

Mathematical modeling

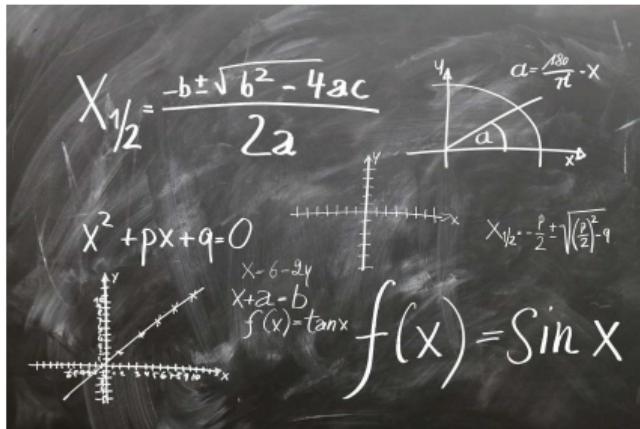
Variables and causality

Michel Bierlaire

Introduction to transportation systems

EPFL

Mathematical model



Definition

A mathematical model is a description of a system using mathematical concepts and language.

Wikipedia

Roles

- ▶ Understand.
- ▶ Predict.
- ▶ Optimize.

Modeling elements: variables

X Y

Z

Definition

Symbol for an expression or a quantity that varies as an arbitrary object.

Wikipedia

Roles

- ▶ Capture the state of the system [traffic flow].
- ▶ Capture the decisions of the engineers [number of lanes].
- ▶ Capture the performance of the system [travel time].
- ▶ Capture external elements [weather].

Modeling elements: variables

Continuous variables

- ▶ $x \in \mathbb{R}$.
- ▶ Associated with a unit.
- ▶ Example: travel time in minutes, or seconds.

Qualitative discrete variables

- ▶ $x \in \mathcal{A}$ where \mathcal{A} is a set of labels.
- ▶ Example: transportation modes $\mathcal{A} = \{\text{car as driver, car as passenger, bus, bike, train}\}$.
- ▶ Example: level of comfort: $\mathcal{A} = \{\text{very comfortable, comfortable, rather comfortable, not comfortable}\}$.

Modeling elements: variables

Binary variables

- ▶ $x \in \{0, 1\}$.
- ▶ Associated with a decision, a switch.
- ▶ Example: open a new lane or not.

Counting discrete variables

- ▶ $x \in \mathbb{N}$.
- ▶ Example: number of persons in a household.
- ▶ Note: often treated as continuous.

Modeling elements: random variables

Definition

Function:

$$X : \Omega \rightarrow \mathbb{R},$$

where Ω is a set of (random) events.

Example

Sampling individuals for a survey.

- ▶ Event: a specific individual is selected.
- ▶ Value: the income of the individual,
- ▶ or: the number of cars in the household.

Modeling elements: random variables

Notations: event

$$X = x \iff \{\omega : \omega \in \Omega \text{ and } X(\omega) = x\}$$

$$X \leq x \iff \{\omega : \omega \in \Omega \text{ and } X(\omega) \leq x\}$$

Discrete or continuous

- ▶ Set of possible values for X :

$$\mathcal{A} = \{x \in \mathbb{R} : (X = x) \neq \emptyset\}.$$

- ▶ If \mathcal{A} is finite or countably infinite: X is discrete [number of cars].
- ▶ Otherwise, X is continuous [income].

Modeling elements: random variables

Cumulative distribution function (CDF)

$$F_X(x) = \Pr(X \leq x).$$

Property: non-decreasing

$$x < y \implies F_X(x) \leq F_X(y).$$

Probability mass function (pmf): discrete variables

$$p_X(x) = \Pr(X = x).$$

Property:

$$\sum_{x \in \mathcal{A}} p_X(x) = 1.$$

Modeling elements: random variables

Probability density function (pdf): continuous variables

$$f_X(x) = \frac{dF_X(x)}{dx}$$

Note:

$\Pr(X = x) = 0$ for strictly continuous variables.

Derivation:

$$\Pr(x < X \leq x + dx) = F_X(x + dx) - F_X(x).$$

Modeling elements: random variables

Expectation: discrete

$$E[X] = \sum_{x \in \mathcal{A}} x p_X(x).$$

Expectation: continuous

$$E[X] = \int_{x \in \mathcal{A}} x f(x) dx.$$

Variance

$$\text{Var}[X] = E[X^2] - E[X]^2.$$

Modeling elements: random variables

Notes

- ▶ For many aspects, they can be treated as regular variables.
- ▶ As an abuse of notations, we will write

$$X \in \mathbb{R}.$$

- ▶ Similarly, we will consider vectors of random variables:

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in \mathbb{R}^n.$$

- ▶ We will write formulas such as

$$\alpha X + \beta Y$$

Modeling elements: random variables

Linear transformations of discrete random variables

If

$$Y = \alpha X + \beta$$

then

$$p_Y(y) = p_X\left(\frac{y - \beta}{\alpha}\right)$$

Linear transformations of continuous random variables

If

$$Y = \alpha X + \beta$$

then

$$f_Y(y) = \frac{1}{|\alpha|} f_X\left(\frac{y - \beta}{\alpha}\right)$$

Mathematical model

Objective

- ▶ Explain / predict a variable(s) using other variable(s).
- ▶ Formally, we are interested in the random variable

$$Y|X = x$$

- ▶ We call Y the “dependent”, “endogenous” or “explained” variable(s).
- ▶ We call X the “independent”, “exogenous” or “explanatory” variable(s).

Mathematical model

Example

- ▶ X : travel time on a stretch of highway.
- ▶ Y : traffic flow on the highway.

Example

- ▶ X : number of persons in the household.
- ▶ Y : number of cars in the household.

Example

- ▶ X : weather.
- ▶ Y : number of bike trips.

Mathematical model

Objectives

- ▶ Capture causal effects.
- ▶ X and Y must be correlated.
- ▶ But correlation is not sufficient.
- ▶ For prediction, we need causality.

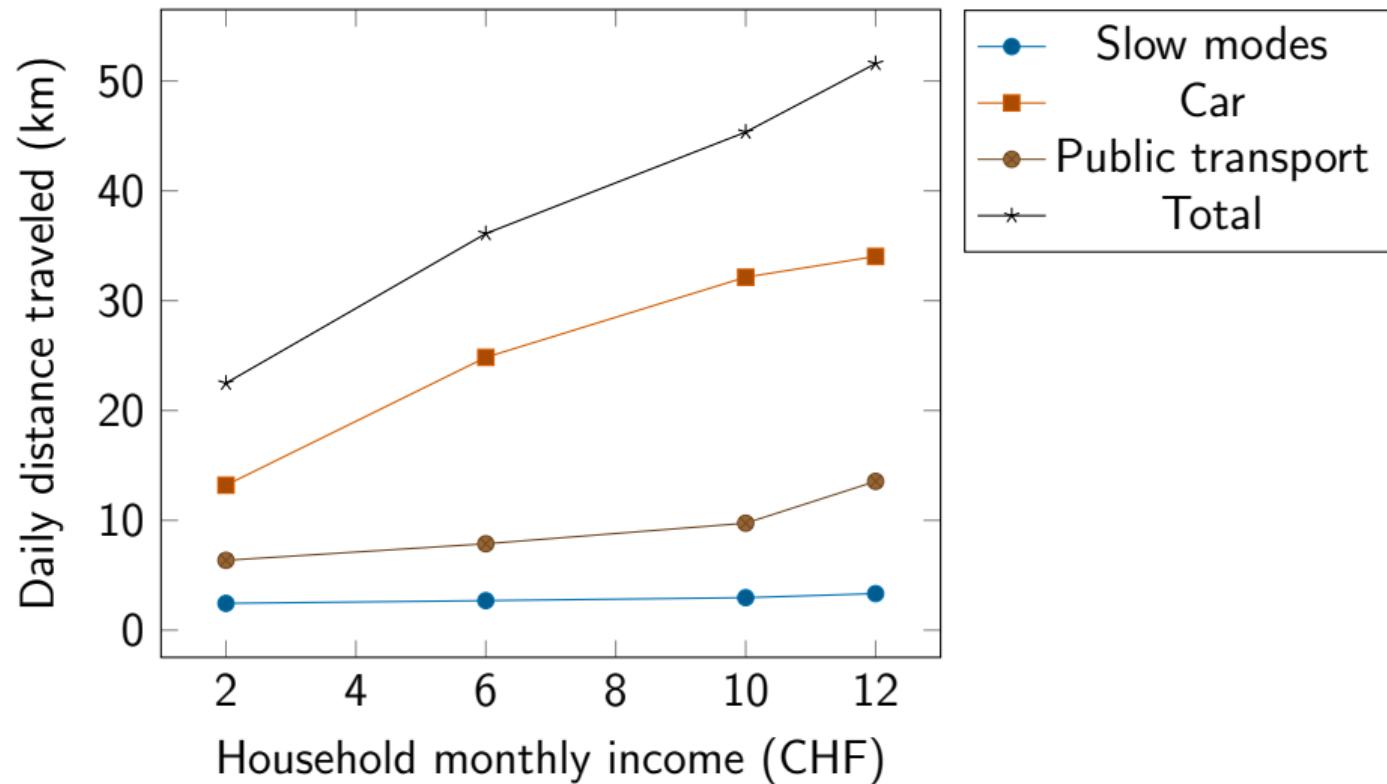
Causality and correlation

Causality \Rightarrow correlation

Correlation $\not\Rightarrow$ causality

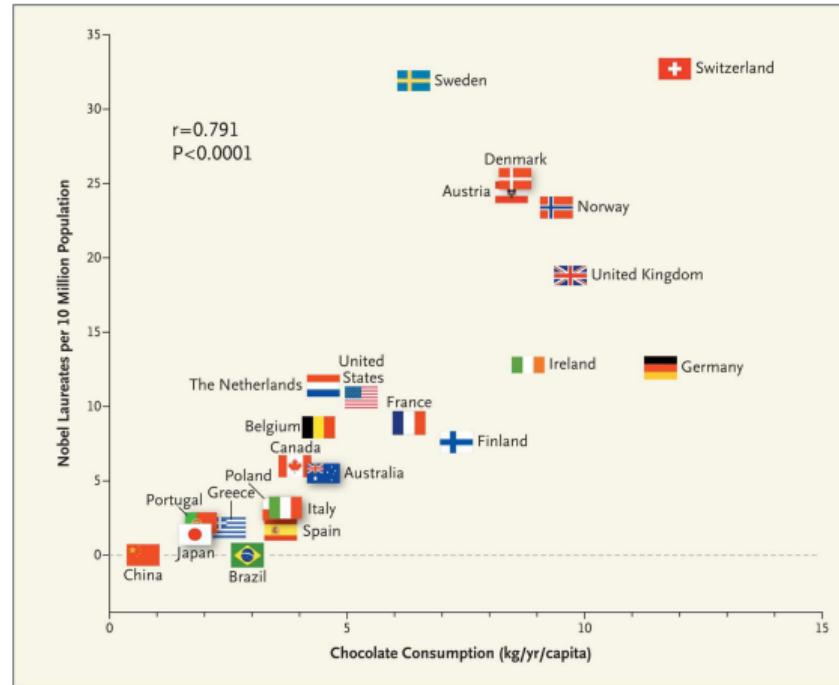
Example

Swiss Microcensus 2015. Source: ARE.



Example

Chocolate Consumption, Cognitive Function, and Nobel Laureates



Discussion: Causality? What is happening here?

Chocolate and Nobel prizes

Nobel | Chocolate or Chocolate | Nobel

Clear correlation

No justification for causality, in any direction

Possible explanation: wealth of the country explains both

Nobel | Wealth and Chocolate | Wealth

Spurious correlations

From www.tylervigen.com

- ▶ “US spending on science, space and technology”, and “suicides by hanging, strangulation and suffocation”.
- ▶ “Divorce rate in Maine” and “per capita consumption of margarine”.
- ▶ “Per capita consumption of mozzarella cheese” and “civil engineering doctorates awarded”.

Causality

Example

- ▶ X : travel time on a stretch of highway.
- ▶ Y : traffic flow on the highway.

Causality?

- ▶ $Y|X$? demand function, behavior causality.
- ▶ $X|Y$? supply function, system performance.

Example

- ▶ X : income.
- ▶ Y : distance traveled.

Causality?

- ▶ $Y|X$? makes sense.
- ▶ $X|Y$? does not make sense.

Causality

Example

- ▶ X : bus fare.
- ▶ Y : number of riders.

Causality?

- ▶ $Y|X$? demand function, behavior causality.
- ▶ $X|Y$? supply function, operator strategy.

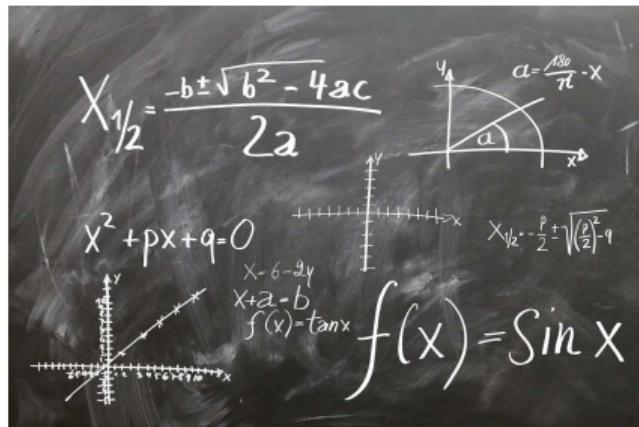
Example

- ▶ X : weather.
- ▶ Y : number of bike trips.

Causality?

- ▶ $Y|X$? makes sense.
- ▶ $X|Y$? does not make sense.

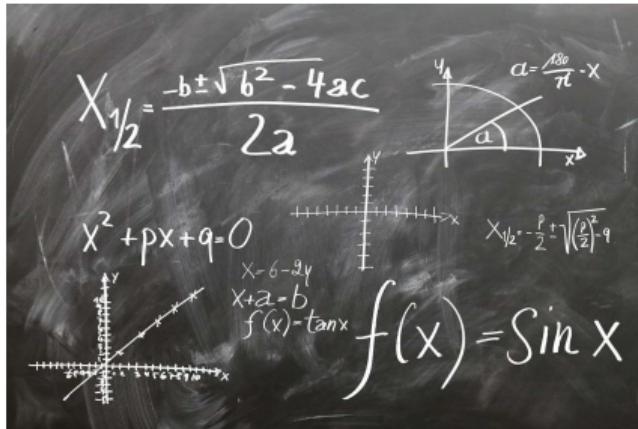
Causality



Comments

- Context dependent.
- The same variable may be exogenous or endogenous in different contexts.
- Examples: supply and demand functions.
- Importance of theoretical assumptions.

Causality



Theory

- ▶ A model relies on theory.
- ▶ Example: **utility theory**.
- ▶ Required for prediction, extrapolation.
- ▶ Main assumption: the causal relationship is stable over time, and over different configurations of the system.
- ▶ **This is a key difference with “machine learning”.**

Summary

Variables

- ▶ Continuous
- ▶ Qualitative discrete
- ▶ Random

Causality

- ▶ Different than correlation.
- ▶ Context dependent.
- ▶ Relies on theory, assumptions, hypotheses.

Next

Model development

Bibliography

 Messerli, F. (2012).
Chocolate consumption, cognitive function, and Nobel laureates.
The New England Journal of Medicine, 367:1562–1564.