

Discrete choice

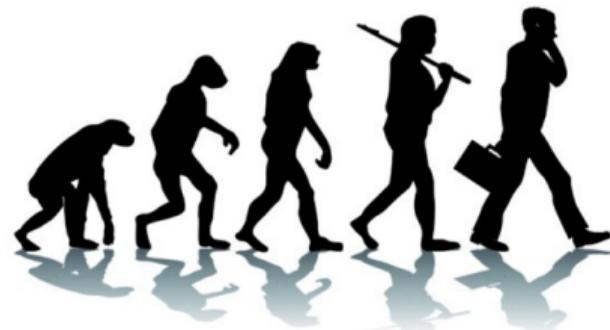
Utility and value of time

Michel Bierlaire

Introduction to transportation systems

EPFL

Behavioral assumptions



Concept

Homo economicus

Decision maker

- ▶ is consistently rational,
- ▶ is narrowly self-interested,
- ▶ optimizes her outcome.

Nature of the decisions

- ▶ continuous: last lecture.
- ▶ discrete: this lecture.

Discrete choice

Choice situation

- ▶ Option 1: travel with public transportation.
- ▶ Option 2: travel by car.

Utility theory

Attributes

Alternatives	Attributes	
	Travel time (t)	Travel cost (c)
PT (1)	t_1	c_1
not PT (2)	t_2	c_2

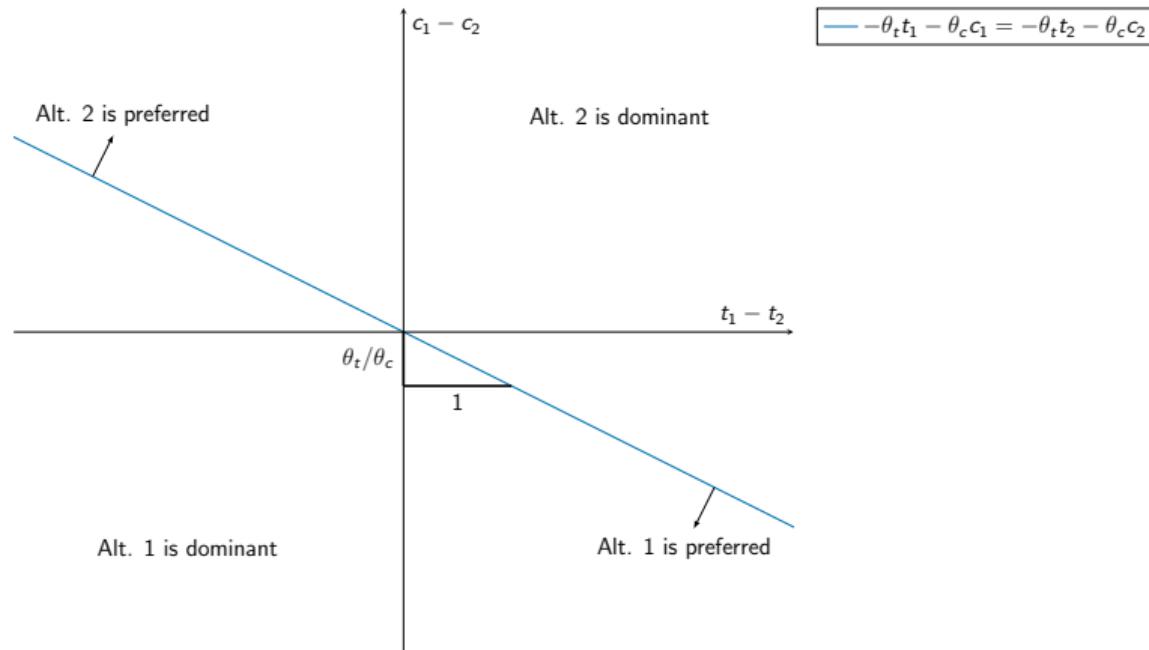
Utility functions

$$u_1 = -\theta_t t_1 - \theta_c c_1$$

$$u_2 = -\theta_t t_2 - \theta_c c_2$$

where $\theta_t > 0$ and $\theta_c > 0$ are parameters.

Utility theory



Utility model

Variables

- ▶ Travel time: t_{in} .
- ▶ Travel cost: c_{in} .
- ▶ Others (headway, etc.): x_{in} .

Function

$$u_{in} = u(t_{in}, c_{in}, x_{in})$$

Example:

$$u_{in} = -\theta_t t_{in} - \theta_c c_{in} - \theta_x x_{in},$$

where $\theta_t, \theta_c, \theta_x \geq 0$.

Utility model

$$u_{in} = -\theta_t t_{in} - \theta_c c_{in} - \theta_x x_{in}.$$

where $\theta_t, \theta_c, \theta_x \geq 0$.

Units

- ▶ Utility has no unit.
- ▶ If t_{in} : minutes, then θ_t : 1/minutes.
- ▶ If t_{in} : hours, then θ_t : 1/hours.
- ▶ If c_{in} : CHF, then θ_c : 1/CHF.
- ▶ If x_{in} : unit, then θ_x : 1/unit.

Utility model

$$u_{in} = -\theta_t t_{in} - \theta_c c_{in} - \theta_x x_{in}.$$

Changing the units

- ▶ Multiplying/dividing by a positive constant does not change the ranking.

$$u_{in}^x = \frac{u_{in}}{\theta_x} = -\frac{\theta_t}{\theta_x} t_{in} - \frac{\theta_c}{\theta_x} c_{in} - x_{in},$$

- ▶ $u_{in} \geq u_{jn} \iff u_{in}^x \geq u_{jn}^x$.
- ▶ Units of u_{in}^x : same as x_{in}

Utility model

$$u_{in} = -\theta_t t_{in} - \theta_c c_{in} - \theta_x x_{in}.$$

Monetary units

- ▶ Any variable can be used as a reference.
- ▶ Cost, for example:

$$u_{in}^c = \frac{u_{in}}{\theta_c} = -\frac{\theta_t}{\theta_c} t_{in} - c_{in} - \frac{\theta_x}{\theta_c} x_{in},$$

- ▶ $u_{in} \geq u_{jn} \iff u_{in}^c \geq u_{jn}^c$.
- ▶ Units of u_{in}^c : CHF.
- ▶ Its opposite is sometimes called **generalized cost**.

Utility model

$$u_{in}^c = -\frac{\theta_t}{\theta_c} t_{in} - c_{in} - \frac{\theta_x}{\theta_c} x_{in},$$

Units

- ▶ $\frac{\theta_t}{\theta_c}$: $(1/\text{minute})/(1/\text{CHF}) = \text{CHF}/\text{minute}$
- ▶ $\frac{\theta_x}{\theta_c}$: $(1/\text{unit})/(1/\text{CHF}) = \text{CHF}/\text{unit}$

The quantity $\frac{\theta_t}{\theta_c}$ is called the **value of time**.

Note: slope of the line on slide 5.

Value of time

Context

- ▶ The utility function contains a cost or price variable.
- ▶ What is the willingness of the traveler to pay for a modification of another variable of the model?
- ▶ Typical example in transportation: value of time.

Value of time

Price that a traveler is willing to pay to decrease the travel time.

Value of time

Definition

- ▶ Let c_{in} be the cost of alternative i for individual n .
- ▶ Let t_{in} be the value of travel time.
- ▶ Let $u(c_{in}, t_{in})$ be the value of the utility function.
- ▶ Consider a scenario where the travel time is reduced:

$$t'_{in} = t_{in} - \delta_{in}^t.$$

- ▶ We denote by δ_{in}^c the additional cost that would achieve the same utility, that is

$$u(c_{in} + \delta_{in}^c, t_{in} - \delta_{in}^t) = u(c_{in}, t_{in}).$$

- ▶ The value of time is the additional cost per unit of saved time, that is

$$\delta_{in}^c / \delta_{in}^t$$

Value of time

Calculation

Invoke Taylor's theorem:

$$\begin{aligned} u(c_{in}, t_{in}) &= u(c_{in} + \delta_{in}^c, t_{in} - \delta_{in}^t) \\ &\approx u(c_{in}, t_{in}) + \delta_{in}^c \frac{\partial u}{\partial c_{in}}(c_{in}, t_{in}) - \delta_{in}^t \frac{\partial u}{\partial t_{in}}(c_{in}, t_{in}) \end{aligned}$$

Therefore...

$$\frac{\delta_{in}^c}{\delta_{in}^t} = \frac{(\partial u / \partial t_{in})(c_{in}, t_{in})}{(\partial u / \partial c_{in})(c_{in}, t_{in})}$$

Value of time

For example, if

$$u_{in} = -\theta_t t_{in} - \theta_c c_{in} - \theta_x x_{in}.$$

then

$$\frac{\delta_{in}^c}{\delta_{in}^t} = \frac{(\partial u / \partial t_{in})(c_{in}, t_{in})}{(\partial u / \partial c_{in})(c_{in}, t_{in})} = \frac{\theta_t}{\theta_c}$$

Value of time in Switzerland

Per trip purpose

	Business	Work	Leisure	Shopping
Public transportation (CHF/h)	49.57	27.81	21.84	17.73
Car (CHF/h)	50.23	30.64	29.20	24.32

[Axhausen et al., 2008]

Willingness to pay

Other variables

- ▶ The same analysis can be done for other variables.
- ▶ Willingness to pay to have less transfers.
- ▶ Willingness to pay to have less waiting time.
- ▶ Willingness to pay to have WiFi in the bus.

Warning

Taylor's theorem can only be invoked for continuous variables.

Willingness to pay: example

$$u = -\theta_c c_{in} + \theta_w w_{in}$$

where $w_{in} = 1$ if WiFi is available in alternative i for traveler n , and 0 otherwise.

Utility without WiFi: $w_{in} = 0$

$$-\theta_c c_{in}$$

Utility with WiFi: $w_{in} = 1$

$$-\theta_c (c_{in} + \delta_{in}^c) + \theta_w$$

Willingness to pay for WiFi

$$-\theta_c c_{in} = -\theta_c (c_{in} + \delta_{in}^c) + \theta_w$$

$$0 = -\theta_c \delta_{in}^c + \theta_w$$

$$\delta_{in}^c = \frac{\theta_w}{\theta_c}.$$

Summary

Choice models

- ▶ Utility theory applies to discrete choices as well.
- ▶ Assumption: alternative associated with maximum utility is chosen.

Units of utility function

- ▶ Utility as such has no unit.
- ▶ It is possible to transform the function into the unit of any variable.
- ▶ Opposite of generalized cost, in CHF.

Willingness to pay

- ▶ Price that the traveler is willing to pay to improve another variable.
- ▶ Typical case: value of time = willingness to pay for travel time savings.

Bibliography

- Axhausen, K., Hess, S., Koenig, A., Abay, G., Bates, J., and Bierlaire, M. (2008).
Income and distance elasticities of values of travel time savings: new swiss results.
Transport Policy, 15(3):173–185.
Accepted on Feb 16, 2007.