASHTO USA	0.9	0.658^{λ^2}	$\lambda \leq 1.5$										
		$\frac{0.877}{\lambda^2}$	$\lambda > 1.5$										
CSA, CANADA, SOUTH AFRICA	0.9	$\frac{1}{[1 + \lambda^{2n}]^{\frac{1}{n}}}$	<table border="1"> <tr> <th>SSRC Curve</th> <th>n</th> </tr> <tr> <td>I</td> <td>2.24</td> </tr> <tr> <td>II</td> <td>1.34</td> </tr> <tr> <td>II</td> <td>1.00</td> </tr> </table>	SSRC Curve	n	I	2.24	II	1.34	II	1.00		
SSRC Curve	n												
I	2.24												
II	1.34												
II	1.00												
EC, EUROPE	0.909	$\frac{1}{Q + \sqrt{Q^2 - \lambda^2}} \leq 1.0$	$Q = 0.5[1 + \alpha(\lambda - 0.2) + \lambda^2]$ <table border="1"> <tr> <th>European Column Curve</th> <th>α</th> </tr> <tr> <td>a</td> <td>0.21</td> </tr> <tr> <td>b</td> <td>0.34</td> </tr> <tr> <td>c</td> <td>0.49</td> </tr> <tr> <td>d</td> <td>0.76</td> </tr> </table>	European Column Curve	α	a	0.21	b	0.34	c	0.49	d	0.76
European Column Curve	α												
a	0.21												
b	0.34												
c	0.49												
d	0.76												
AS, AUSTRALIA	0.9	$\xi \left[1 - \sqrt{1 - \left(\frac{90}{\xi \bar{\lambda}} \right)^2} \right]$	$\bar{\lambda} = \pi \lambda \sqrt{800}$ $\eta = 0.00326(\bar{\lambda} - 13.5) \geq 0$ $\xi = \frac{(\bar{\lambda}/90)^2 + 1 + \eta}{2(\bar{\lambda}/90)^2}$										
AIJ, JAPAN	0.9	1.0	$\lambda \leq 0.15$										
		$0.9 - 0.05 \left[\frac{\lambda - 0.15}{\frac{1}{\sqrt{0.6}} - 0.15} \right]$	$0.15 < \lambda \leq \frac{1}{\sqrt{0.6}}$										
		$1.0 - 0.5 \left[\frac{\lambda - 0.15}{\frac{1}{\sqrt{0.6}} - 0.15} \right]$											
	0.85	$\frac{1.0}{1.2\lambda^2}$	$\lambda \leq \frac{1}{\sqrt{0.6}}$										

Exercise Figures

