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Mathematical modeling

Variables and causality

Michel Bierlaire

Introduction to transportation systems
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Mathematical model

Definition

A mathematical model is a description of a
system using mathematical concepts and
language.

Wikipedia

Roles
» Understand.
» Predict.
» Optimize.
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Modeling elements: variables

Definition
Symbol for an expression or a quantity that
varies as an arbitrary object.

Wikipedia
Roles
» Capture the state of the system [traffic
flow].

» Capture the decisions of the engineers
[number of lanes].

» Capture the performance of the system
[travel time].

» Capture external elements [weather].
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Modeling elements: variables

Continuous variables
> x ¢ R.

» Associated with a unit.

» Example: travel time in minutes, or seconds.

Qualitative discrete variables
» x € A where A is a set of labels.

» Example: transportation modes A ={car as driver, car as passenger, bus,
bike, train}.

» Example: level of comfort: A = {very comfortable, comfortable, rather
comfortable, not comfortable}.
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Modeling elements: variables

Binary variables
> x € {0,1}.
» Associated with a decision, a switch.

» Example: open a new lane or not.

Counting discrete variables
» x € N.

» Example: number of persons in a household.

» Note: often treated as continuous.
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Modeling elements: random variables

Definition
Function:
X:Q — R,

where  is a set of (random) events.

Example
Sampling individuals for a survey.

» Event: a specific individual is selected.
» Value: the income of the individual,

» or: the number of cars in the household.
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Modeling elements: random variables
Notations: event

X=x<={w:weand X(w)

x}

X<x<={w:weQand X(w) < x}

Discrete or continuous
» Set of possible values for X:

A={xeR: (X =x)#0}

» If A is finite or countably infinite: X is discrete [number of cars].

» Otherwise, X is continuous [income].
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Modeling elements: random variables
Cumulative distribution function (CDF)

Fx(x) = Pr(X < x).

Property: non-decreasing

x <y = Fx(x) < Fx(y).

Probability mass function (pmf): discrete variables

px(x) = Pr(X = x).

Z px(x) = 1.

x€A

Property:
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Modeling elements: random variables

Probability density function (pdf): continuous variables

dFx(x
-
Note:
Pr(X = x) = 0 for strictly continuous variables.
Derivation:

Pr(x < X < x+dx) = Fx(x + dx) — Fx(x).
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Modeling elements: random variables

Expectation: discrete

E[X] =) xpx(x).

x€A

Expectation: continuous
E[X] = / x F(x)dx.
x€A

Variance

Var[X] = E[X?] — E[X]%.
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Modeling elements: random variables
Notes

» For many aspects, they can be treated as regular variables.

» As an abuse of notations, we will write
X eR.

» Similarly, we will consider vectors of random variables:

Xi
X = : c R".
Xn
» We will write formulas such as
aX +BY
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Modeling elements: random variables

Linear transformations of discrete random variables
If
Y=aX+0

py(y) = px (%)

Linear transformations of continuous random variables
If

then

Y=aX+7

v = (750)

«

then
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Mathematical model

Objective
» Explain / predict a variable(s) using other variable(s).
» Formally, we are interested in the random variable

Y|IX =x

» We call Y the “dependent”, “endogenous” or “explained” variable(s).

» We call X the “independent”, “exogenous” or “explanatory” variable(s).
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Mathematical model

Example

» X: travel time on a stretch of highway.
» Y: traffic flow on the highway.

Example

» X: number of persons in the household.

» Y: number of cars in the household.

Example

» X: weather.
» Y: number of bike trips.
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Mathematical model

Objectives

» Capture causal effects.
» X and Y must be correlated.
» But correlation is not sufficient.

» For prediction, we need causality.

Causality and correlation

Causality = correlation

Correlation = causality
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Example
Swiss Microcensus 2015. Source: ARE.
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Example

Chocolate Consumption, Cognitive Function, and Nobel Laureates

Nobel Laureates per 10 Million Population
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Discussion: Causality? What is happening here?

Source: [Messerli, 2012]
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Chocolate and Nobel prizes

Nobel | Chocolate or Chocolate | Nobel

Clear correlation

No justification for causality, in any direction

Possible explanation: wealth of the country explains both
Nobel | Wealth and Chocolate | Wealth
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Spurious correlations

From www.tylervigen.com
» “US spending on science, space and technology”, and “suicides by hanging,
strangulation and suffocation”.
» “Divorce rate in Maine” and “per capita consumption of margarine”.

» “Per capita consumption of mozzarella cheese” and “civil engineering
doctorates awarded”.
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Causality

Example
» X: travel time on a stretch of
highway.

» Y traffic flow on the highway.

Example

» X: income.
» Y distance traveled.

Causality?
» Y|X? demand function,
behavior causality.
> X|Y? supply function, system
performance.

Causality?
> Y|X? makes sense.
> X|Y? does not make sense.
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Causality

Example
» X: bus fare.
» Y: number of riders.

Example
» X: weather.

» Y: number of bike trips.

Causality?
» Y|X? demand function,
behavior causality.

> X|Y? supply function,
operator strategy.

Causality?
> Y|X? makes sense.
> X|Y? does not make sense.
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Causality

Xy;bzmac — Comments
\ ¢ 2a ‘ » Context dependent.

X2+Px+q=0 | T e » The same variable may be exogenous or
R x ; endogenous in different contexts.

» Examples: supply and demand functions.

» Importance of theoretical assumptions.
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Causality

Theory

>

>
>
4

A model relies on theory.
Example: utility theory.
Required for prediction, extrapolation.

Main assumption: the causal relationship is
stable over time, and over different
configurations of the system.

This is a key difference with “machine
learning” .
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Summary

Variables
» Continuous
» Qualitative discrete
» Random

Causality

» Different than correlation.
» Context dependent.
» Relies on theory, assumptions, hypotheses.

Next
Model development
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